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Abstract—As next-generation experimental and observational

instruments for scientific research are being deployed with

higher resolutions and faster data capture rates, the fundamental

demands of producing high-quality scientific throughput require

portability and performance to meet the high productivity goals.

Understanding such a workflow’s end-to-end performance on

HPC systems is formidable work. In this paper, we address

this challenge by introducing a Workflow Roofline model, which

ties a workflow’s end-to-end performance with peak node- and

system-performance constraints. We analyze four workflows:

LCLS, a time-sensitive workflow that is bound by system external

bandwidth; BerkeleyGW, a traditional HPC workflow that is

bound by node-local performance; CosmoFlow, an AI workflow

that is bound by the CPU preprocessing; and GPTune, an auto

tuner that is bound by the data control flow. We demonstrate

the ability of our methodology to understand various aspects

of performance and performance bottlenecks on workflows and

systems and motivate workflow optimizations.

Index Terms—Workflow Roofline Model, End-to-end Work-

flow, Workflow Performance Analysis, System Constraints

I. INTRODUCTION

Scientific workflows are a cornerstone of modern scientific
computing and are used widely across scientific domains [1].
Over the decades, many workflow patterns have been devel-
oped, ranging from a simple collection of tasks [2] and sets of
distributed applications with intermediate key-value pairs [3]
and object ordering [4] to more sophisticated iterative chains
of MapReduce jobs [5]. High-Performance Computing (HPC)
workflows [6], often known as interconnecting computational
and data manipulation steps, also expand their archetypes
to high-performance AI workflow [7] such as training and
inference, and cross-facility workflow [8] which requires rapid
data analysis and real-time steering, etc.

Workflow management [9] and monitor systems aiding in
the automation of those tasks emerged, such as IPDD [10],
panorama [11] and Ramses [12]. However, they are often
required to deploy a set of tools and software to collect
fine-grained workflow traces and then leverage expensive
simulations to diagnose performance. Such a method lacks the
usability and flexibility to analyze workflows without traces,
as well as a lack of insights for the supercomputing facilities.

This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office of
Science, under Award Number DE-AC02-05CH11231 and used resources of
the National Energy Research Scientific Computing Center (NERSC) which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Traditionally, it’s common sense that understanding and tuning
the application performance is a challenge. It is important to
stress that an application is only one task within a workflow.
Thus, analyzing and understanding a workflow’s end-to-end
performance to drive optimization becomes an even more
formidable work.

In this paper, we propose a Workflow Roofline model,
which ties a workflow’s performance with node- and system-
performance constraints. The contributions in this paper in-
clude:

• Definition of Workflow Roofline ceilings that characterize
the peak workflow performance.

• Creation of System boundaries that define a range of
attainable performance.

• Development of a workflow characterization methodol-
ogy that incorporates number of parallel tasks, workflow
makespan (latency), and workflow throughput into the
Workflow Roofline model.

• Development of a workflow execution characterization
methodology that allows easy visualization of potential
performance constraints.

• Evaluation of the Workflow Roofline Model and method-
ology on four workflows: LCLS (data analysis, system
external bound), BerkeleyGW (traditional HPC, node
bound), CosmoFlow (hyperparameter tuning, node HBM
bound) and GPTune (auto-tuner, control flow bound).

II. RELATED WORK

The common sense of a workflow performance bottleneck
is I/O. Li et al. [13] and Zhang et al. [14] leverages simulation
and analysis workloads within the workflow to understand
the I/O performance. In-situ, in-transit and the combination
of them are widely explored to achieve the trade-off between
performance and data movement cost [15]–[20]. Haldeman et
al. [21] and Rodero et al. [22] evaluated the performance and
power/energy trade-offs of different data movement strategies
for in-situ processing. Poeschel et al.optimized the file-based
HPC workflows using streaming data pipelines with openPMD
and ADIOS2 [23]. There are also work on improving task
scheduling [24]–[26].

As workflows become diverse, cross-facility workflows raise
attention. These workflows are being deployed with higher
resolutions and faster data capture rates, creating a big data
crunch that modest institutional computing resources cannot
handle. In the meantime, these big data analysis pipelines also
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require near real-time computing and have higher resilience
requirements than the simulation and modeling workloads
more traditionally seen at HPC centers. As such, container-
ize [8], [27]–[30] has been explored to improve the resilience.
Hybrid HPC and cloud environment has also been discussed
to understand the portability and performance benefits [29],
[31], [32].

Some efforts have been made to collect, profile, and online
monitor for real scientific workflows with domain knowl-
edge [33]–[43]. These traces provide fine-grained insights on
CPU and memory usage, I/O operations, job dependencies and
etc. However, there is limited insights on guiding end-to-end
performance optimization and system implications.

Ben-Nun et al. demonstrate that the fundamental demands
of producing high-quality scientific requires portability and
performance to meet the high productivity goals [44]. The
Workflows Community Summits [45]–[47] also discuss that
it is worth designing workflows that exploit the hybrid ar-
chitectures, which are the key to high performance. Tail-
tolerant techniques were demonstrated that make it possible
to achieve higher system utilization without sacrificing service
responsiveness [48].

Eventually, various optimizations and the corresponding
profiling methods have been explored with the support of
domain knowledge. Unfortunately, these existing works are
case by case. The insights gained from one workflow cannot
be easily propagated to others. The toolchains deployed on
one system may not be easily and properly deployed on
other machines. Therefore, one crucial field that is missing
from the previous work is a unified methodology to quickly
and intuitively tell the potential bottlenecks for end-to-end
workflow execution, and drive optimizations.

III. WORKFLOW ROOFLINE MODEL

The traditional Roofline model [49] characterizes a kernel’s
performance in GigaFLOPs per second (GFLOP/s) as a func-
tion of its arithmetic intensity (AI). The AI is expressed as the
ratio of floating-point operations performed to data movement
(FLOPs/Bytes). For a given kernel, we can find a point on the
X-axis based on its AI. The Y-axis represents the measured
GFLOP/s. This performance number can be compared against
the bounds set by the peak compute performance (Peak
GFLOPs) and the memory bandwidth of the system (Peak
GB/s) to determine what is limiting performance: memory or
compute.

Whereas the traditional Roofline model and its vari-
ants [50]–[52] can be quite effective in the above regard, such
refinement is misplaced for workflows that are the orchestrated
sequences of these applications along with data handling and
processing steps. In order to affect the Workflow Roofline
analysis, we need to target a different set of metrics. First,
we count the number of parallel tasks. One task is considered
as one job in the workflow. It can be a large MPI application
or small script, depending on how the workflow developers
design them. Such metric allows us to both identify throughput

bottlenecks, and, when refining the workflow task orders, crit-
ical path tuning. Makespan [53](or latency), the time cost of a
workflow, is another critical performance factor for workflows.
A time-sensitive workflow usually has a deadline by when re-
sults need to be available to the dispatcher. When the execution
time exceeds the expectation, one need to diagnose the poor
performance with the guidance of the potential bottlenecks.
Finally, the nature of workflows makes choosing lightweight
metrics a critical factor in workflow profiling. As such, we
characterize the data volume and floating-point operations at
node-level, and data volume at the system level for workflow
characterization.

Although workflow developers with domain knowledge can
use available performance tools [54], [55] to diagnose the per-
formance bottlenecks discussed above, the Workflow Roofline
Model provides an approachable means of characterizing
performance bottlenecks in a single figure.

We describe the methods of characterizing architectures,
workflows, and performance interpretation in the rest of this
section.

A. Architecture Characterization
First, we describe how we define the Workflow Roofline

ceilings. For consistency, we use Perlmutter [56], a Hewlett
Packard Enterprises Cray EX Supercomputer at the National
Energy Research Scientific Computing Center (NERSC), when
describing the methodology. However, the model and terminol-
ogy are applicable to other system architectures. The system
details of Perlmutter can be found later in Section IV-A.

Node ceilings (diagonal): Each Perlmutter GPU node
consists of four NVIDIA’s A100 GPU (A100) [57], and
each GPU is connected to the CPU via PCIe 4.0 at 25
GB/s/direction. As such, the theoretical node PCIe bandwidth
is 4 ⇥ 25 = 100 GB/s/direction for the data transfer between
the host CPU and GPUs (PCIe bytes in Figure 1). Similarly,
the node peak TFLOPS is the aggregated peak performance
of the four GPUs (Compute Flops in Figure 1). Ultimately,
a workflow can have multiple node ceilings which represents
the compute and data motion performance upper bound.

System ceilings (horizontal): The all-NVMe file sys-
tem [58] on Perlmutter is directly integrated on to the same
Slingshot network as the compute nodes. Perlmutter has a total
of four I/O groups on the dragonfly network, and each I/O
group is directly connected to each compute group via 100
GB/s [58]. Therefore, one can get 5.6 TB/s (14 GPU groups
⇥ 4 I/O groups ⇥ 100 GB/s) for the system internal (loading
data from file system) bandwidth ceiling. Alternatively, for the
workflows that leverage Message Passing Interface (MPI) to
do the data transfer, we leverage the NIC performance to set
the ceilings. Each Perlmutter GPU node has four PCIe 4.0
NICs which provides 100 GB/s/direction in total. As such,
a workflow can also have multiple system ceilings which
represents different ways of data transfer.

The Workflow Roofline Model is described in Eq.(1). A
workflow’s performance, characterized in number of tasks per
second (TPS), is a function of the number of parallel tasks,



floating-point operations at node-level, and data volume at
node- and sytem-level with performance boundaries of the
peak node performance (node TFLOPS and node GB/s), sys-
tem peak bandwidth (sys GB/s). “Number of parallel Tasks”
for a workflow is defined as the number of tasks that can be
executed in parallel.

It is important to stress that, unlike the traditional Roofline
model, the absolute machine peak is hidden behind the ceilings
because the achieved performance upper bound varies as dif-
ferent data volumes are performed, i.e., data volume happens
in the system (Bytes sys) and within a node (Bytes node) and
floating-point operations (Flops node).

TPS  min

8
>>>><

>>>>:

Number of parallel tasks
Bytes sys / Peak sys GB/s

Number of parallel tasks
Bytes node / Peak node GB/s

Number of parallel tasks
Flops node / Peak node TFLOPS

other ceilings not subjected to the above

(1)

System parallelism wall: The number of parallel tasks is
not an infinite number, and it can be bound by the available
resource in the system (or queue). Imagine a task uses 64
nodes, and thus, the number of parallel tasks is limited
to 1792

64 = 28 on Perlmutter GPU partition. Therefore, we
introduce a vertical task parallelism wall, which is defined as
the available number of nodes divided by the required number
of nodes per task.

Figure 1 shows the resultant Workflow Roofline ceilings
on Perlmutter GPU partition. We assume one terabyte data
is loaded via file system at 5.6 TB/s (upper horizontal) and
one terabyte data per compute node is transferred via the
NICs at 100 GB/s (lower horizontal). The node performance
boundaries (diagonals) assume 4 GB data is transferred and
100 GFLOPs are performed. The task in the workflow uses 64
nodes, and thus the task parallelism boundary (vertical wall)
is 28. The grey area is unattainable due to the above system
constraints. The upper direction represents a shorter makespan,
and the upper right direction indicates a higher throughput.

B. Workflow Characterization
Mirroring the previous section that characterizes a system

performance capabilities, in this section, we describe the
methodology we employ to characterize workflow execution
in terms of the Workflow Roofline Model.

Number of parallel tasks: Recall that a workflow inher-
ently contains several kinds of tasks. For example, a typical
scientific workflow may include applications spanning simula-
tion, results gathering, data analysis, and visualization. There-
fore, tasks, in our definition, can be large MPI applications
or small scripts, depending on how the workflow developers
design them. The x-axis (the number of parallel tasks), as
defined, is the number of concurrently executing tasks in such
a workflow, whether big or small. Thus, increasing the number
of MPI processes (MPI strong scaling) within an application
does not increase the number of parallel tasks.

Throughput and makespan: We rely on the timing report
from the workflow itself to collect the makespan (queue wait
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Fig. 1: Workflow Roofline Model. The achieved performance
area is limited by the application-specific performance bounds
derived from finite node and system resources. The Upper
direction represents a shorter makespan, and the upper right
direction indicates a higher throughput. Changing system or
node bandwidths shift the ceilings.

time is not included). The number of parallel tasks and total
number of tasks within that makespan can be obtained from the
workflow description, e.g., sbatch [59] and Workflow Descrip-
tion Language (WDL) [60]. Thus, the achieved throughput can
be calculated using total number of tasks

makespan . The corresponding x-axis
is the number of parallel tasks.

Node ceilings: We quantify the data volume loading to the
node and the number of floating-point operations performed
within a node. The two diagonal ceilings can be described
as Number of tasks

Flops node
peak node TFLOPS

and Number of tasks
Bytes node

peak node GB/s
as shown in Equation 1 and

Figure 1. Note that the Node Flops ceiling is not necessarily
higher than the Node Bytes ceiling. The positions depend on
the ratio of the number of flops (or Bytes) to the corresponding
system peak.

Shared system ceilings: Similar to the node ceilings,
the system ceilings are formalized in the same fashion, i.e.,
number of parallel tasks divided by the ratio of the data
volume loading to the system (Bytes sys) to the peak system
bandwidth (GB/s).

System parallelism bound: The system parallelism wall
is characterized by Number of available nodes

Number of required nodes . For instance, one can
imagine a workflow that uses 1024 nodes on Perlmutter. In that
case, the system parallelism is limited to one (b 1792

1024c = 1) on
Perlmutter.

C. Driving Workflow Optimizations

Interpretation of the insights to drive optimization matters
to broad communities, including users, developers, and HPC
vendors. In this section, we demonstrate the capabilities of
driving optimizations using the Workflow Roofline model.

We categorize workflows into three kinds. One is time-
sensitive workflows. Those workflows usually have a clear
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Fig. 2: The Workflow Roofline interpretation for time- and throughput-sensitive workflows. (a) Divide the attainable area in
the Workflow Roofline model into four zones according to the target makespan and throughput. (b) Assuming an empirical
workflow dot meets the target makespan but far from the target throughput, the Workflow Roofline model motivate two
optmization directions: 1� improve latency and 2� increase task parallelism. (c) A smaller machine or queue limits may
prohibit optimization 2�. Double the intra-task parallelism and halve the number of parallel tasks (dotted circle), the system
parallelism wall will move to the left by 2⇥ and the node ceiling will move to the upper direction by 2⇥ accordingly.

Th
ro

ug
hp

ut
   

[#
ta

sk
s p

er
 se

c]

Number of Parallel Tasks

System BoundNode Bound

Sy
st

em
 p

ar
al

le
lis

m
 b

ou
nd

Node perfo
rm

ance bound

System performance bound

1

2

(a) Number of Parallel Tasks Bound

Th
ro

ug
hp

ut
   

[#
ta

sk
s p

er
 se

c]

Number of Parallel Tasks

System BoundNode Bound Sy
st

em
 p

ar
al

le
lis

m
 b

ou
nd

Node perfo
rm

ance bound

System performance bound

(b) Bandwidth Bound

Fig. 3: The Workflow Roofline interpretation for other workflows: (a) Node bound, and (b) System bound.

expectation of the target makespan [8]. The second cate-
gory is throughput-sensitive workflow. Batch results are more
meaningful for those workflows while time is not sensitive.
The third group is other workflows. These workflows do not
have a specific target makespan and throughput, but they
may have very limited resources or budgets. However, their
demands on workflow performance can be considered the same
as throughput-sensitive workflows: finish more tasks in that
limited resource.

Figure 2 shows how the Workflow Roofline model motivates
optimizations for time- and throughput-sensitive workflows.
We first integrate the target makespan and throughput (dotted
lines) into the Workflow Roofline plot in Figure 2a. Thus, ac-
cording to the target makespan and throughput, the attainable

performance area is divided into four zones: good makespan
good throughput (green), good makespan poor throughput
(yellow), poor makespan good throughput (orange) and poor
makespan poor throughput (red). When plotting the empirical
workflow performance, the Workflow Roofline model intu-
itively shows the satisfied and unsatisfied metrics (makespan
and throughput) to drive future optimizations.

Imagine a workflow that has a satisfied makespan but suffers
from poor throughput. As Figure 2b shows, the empirical
workflow dot is in the yellow zone. The Workflow Roofline
model motivates two directions: one can keep reducing the
workflow makespan to move the dot to the upper direction to
meet the target throughput. Alternatively, one can increase the
number of parallel tasks to move the dot to the upper right



direction.
One may decrease makespan to achieve a throughput target

by either optimizing the code for iso-parallelism (performance
or scalability), or increase the intra-task parallelism. Doing
the latter reduces available parallelism and may preclude
optimization 2�. For example, if one double the intra-task
parallelism and halve the number of parallel tasks (dotted
circle), the system parallelism wall will move to the left by
2⇥ and the node ceiling will move to the upper direction
by 2⇥ accordingly, as Figure 2c shows. Therefore, if one
can’t guarantee perfect scalability, then the makespan-system
parallelism intercept will fall lower, i.e., the more you shift to
intra-task parallelism, the easier it is to hit makespan targets,
but the harder it is to hit throughput targets.

Figure 3 shows another interpretation for the workflows
that do not have a clear makespan or throughput target. The
attainable performance area is divided into two parts: node
bound (blue) and system bound (orange). Let’s imagine an
empirical workflow dot falls into the blue zone as plotted
in Figure 3a. The Workflow Roofline model motivates two
optimization directions. First, one can improve the node effi-
ciency to achieve a shorter makespan (the dot moves to the
upper direction). Second, one can achieve higher throughput
by increasing the number of parallel tasks (the dot moves
diagonally up). Figure 3b plots the system bound case in
which the empirical workflow dot falls into the orange zone. It
indicates the potential performance bottleneck of the workflow
is system bandwidth.

Eventually, the Workflow Roofline model can provide node-
and system-performance insights, and thereby provides quick
guidance on the optimization directions.

D. Workflow Roofline vs. Original Roofline

The original Roofline model characterizes a kernel’s per-
formance against the bounds set by the peak FLOPS and
memory bandwidth. It is a fine-grained on-node model to tune
detailed computing and memory performance. Conversely,
the Workflow Roofline model is a coarse-grained model for
workflows and the whole system throughput. The visualization
may look very similar to the original Roofline – hence why
they are both called rooflines – but they differ in many aspects,
including metrics, usage, and insights.

The original Roofline’s key metrics are bandwidth (e.g.,
cache thru network), performance, and data locality (e.g., arith-
metic intensity). The Workflow Roofline focuses on system
level metrics, such as task concurrency, shared file system
bytes, and shared system network bytes, to understand the
workflow’s latency and throughput. The Workflow Roofline
allows us to understand the code’s strong and weak scaling
and data transfer (file system) performance among tasks.

The ceilings of the Workflow Roofline model contain node-
local (memory, PCIe bandwidth, compute) and system-wide
(global network, global filesystem, etc.) performance bounds.
The traditional Roofline model examines the interaction be-
tween the former in the context of a program’s node-local

execution, while the Workflow Roofline model incorporates
the latter to analyze workflow performance on an HPC system.

Unlike the original Roofline, which defines machine-specific
performance bounds, the Workflow Roofline model extracts
workflow-specific performance bounds based on application-
specific performance bounds derived from an HPC system’s
finite node and system resources.

The original Roofline model principally aims to identify
whether a kernel’s performance is limited by computation or
data movement. The Workflow Roofline model provides new
insights into whether a workflow’s throughput and makespan
are limited by system internal I/O bound, system external
I/O bound, node-local performance, or task concurrency. The
original Roofline could be the next step in analysis if a
workflow is bound by node-local performance rather than the
global network or filesystem.

IV. WORKFLOW ROOFLINE IN PRACTICE

In this section, we describe our system and workflow
characterization, and use the Workflow Roofline Model to
evaluate and analyze four workflows.

A. System Characteristics
System Configurations in this paper were obtained via the

architecture white paper of Perlmutter [56] at NERSC. The
Perlmutter GPU partition (PM-GPU) comprises nodes with
one AMD Milan CPU and four NVIDIA A100 GPUs. Thus,
each compute node provides a peak of 9.7·4 = 38.8 TFLOPS.
The system offers a peak of 100 GB/s for node interconnec-
tions. The Perlmutter CPU partition (PM-CPU) consists of
nodes with two AMD Milan CPUs, providing a 5 TFLOPS
peak per node, 204.8 GB/s memory bandwidth per CPU, and
a peak of 25 GB/s for node interconnections. Perlmutter has
a total of four I/O groups on the dragonfly network, and each
I/O group is directly connected to each compute group via
100 GB/s. Therefore, the PM-GPU can achieve 5.6 TB/s file
system peak (14 GPU groups ⇥ 4 I/O groups ⇥ 100 GB/s),
and PM-CPU can achieve 4.8 TB/s (12 CPU groups ⇥ 4 I/O
groups ⇥ 100 GB/s).

Cori Haswell (Cori-HSW) was used for LCLS as one of
the demonstrated architectures. Cori-HSW is a Cray CX40
system, with each Burst Buffer (BB) node providing 6.5 GB/s
(total 140 BB nodes, 910 GB/s). Note that Cori-HSW was
deprecated, but the lessons learned from it are beneficial.

B. Workflow Characteristics
Due to the complexity of workflows, the case studies we ex-

amined required a variety of approaches to measure or estimate
the node-local FLOPS and Bytes. This section summarizes the
high-level methods of node- and system-performance metrics.

Table I summarizes our methods to characterize node- and
system-performance metrics for different workflows. LCLS
(Linac Coherent Light Source) is a data analysis workflow us-
ing Free Electron Lasers (XFELs) to determine the molecular
structure and function of unknown samples (such as COVID-
19 viral proteins). The wall clock time is reported in work [8].



TABLE I: Node- and System-Performance Characteristics

LCLS BerkelyGW CosmoFlow GPTune
Wall clock time reported [8] Measured Measured Measured
Node FLOPs NA reported [61] NA NA
CPU/GPU Bytes Analytical model reported [61] Measured Measured
Node PCIe Bytes NA NA Analytical model NA
System Network Bytes NA reported [61] NA NA
File System Bytes Analytical model reported [61] Analytical model Measured

The CPU bytes and file system bytes are characterized using
an analytical model with domain knowledge. BerkeleyGW
(BGW) is a many-body perturbation theory code for excited
states. The code has been thoroughly optimized and was
selected as a finalist for the 2020 Gordon Bell Prize. The
timing used in this paper is measured on PM-GPU, and the
performance metrics are reported in work [61]. CosmoFlow
is a machine learning training benchmark from the MLPerf
HPC benchmark [62]. We use a CosmoFlow throughput
benchmark [63] with an average of twenty-five epochs per
model. The numbers used in this paper are measured on
PM-GPU nodes. GPTune is an autotuning framework that
relies on multitask and transfer learnings to help solve the
underlying black-box optimization problem using Bayesian
optimization methodologies [64]. The wall clock time and
node CPU bytes are reported from GPTune and the tuned
application SuperLU DIST [65]. The system-wide bytes are
characterized using the input matrix size and the meta data
size.

C. Workflow Analysis
1) LCLS: Figure 4 presents the LCLS workflow skeleton.

The critical path length is two and it has five parallel tasks
(A-E) at level 0. At Level 0, each task is a parallel application
with thousands of MPI ranks. The data that needs to be loaded
into the system from the external storage is 1 TB per task, and
the output is 1 GB per task. These five tasks solve the same
problem. Due to the various input data quality, the five tasks
may run with different algorithms and different time costs. At
level 1, task F performs a merge of the five output files.

A B C D E

F

Loading data from external storage

Fig. 4: LCLS Workflow skeleton. The critical path length is
two, with five parallel tasks (A-E) at level 0, and each task is
a parallel application with thousands of MPI ranks. Each task
needs to load input data from the external storage.

Figure 5 presents the Workflow Roofline for LCLS on
Cori-HSW and its time breakdown. The target makespan of
LCLS was ten minutes in the year 2020. Thus, the target
throughput is to finish the six tasks within those 10 minutes.
During this time, it was observed that contention on the

network, and filesystem with other workflows resulted 5⇥
reduced performance from one day to another. Consequently,
the two dots represent two cases, called “Good Days” and
“Bad Days”. The “Good Days” means one can load input
data from external storage at an average rate of 1 GB/s,
and the entire workflow can finish in 17 minutes as shown
in Figure 5b. Correspondingly, the “Bad Days” indicates the
network contention intensifies and decreases to 0.2 GB/s.
Thus, the workflow needs 85 minutes to finish analyzing all
the data. One can immediately notice that the external data
loading bound the LCLS performance in both cases (the two
dots overlapped with their system external boundary). The red
dot (Bad Days) is well below the green dot (Good Days). The
Workflow Roofline also tells that even with the average 1GB/s
system external bandwidth, one can never meet the target.

Figure 6 plots the implications of PM-CPU. Imagine that
one loads the input data from the external storage using the
data transfer node (DTN [66]). Each DTN node provides 25
GB/s for transfers to the internet. Ideally, one can load all 5 TB
data in 3.4 minutes. Even with an ideal data transfer speed, it
has very limited room for optimization of the makespan. The
red horizontal system boundary is slightly above the target
throughput dotted line. The system internal bandwidth is far
on the top. It indicates the system internal bandwidth is not
the bottleneck. Since there is no QOS on the network, the
achievable system performance may drop off to 5 GB/s (5⇥
decrease as observed in work [8]). In that case, one can never
meet the targets due to the limited external data transfer speed.

A common fact across the two architectures is that resource
contention can lower the system bandwidth ceiling, ultimately
a bottleneck for LCLS to meet the targets. It emphasizes the
importance of an end-to-end quality of service (QOS) to utilize
the available quality of storage system (QSS) better.

2) BGW: BGW has one parallel task per level with a total
of two levels. We refer “Task E” as Epsilon, and “Task S” as
Sigma. Sigma needs to take Epsilon’s output as its input.

We show the Workflow Roofline of BGW using the problem
size of Si998 [61]. The total number of flops is 1164 PFLOPs
and 3226 PFLOPs for task E and task S, respectively. The
node ceiling can then be derived from the ratio of the number
of flops per node and the node peak flops. For example, the
node ceiling of using 64 nodes is 1164/64+3226/64

9.7·4 , where 9.7
TFLOPS is the FP64 peak of A100 GPU and Perlmutter has
four A100 GPUs per node. The communication volume is
constant regardless of the number of MPI ranks for a single
batch [61]. In the tested case, there are 256 batches in total.
Thus, the total communication volume in the system is fixed
in strong scaling tests. Thus, the system network ceiling in
Figure 7 can then be derived from the ratio of the communi-
cation volume and the aggregated node interconnection peak
bandwidth: total communication volume

N⇥100 GB/s , where N is the number of
nodes. The data amount that is loaded from the file system is
70 GB. Therefore, there’s a second system ceiling that refers
to the data movement from the file system.

Figure 7a shows the BGW Workflow Roofline model using
64 nodes per task. Since BGW has only one task per level,
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its number of parallel tasks equals to one. Corresponding,
the system parallelism wall on the right (x-axis equals 28)
shows the maximum number of parallel tasks when scaled
to the full system. When using 1024 nodes in Figure 7b,
the system parallelism wall moves to the left, from 28 to
1 (b 1792 nodes

1024 notes c). The two cases in Figure 7a and Figure 7b
represent two scenarios: the single result is urgent (using 1024
nodes), and batch results are meaningful while time is not
sensitive (64 nodes). In other words, one can get the one result
back in minutes using 1024 nodes (fast but low throughput) for

single urgent result. Alternatively, one can wait batch results
in hours using 64 nodes running multiple instances (slow but
high throughput).

Figure 7c is the task view of the Workflow Roofline
model. It can guide developers and users for finer-grained
optimization. The red color refers to Epsilon and the blue
color represents Sigma. The number of nodes is differentiated
by the light and dark color. The light blue and light red in
Figure 7c uses 64 nodes, while the dark blue and dark red
represent the case using 1024 nodes. One can immediately
tell that the workflow makespan is dominated by Task S (blue
circles) because it is at the lowest location. Recall that the
lower location in the y-direction indicates a longer makespan
in the Workflow Roofline model. For the case using 1024
nodes (upper part in Figure 7c), even though the two dots
are crowed together, one can still tell that Task S (dark blue)
takes slightly longer than Task E (dark red). In addition, Task
E is farther away from the node ceiling than Task S. One can
improve the node efficiently of Task E to improve workflow
makespan.

Figure 7d plots the Gantt chart of BGW using 64 nodes
and 1024 nodes. The critical path remains the same at scales,
while the critical path length varies due to time cost.

3) CosmoFlow: We focus on the throughput evaluation for
CosmoFlow. In the throughput benchmark measurement [63],
[67], we run multiple instances (twenty-five epochs per in-
stances on average) of the model concurrently and report the
performance as the number of epochs per second. In this
context, it can be thought of as a proxy for a hyperparameter
tuning workflow.

The training data set is 2 TB. After loading it, the code
decompresses the 2TB data into 10TB and then transfers them
from CPU to GPU via PCIe at 100 GB/s/node. Therefore, the
PCIe Bytes in our test case are 80 GB per node ( 10 TB

128 nodes ),



which denotes the diagonal PCIe makepan ceiling of 0.8s
( 80 GB
100 GB/s ) in Figure 8. There are 219 samples in total, and

each sample requires 6.4 GB HBM data movement [68]. Thus,
the diagonal HBM makespan ceiling can be calculated by

6.4 GB⇥219 samples
1555 GB/s⇥4 GPUs⇥128 nodes = 4.2 s.

The empirical dots in Figure 8 are measured using 128
PM-GPU nodes per instances while increasing the number

of instances (x-axis). There’s one copy of the training data
set on Perlmutter. Therefore, all models must load their
inputs from the same training data set. As the number of
instances increases, the throughput (y-axis, the number of
epochs per second) increases proportionally. When running
multiple instances, the number of epochs may come from
different training. The total time cost to finish all models
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equals the duration between the earliest start time and the
latest end time. Recall that there are 1536 GPU nodes (except
256 large memory nodes). Thus, one can run 12 models
concurrently at maximum. Recall that Perlmutter has a peak
of 5.6 TB/s file system peak. Thus, the file system ceiling
is denoted as 2 TB

5.6 TB/s . Note that the dots with an x-axis
smaller than twelve instances are derived from the throughput
measurements. Therefore, the resource contention could be
over-provision which is the reason that we observe a linear
relationship between the number of instances and the through-
put.
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Fig. 8: Workflow Roofline for Cosmoflow on PM-GPU. We
run twelve instances concurrently and HBM is ultimately the
limitation.

4) GPTune: Figure 9a and Figure 9b show the two control
flows or work modes) of GPTune: RCI and Spawn. RCI
refers to using bash to control each iteration. This mode relies
on interaction with the metadata (or the log file) from the
file system in each autotuning iteration. RCI keeps querying
Python for proposing the new samples for evaluation, calling
“srun” to generate evaluation results and communicate them
back to Python via the log file. Thus, every iteration requires
a “srun” command and loads the entire metadata from the file
system.

Spawn means that the entire tuning needs only one “srun”,
and the iterations are controlled via “MPI Comm Spawn”.
MPI Comm Spawn is the means by which MPI processes
can create siblings. The spawning processes and spawned
processes reside in two different communicators. Nonetheless,
they can communicate together via the inter-communicator
returned. In GPTune, the spawning process handles the meta
in the memory, and the spawned processes call the su-
perLU DIST driver interface. Thus, each application run does
not need to load metadata from the file system because those
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Fig. 9: The workflow skeleton of GPTune. (a) RCI keeps
querying python for loading the meta data from file system,
and processing those data from next srun. (b) Spawn leverages
MPI Comm Spawn to call the superLU DIST driver and
keeps the meta data in memory.

metadata are already in the memory. Therefore, the Spawn
mode can save the bash overhead and the I/O time. Note that
the application runs are serialized in GPTune due to the data
dependencies.

Figure 10a plots the Workflow Roofline for GPTune on
Perlmutter. The tuned application is SuperLU DIST with a
matrix size of 4960⇥4960. It tuned forty samples. Since
all applications are serialized, the number of parallel tasks
equals to one. The RCI mode takes 553s while the Spawn
mode takes 228s (reduced batch and I/O time) as Figure 10b
shows. One can immediately observe that from the Workflow
roofline model, the Spawn dot is above the RCI dot. The
Workflow Roofline model also suggests getting an extra 12⇥
speedup by reducing the Python overhead (open dot). The
Workflow Roofline model also indicates that the I/O pattern
and concurrency play a more important role than I/O volume
in this case: the two system bounds (horizontal, characterized
by data volume) are very close to each other, but time cost in
GPTune varies: 30s for RCI and 0.02s for Spawn.

GPTune usually prefers to use a representative benchmark
to tune the parameters to get a result within an acceptable
time. The sparse matrix size in real-world applications varies
from hundreds to millions. Correspondingly, the application
time varies from milliseconds to seconds. Note that we use a
relatively small matrix to highlight the implications of different
control flows. One can imagine that the bash and python
overhead (500s in Figure 10b) still takes 50% of the time
if the tuning benchmark takes 13s for each run (13s⇥40
samples=520s).
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V. CONCLUSION

In this paper, we developed and applied a methodology
for analyzing end-to-end workflow performance using the
Roofline model. This allows us to analyze both node perfor-
mance (FLOPS, data movement in CPU/GPU, etc.) and system

performance (data transfer via interconnect, file system, etc.),
thereby expanding the applicability of Roofline to workflow
domains. It also allows us to analyze potential performance
bottlenecks (node-bound vs. system-bound), thereby guiding
workflow performance optimizations. The insights and rec-
ommendations we gained from the case studies are threefold.
The first, intended for system architects posits that if a time-
sensitive workflow like LCLS is dominated by a system’s
external bandwidth, then going for a faster computing unit is a
bad idea. Increasing a workflow’s computation speed by 10⇥
makes no difference from today’s observation that the system’s
external bandwidth still bounds LCLS. Instead, system archi-
tects should work on the network and storage QOS, which is
essential for providing optimal system services. The second
one is for workflow developers. For example, if one has a
workflow like GPTune, which is dominated by Python library
loading time (captured as a diagonal representing overhead
time), it is worth considering using containers to avoid such
overheads. Workflow users and workflow management teams
might focus on the third insight: depending on the urgency of
tasks, one can schedule the urgent ones on a large scale to get
one single result back quickly or merge non-urgent tasks into
a batch job to get batch results in a longer time.

The Workflow Roofline model has two limitations we will
address in our future work. One is that the total number
of tasks, or critical path length, is hidden in the y-axis
(throughput). Therefore, learning whether the poor pipeline
strategy limits the workflow’s performance is not intuitive. The
second one is the overhead of on-node workflow execution
characterization. Since tasks may be large applications, the
on-node profiling overhead, such as memory bytes, could be
significant. Thus, users must manually profile the representa-
tive ranks or use an analytical model for workflow execution
characterization.
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