Scientific Programming 18 (2010) 183-191
DOI 10.3233/SPR-2010-0310
I0S Press

183

Optimizing UPC programs for multi-core

systems

Yili Zheng

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

E-mail: yzheng @[bl.gov

Abstract. The Partitioned Global Address Space (PGAS) model of Unified Parallel C (UPC) can help users express and manage
application data locality on non-uniform memory access (NUMA) multi-core shared-memory systems to get good performance.
First, we describe several UPC program optimization techniques that are important to achieving good performance on NUMA
multi-core computers with examples and quantitative performance results. Second, we use two numerical computing kernels,
parallel matrix—matrix multiplication and parallel 3-D FFT, to demonstrate the end-to-end development and optimization for
UPC applications. Our results show that the optimized UPC programs achieve very good and scalable performance on current
multi-core systems and can even outperform vendor-optimized libraries in some cases.

Keywords: UPC, PGAS

1. Introduction

Multi-core processors have become mainstream:
they are in almost all types of computing devices
from commodity laptops to customized supercomput-
ers. However, getting good application performance on
multi-core systems is non-trivial except for those em-
barrassingly parallel programs. Many application do-
main research projects have shown that it requires sig-
nificant amount of optimization and tuning to get high
performance beyond simply parallelizing the code.
One of the key challenges is to manage data locality
well, which is crucial to achieving high performance
on modern micro-processors with deep cache hierar-
chies and non-uniform memory access (NUMA) prop-
erty.

NUMA optimizations are very important to get
performance speed-ups [8,18]. However, it is dif-
ficult to handle NUMA issues when using a flat
shared-memory model with threads (e.g., Pthreads and
OpenMP) because little or no data locality informa-
tion is available to the user. For example, OpenMP
provides compiler directives to easily parallelize for
loops but the speedups may be dismal if the data dis-
tribution and access locality are not optimized accord-
ingly. The operating system may be able to alleviate
the problem by using the “first-touch” memory alloca-
tion policy but the user has no way to query the data
location subsequently. Moreover, the serial sections in

parallel programs using the fork-join model can easily
become the performance scalability bottleneck due to
Amdahl’s law.

PGAS programming models provide programming
convenience similar to shared-memory programming
models and at the same time enable users to man-
age data locality explicitly. Unified Parallel C is an
C99 language extension with PGAS support and has
become mature with production-quality implementa-
tions and supporting tools after more than a decade of
research and development efforts. Berkeley UPC and
GCC UPC are two active open source UPC implemen-
tations. Commercial offerings of UPC include Cray
UPC, HP UPC, IBM UPC and SGI UPC. In addition,
there are several research compiler infrastructures that
support UPC, such as ROSE [14] and OpenUH [13].
Both IBM UPC [1] and Berkeley UPC [11] have
demonstrated performance scalability on tens of thou-
sands cores.

Though UPC and other PGAS languages were
initially focused on large scale distributed-memory
machines, they are also a good fit for emerging multi-
core systems because the data partitioning capability of
PGAS programming models helps users manage data
locality efficiently and therefore achieve high perfor-
mance. Figure 1 illustrates the PGAS model in UPC.
The data partitioning information provided in the ap-
plication programs can be used by the compiler and
runtime to optimize the shared-data layout for NUMA.

1058-9244/10/$27.50 © 2010 — IOS Press and the authors. All rights reserved

184 Y. Zheng / Optimizing UPC programs for multi-core systems

Shared Shared Shared Shared
Segment Segment Segment Segment

| |
Private Private Private Private
Segment Segment

‘ Segment ‘ | Segment

Fig. 1. Address space partitioning in UPC: vertical boundaries dis-
tinguish local and remote partitions while horizontal boundaries sep-
arate private and shared segments. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2010-0310.)

2. Optimization techniques

Getting good application performance on multi-core
systems requires the collaboration between the appli-
cation code and the underlying system software. Tradi-
tional sequential program optimizations, such as vec-
torization, data padding, prefetching and loop opti-
mizations,' are all applicable to UPC programs since
they improve single-core performance. In this paper,
we focus on UPC-specific optimization techniques for
multi-core systems.

For each optimization technique, we demonstrate its
usage and show performance potentials using micro-
benchmarks. Two representative multi-core systems,
one with AMD processors and the other with Intel
processors, are used for the experiments. The config-
urations of the two systems are listed in Table 1. The
UPC compilers used in the experiments are Berke-
ley UPC 2.12 [15] and GCC UPC 4.5.1.2 [5], both of
which are open source and free to use.

2.1. Casting shared pointers to local pointers

The global address space in UPC is partitioned
across all threads and each shared datum in the global
address space has unique affinity to one thread. In
UPC, a shared pointer is a data structure that points to
a shared datum in the global address space and a lo-
cal pointer is a virtual memory address to which can
be accessed by CPU directly. To access data through
a shared pointer, the UPC compiler and runtime need
to translate the shared pointer to a local pointer, an
operation called address translation. However, if the
memory location referred by a shared pointer has affin-
ity with the accessing thread, the thread can access
that memory location directly with a local pointer
casted from the shared pointer and save the over-

1 http://en.wikipedia.org/wiki/Loop_optimization.

heads for subsequent accesses. In the rest of the paper,
the term “shared pointer” is the same as “pointer-to-
shared” and “local pointer” is the same as “pointer-to-
local”.

A shared pointer in UPC commonly contains more
information than a local pointer. A shared pointer typ-
ically includes the node rank, the address or variable
name and the phase within an array block for the tar-
get data. Because the address translation form a shared
pointer to a local pointer is usually done by software,
accessing data through a shared pointer costs many
more CPU cycles than through a local pointer. Cast-
ing a pointer-to-shared to a pointer-to-local on shared-
memory systems whenever possible can avoid the ad-
dress translation overheads and result in significant
speed-ups.

We use a modified UPC STREAM TRIAD bench-
mark as an example to show the benefits of casting
shared pointers to local pointers. Figures 2 and 3 are
two versions of the same STREAM benchmark except
that one uses shared pointers directly and the other uses
local pointers by casting the shared pointers.

Figure 4 shows the performance difference between
these two UPC programs. The program using local
pointers is many times faster than the program us-
ing shared pointers. Not only does address transla-
tion incurs significant CPU overheads, it also wastes
scarce memory bandwidth and interferes common
hardware optimizations for local memory accesses
such as prefetching. Though the problem has been an
important research topic, the compiler generally can-
not determine whether it is safe to cast a shared pointer
to a local pointer due to the lack of runtime informa-
tion. Therefore, it is best to cast shared pointers to local
pointers explicitly and appropriately in the program to
guarantee good performance.

2.2. Selecting memory consistency model

UPC supports two memory consistency models:
strict and relaxed, which resemble the sequential con-
sistency model [9] and the relaxed consistency model
respectively. The strict consistency model provides a
total ordering for all memory accesses and therefore it
is easier to reason about. However, the strict consis-
tency model also carries a huge performance penalty
compared to the relaxed consistency model because
it prohibits many kinds of valid concurrent data ac-
cesses. The details of these two UPC memory con-
sistency models can be found in the UPC specifica-
tion [16].

Y. Zheng / Optimizing UPC programs for multi-core systems 185

Table 1

Two multi-core NUMA systems

System Sun Fire x4600-M2 IBM iDataPlex
Processor AMD Opteron 8387 Intel Xeon E5530
Clock (GHz) 2.80 2.4
Cores per socket 4 4
Sockets 8 2
Total cores 32 8
Private L1 data cache 128 kB 64 kB
Private L2 data cache 512kB 512kB
Shared L3 cache per socket 6 MB 8 MB
Memory bandwidth (GB/s) 12.8 25.6
Memory 256 GB DDR2-667 ECC 24 GB DDR3-1066 ECC
Compiler GCC442 Intel C/C++411.1
Math library ACML 4.3 Intel MKL 10.2
Shared Data Access Time on 32-core AMD
shared [] double *sa, *sb, *sc; 900
for (i=0; i<nelems; i++) { 800 | —e—Llocalpointer
sali] = sb[i] + alpha * sc[il; 200 . W Pointer-to-shared Berkeley UPC /'
}
— 600
wv
£ 500
Fig. 2. Kernel code of the STREAM benchmark using shared point- dé 400
ers. F 300
200
100
shared [] double *sa, *sb, *sc; 0
dm(lgleb;a' ;b' ci 8 16 32 64 128 256 512
a=(double *)sa; .
b= (double *)sb; Data Size (bytes)
c=(double *)sc; .
for (i=0; i<nelems; i++) { Shared Data Access Time on 8-core Intel
ali]l = bli] + alpha * c[il; 800 |-
) o | —*localpointer A
600 | - Pointer-to-shared Berkeley UPC /'
Pointer-to-shared GCCUPC
Fig. 3. Kernel code of the STREAM benchmark using local pointers. Tg 500 - e
}ET 400 F——————mm e -
The memory consistency model can be selected ei- £300 e S S
ther by compiler directives: 200 4+ o
, 100 F—————mm ok o —————
#pragma upc strict 0 - r u -~ o—2
#pragma upc relaxed DA G ! !
8 16 32 64 128 256 512
or by type qualifiers: Data Size (bytes)
strict shared [] double *sa; Fig. 4. Local shared data access times by pointer-to-local versus
relaxed shared [] double *sa. pointer-to-shared. (Colors are visible in the online version of the ar-

The code used for benchmarking UPC memory con-
sistency models is similar to the one in Fig. 2 used in
Section 2.1 except for the memory consistency model.
Figure 5 shows that using the relaxed consistency
model can provide orders of magnitude faster per-
formance than the strict consistency model on multi-

ticle; http://dx.doi.org/10.3233/SPR-2010-0310.)

core systems. This is because enforcing strict mem-
ory consistency requires expensive hardware instruc-
tions and sometimes even needs software assistance on
some platforms. Using the relaxed consistency model

186 Y. Zheng / Optimizing UPC programs for multi-core systems

Shared Data Access Time on 32-Core AMD

2000

—&— Relaxed consistency /
1500

—l— Strict consistency

1000

Time (ns)

500

Data Size (bytes)

Shared Data Access Time on 8-Core Intel

2500

—&— Relaxed consistency)|
2000
—l— Strict consistency

Time (ns)
= =
o w1
o o
o o

%
o
o

|
\

8 16 32 64 128 256
Data Size (bytes)

Fig. 5. Comparison of shared data access times between the relaxed
consistency model and the strict consistency model. Berkeley UPC
compiler is used for both systems. GCC is used on the AMD sys-
tem and Intel C/C++ is used on the Intel system. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2010-0310.)

whenever possible can greatly speed up the UPC pro-
gram.

2.3. Managing data affinity for NUMA systems

Figure 6 shows the memory access latencies from
thread O to different UPC threads as measured by the
STREAM benchmark. Accessing the data with affin-
ity to the thread itself has the lowest latency because
of prefetching and caching. The memory access laten-
cies are uniform within a socket and increase when the
data are out of the socket where the accessing thread
resides.

Elements in a UPC shared array are distributed in a
block-cyclic order. Furthermore, UPC guarantees that
the local portion of a shared array is contiguous in
the thread’s local memory. UPC programs can ob-
tain the data affinity information by querying the UPC
thread affinity function upc_threadof and the access
distance information (available in Berkeley UPC ex-
tensions) to maximize local accesses and reduce re-

mote accesses. It is important make the data access pat-
tern match the data partition. A practical approach for
getting good data locality is to run only one process
on each socket (numa node) and spawn threads on
the cores within the socket. Berkeley UPC supports
this kind of process-thread hybrid execution model
and includes runtime optimizations for multi-core sys-
tems [2].

2.4. Using collective operations

UPC provides commonly used collective operations
in its standard library. Collective communication has
been an important topic in parallel computing be-
cause it provides high level abstractions for describing
communication patterns while allowing the underly-
ing runtime and hardware to optimize the performance
transparently. Although many MPI implementations
include optimized collective communication, none of
them supports thread-based collective communication
because they use processes as communication end-
points. Multi-threaded collective operations for arrays
are also absent in OpenMP.

Berkeley UPC provides optimized multi-threaded
collective communication for multi-core systems [12]
implemented with the GASNet communication li-
brary [4]. The GASNet multi-threaded collectives uti-
lize automated-tuning to select the appropriate algo-
rithm and adapt the system parameters to achieve best
performance [10]. UPC applications can take advan-
tage of these software engineering efforts in Berkeley
UPC by simply calling UPC collective functions with
threads.

Figure 7 shows the performance advantage of using
the broadcast collective function on the 32-core AMD
system. As the number of cores in shared-memory ma-
chines continues to increase, it will become more and
more beneficial to use collective functions to express
high level communication patterns.

The second example of using UPC collectives is to
optimize matrix transpose. In this example, we also
demonstrate the idea of using advanced data structures
to store matrices in order to facilitate computation and
communication.

We denote the N-by-N matrix by A, denote the
transpose of A by AT and denote the linear array for
storing A by A.

The direct transpose method by definition is:

A(i,j) = AG x N +), (1)
AT,) = AGG,i) = A x N +4).)

Y. Zheng / Optimizing UPC programs for multi-core systems 187

Non-Unifom Memory Access on 32-Core AMD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Thread Id

Non-Unifom Memory Access on 8-Core Intel

N
%]

Time(ms)
G 8

=
o
4

o [
4 4

5 6 7 8

Thread Id

Fig. 6. Non-uniform memory access times measured by the latencies from thread O to data with affinity to other threads for streaming 32 MB of
data. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2010-0310.)

Broadcast Performance on 32-Core AMD

2500

—&—Collective
——Flat Put
—A—Flat Get

2000

=
o
i=3
[s]

Latency (us)

=
o
i=3
=]

wu
Q
]

256 512 1024 2048 4096 8192
Data Size (bytes)

Fig. 7. Broadcast performance. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-2010-0310.)

Though the direct transpose method is simple to im-
plement, it is very inefficient as it incurs many fine-
grained non-contiguous data accesses by shared point-
ers. Instead, it is better to use a 2-D block-cyclic stor-
age format with block size B x B, which stores the
elements in each block contiguously and distributes
the blocks across all threads in a round-robin fash-
ion. The optimized UPC version of transpose uses
the upc_all_exchange collective operation to transpose
the sub-matrices followed by efficient local transpose
within each sub-matrix.

The index translation for 2-D block-cyclic distribu-
tion is given in Eqs 3 and 4:

A(i,j) = A(i x N + (i mod B) x B*
+j + (j mod B)), 3)
AT,) = A, 1)
= A(j x N + (j mod B) x B*
+ i+ (i mod B)). 4)

This method can be implemented as follows:

B = N/THREADS;
nbytes = sizeof (double) *B*B;
upc_all_exchange(sb, sa, nbytes,
UPC_IN_MYSYNC | UPC_OUT_MYSYNC) ;

/* local transpose */

for (t=0; t<THREADS; t++) {
la = (double *)&sa[MYTHREAD] + B*B*t;
1b = (double *)&sb[MYTHREAD] + B*B*t;
local_transpose(la, 1lb, B);

}

While the naive implementation of transpose has
performance close to the collective version for very
small matrix sizes, its run time increases dramatically
as the problem size increases. As shown in Fig. 8, the

188 Y. Zheng / Optimizing UPC programs for multi-core systems

Transpose on 32-Core AMD

160000
140000 +
120000
100000

)
2
@ 80000
£
i= 60000
40000
20000
0
256 512 1024 2048
Data Size (bytes)
Transpose on 8-Core Intel
80000 [———— =
| —&— Collective
70000 F————————
| —— Naive
60000
“» 50000
2
@ 40000
£
i= 30000

20000
10000

256 512 1024 2048
Data Size (bytes)

Fig. 8. Matrix transpose time. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-2010-0310.)

collective version of transpose is about 8 times faster
than the naive version for a matrix of size 2048.

2.5. Combining UPC with other programming models

No single programming model or language can meet
all users’ needs and exploit diverse hardware architec-
tures well. UPC programs can interact with application
modules written in other programming languages and
libraries. An example would be to use UPC for shared
data management and reuse existing packages written
in C, C++ and FORTRAN. In addition to sequential
programming languages, UPC also supports interoper-
ability with most current parallel programming models
including MPI, OpenMP and CUDA. For the Berke-
ley UPC implementation, the translated code from the
UPC source code is standard-compliant C code that
can be compiled and linked by all major C compil-
ers. Because the interoperability standard is still under
development, there are some implementation-specific
restrictions for mixing UPC with other programming
models. To avoid deadlocks and data races, it is best
to separate the use of different programming models
in different phases bound by synchronization mecha-
nisms such as barriers and memory fences.

3. Case studies

To provide a more complete picture of UPC program
optimization, we use two important and easy to un-
derstand numerical computing kernels, dense matrix—
matrix multiplication and 3-D Fast Fourier Transform,
as case studies. Both of them are good examples for
demonstrating UPC program optimizations that repre-
sentative in many other computational problems. We
co-design the data structure and the algorithm for the
problems and apply the UPC optimization techniques
discussed in the previous section to achieve good per-
formance on multi-core systems.

3.1. Dense matrix—matrix multiplication

Dense matrix—matrix multiplication is an important
numerical linear algebra kernel in the BLAS (Basic
Linear Algebra Subprograms) library [3] that has been
thoroughly studied and optimized. Most BLAS imple-
mentations use OpenMP or Pthreads to implement par-
allelism for shared-memory machines. The UPC im-
plementation uses the vendor-optimized BLAS rou-
tines for single thread computation and use UPC to
manage data distribution and communication across
threads. The UPC version optimizes data locality and
leverages collective operations.

The 2-D block-cyclic data distribution is key to the
scalable performance because all processors can work
in parallel on local data most of time. Each processor
fetch remote data in large blocks to maximize memory
bandwidth and hide memory latency.

We have applied the following optimizations to the
UPC implementation of parallel matrix multiplication
(Algorithm 1):

e Store the matrices in 2-D block-cyclic format as
in Fig. 9 to maximize locality.

e Use optimized BLAS library for local dgemm.

e Overlap non-blocking one-sided communication
with computation.

e Use team collective communication for row broad-
cast and column broadcast.

We compare the performance of the UPC dgemm
implementation with the vendor-optimized BLAS li-
braries — ACML for the AMD system and MKL for the
Intel system. As shown in Fig. 10, the UPC matrix—
matrix multiplication routine not only outperforms the
vendor-optimized libraries alone, but more importantly
it is capable to run on distributed-memory machines
without any change and therefore can save the devel-
oper significant amount of effort.

Y. Zheng / Optimizing UPC programs for multi-core systems 189

Algorithm 1 UPC matrix—matrix multiplication using the SUMMA algorithm

/l Compute C' = A x B, where A is M-by-P, B is P-by-N and C'is M-by-N

/1 2D processor grid T'X x TY; block size: bs

/I myrow: processor row id; mycol: processor column id;

fork =0k < P; k+ = bsdo
for: =01 < M;i+=TX *xbsdo

Broadcast Block1 of size bs x bs starting at A(i+myrow*bs, k) to processors of the same row

forj =0, < N;j+=TY xbsdo

Broadcast Block?2 of size bs x bs starting at B(k, j+mycol*bs) to processors of the same column
Compute local dgemm of Block1 and Block2 with vendor-optimized BLAS library

end for
end for
end for

aa
(= [0 -
aa
a8

-D-D

Fig. 9. Mapping between the global matrix view and the local data
storage using 2-D block-cyclic data distribution for fast parallel ma-
trix—matrix multiplication. This example assumes a processor grid
of 2-by-2. The matrix blocks of the same color have data affinity to
the same processor. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2010-0310.)

3.2. 3-D FFT

Multi-dimensional Fast Fourier Transform (FFT) is
another widely used numerical method for numer-
ous applications. The most common multi-dimensional
FFT algorithm is the row—column algorithm which
performs 1-D FFT along each of the three dimensions
successively. Because the 3-D array can only have one
contiguous dimension and 1-D FFT is most efficient
when the data are contiguous, it is necessary to trans-
pose the data cube after each FFT phase to make the
data to be used in the next FFT phase local and contigu-
ous. This transpose step is implemented by the all-to-
all collective communication. The key UPC optimiza-
tion for the 3-D FFT problem is to choose a data dis-
tribution scheme that has good data locality and load
balance.

We have applied the following optimization tech-
niques to the UPC 3-D FFT implementation (Algo-
rithm 2):

Parallel Matrix Multiplication on 32-Core AMD

250 o
B UPC with ACML

1 2 4 8 16 32
Number of Cores

Parallel Matrix Multiplication on 8-Core Intel

Number of Cores

Fig. 10. Performance of matrix—matrix multiplication (dgemm) of
two 8192-by-8192 real double floating-point matrices. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2010-0310.)

e Partition the 3-D data array by a 2-D processor
grid as in Fig. 11.

e Use optimized FFT library (FFTW) for local
FFTs.

e Overlap one-sided communication with computa-
tion.

e Pin UPC threads to physical CPU cores to reduce
migration overheads.

190 Y. Zheng / Optimizing UPC programs for multi-core systems

Algorithm 2 UPC 3D-FFT using the row—column algorithm

for all rows in the X dimension do

Compute local 1-D FFT along the X dimension by FFTW

end for

Transpose the X-Y planes to make the array contiguous in the Y dimension

for all rows in the new Y dimension do

Compute local 1-D FFT along the Y dimension by FFTW

end for

Transpose the Y-Z planes to make the array contiguous in the Z dimension

for all rows in the new Z dimension do

Compute local 1-D FFT along the Z dimension by FFTW

end for

—

Fig. 11. 2-D decomposition for 3D-FFT with the row—column al-
gorithm. The 3-D array is partitioned into slabs distributed evenly
across all threads. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2010-0310.)

111§

Table 2
Performance of 3D-FFT (512 X 256 X 256) on the 32-core AMD
system
Threads 4 8 16 32
FFTW (MFlops) 4561.3 7338.7 87564 8365.5
UPC with FFTW (MFlops) 2306.61 4242.28 7210.87 9849.7

o Aggregate small messages in the blocks.
e Use alltoall collective communication for array
transpose.

As shown in Table 2, FFTW performs better than the
UPC with FFTW implementation for small core counts
because it has the opportunity to autotune for the whole
multi-dimensional FFT problem. In contrast, the UPC
with FFTW implementation only uses FFTW for lo-
cal 1-D FFTs and FFTW just searches for the best 1-
D FFT solution. However, the scalability of the UPC
with FFTW implementation actually makes it has the
best performance when running on 32 cores. The best
3-D FFT performance of 9849.7 MFlops on 32 cores is
obtained by the UPC with FFTW implementation. In
addition, this UPC FFT implementation can work on
emerging non-cache-coherent architectures such as In-
tel Single-chip Cloud Computer and large scale clus-
ters. The UPC 3-D FFT implementation is scalable on
IBM BlueGene/P machines up to 32K cores [11].

4. Summary

UPC can help users get good performance on multi-
core systems through expressing and managing appli-
cation data locality with the PGAS model. Tools and
libraries are key to UPC application developers’ pro-
ductivity. We list some common tools and libraries for
UPC code development for further investigation by in-
terested readers.

e Numerical library: UPC BLAS [6].

o Integrated Development Environment (IDE): IBM
Parallel Tools Platform (PTP).2

e Debugger: GDB UPC,? Totalview.*

e Performance profiling and analysis: Parallel Per-
formance Wizard® (PPW). The Berkeley UPC
also provides basic tracing functionality which
can be useful to locate communication hot spots.

Even though UPC was designed with the SPMD
model by default, it is versatile enough for users to em-
ploy other programming styles such as fork-join and
even dynamic threading [17] by user-level task man-
agement. For example, to emulate OpenMP’s fork-join
model, a UPC program may designate one thread as
the master thread and the remaining threads as worker
threads.

UPC supports both the MPI programming style and
the shared-memory programming style. The MPI pro-
gramming style would prefer explicit communication
with bulk data transfers while the shared-memory pro-
gramming style would use implicit fine-grained data
transfers such as assignment statements. The under-

2http://www.eclipse.org/ptp/.

3http://www. gecupc.org/gdb-upc-info/gdb-upc-features.
4http://www.totalviewtech.com/.

3 http://ppw.hcs.ufl.edu/.

Y. Zheng / Optimizing UPC programs for multi-core systems 191

lying hardware platforms impose constraints on how
well UPC programs can perform when using differ-
ent programming styles. The trade-off is that irregu-
lar applications are easier to be expressed in terms of
fine-grained data accesses but most current intercon-
nect hardware favors medium and large messages for
transfers.

In addition, the Berkeley UPC implementation pro-
vides a number optimizations for multi-core systems:

e Multi-threaded collective communication for
shared-memory machines [12].

e Fast shared-memory inter-process communica-
tion (IPC) [2].

e Thread and process scheduling and affinity man-
agement [7].

UPC is suitable for both large scale distributed-
memory supercomputers as well as multi-core com-
modity systems and can be mixed with other program-
ming models. It has an active user community with ac-
cessible tools and has demonstrated performance scal-
ability, which together make UPC an attractive option
for scientific and engineering application development.

References

[1] C. Barton, C. Cascaval, G. Almasi, Y. Zheng, M. Farreras,
S. Chatterjee and J.N. Amaral, Shared memory programming
for large scale machines, in: Programming Language Design
and Implementation (PLDI), Ottawa, ON, Canada, 2006.

[2] F. Blagojevic, P. Hargrove, C. Iancu and K. Yelick, Hybrid
PGAS runtime support for multicore nodes, in: Partitioned
Global Address Space (PGAS) Programming Models Confer-
ence, 2010.

[3] BLAS Home Page, available at: http://www.netlib.org/blas/.

[4] GASNet home page, available at: http://gasnet.cs.berkeley.
edu/.

[5]
(6]

(71

(8]

(91

[10]

(1]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

GCCUPC website, available at: http://www.gccupc.org/.

J. Gonzédlez-Dominguez, M. Martin, G. Taboada, J. Tourifio,
R. Doallo and A. Gémez, A parallel numerical library for UPC,
in: 15th International Euro-Par Conference, Euro-Par’09. Eu-
ropar 2009-Parallel Processing, Delft, The Netherlands, 2009,
Lecture Notes in Computer Science, Vol. 5704, pp. 630-641.
C. Iancu, S. Hofmeyr, F. Blagojevic and Y. Zheng, Oversub-
scription on multicore processors, in: 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), 2010,
pp. 1-11.

S. Kamil, C. Chan, L. Oliker, J. Shalf and S. Williams, An
auto-tuning framework for parallel multicore stencil computa-
tions, in: 2010 IEEE International Symposium on Parallel Dis-
tributed Processing (IPDPS), April 2010, pp. 1-12.

L. Lamport, How to make a multiprocessor computer that cor-
rectly executes multiprocess programs, IEEE Transactions on
Computers C-28(9) (1979), 690-691.

R. Nishtala, Automatically tuning collective communication
for one-sided programming models, PhD thesis, University of
California, Berkeley, CA, USA, 2009.

R. Nishtala, P.H. Hargrove, D.O. Bonachea and K.A. Yelick,
Scaling communication-intensive applications on bluegene/p
using one-sided communication and overlap, in: 23rd Interna-
tional Parallel and Distributed Processing Symposium, Rome,
Italy, 2009.

R. Nishtala and K.A. Yelick, Optimizing collective communi-
cation on multicores, in: HotPar’09: Proceedings of the Work-
shop on Hot Topics in Parallelism, USENIX, March 2009.
OPEN UH website, available at: http://www?2.cs.uh.edu/
~openuh.

ROSE website, available at: http://www.rosecompiler.org.

The Berkeley UPC Compiler, available at: http://upc.Ibl.gov.
UPC language specifications, v1.2, Technical Report LBNL-
59208, Lawrence Berkeley National Lab, 2005.

B. Verastegui (ed.), Proceedings of the ACM/IEEE Conference
on High Performance Networking and Computing, SC 2007,
Reno, Nevada, USA, November 10-16, 2007, ACM Press,
2007.

S. Williams, J. Carter, L. Oliker, J. Shalf and K. Yelick, Lattice
Boltzmann simulation optimization on leading multicore plat-
forms, in: IEEE International Symposium on Parallel and Dis-
tributed Processing, 2008, IPDPS 2008, April 2008, pp. 1-14.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

Seniim—- .

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

