Performance-Portable GPU Acceleration of the EFIT Tokamak
Plasma Equilibrium Reconstruction Code

Oscar Antepara
oantepara@lbl.gov
Lawrence Berkeley National
Laboratory
Berkeley, California, USA

Torrin Bechtel
bechtelt@fusion.gat.com
General Atomics
San Diego, California, USA

ABSTRACT

This paper presents the steps followed to GPU-offload parts of
the core solver of EFIT-AI an equilibrium reconstruction code
suitable for tokamak experiments and burning plasmas. For this
work, we will focus on the fitting procedure that consists of a
Grad-Shafranov (GS) equation inverse solver that calculates equi-
librium reconstructions on a grid. We will show profiling results of
the original code (CPU-baseline), as well as the directives used to
GPU-offload the most time-consuming function, initially to com-
pare OpenACC and OpenMP on NVIDIA and AMD GPUs and later
on to assess OpenMP performance portability on NVIDIA, AMD
and Intel GPUs. We will make a performance comparison for differ-
ent spatial grid sizes and show the speedup achieved on NVIDIA
A100 (Perlmutter-NERSC), AMD MI250X (Frontier-OLCF) and Intel
PVC GPUs (Sunspot-ALCF). Finally, we will draw some conclusions
and recommendations to achieve high-performance portability for
an equilibrium reconstruction code on the new HPC architectures.

CCS CONCEPTS

« Software and its engineering — Parallel programming lan-
guages.

KEYWORDS

GPU, GPU offloading directives, OpenMP, OpenACC, performance
portability

ACM Reference Format:

Oscar Antepara, Samuel Williams, Scott Kruger, Torrin Bechtel, Joseph Mc-
Clenaghan, and Lang Lao. 2023. Performance-Portable GPU Acceleration of
the EFIT Tokamak Plasma Equilibrium Reconstruction Code. In Workshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis (SC-W 2023), November 12—17, 2023, Denver, CO, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3624062.3624607

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC-W 2023, November 12—17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0785-8/23/11.

https://doi.org/10.1145/3624062.3624607

Samuel Williams
swwilliams@lbl.gov
Lawrence Berkeley National
Laboratory
Berkeley, California, USA

Joseph McClenaghan
mcclenaghanj@fusion.gat.com
General Atomics
San Diego, California, USA

Scott Kruger
kruger@txcorp.com
Tech-X Corporation

Boulder, Colorado, USA

Lang Lao
lao@fusion.gat.com
General Atomics
San Diego, California, USA

1 INTRODUCTION

Real-time and offline simulations are important tools to improve
experimental research, and the need for faster computer simula-
tions to keep up with real-time experiments is of great importance
today with the relative improvement of HPC platforms [1-4]. The
new HPC platforms recently deployed rely on GPU architectures,
putting most of them on the Top500 list of fastest supercomput-
ers [5], so fusion plasma simulations must adapt their codes to
this new landscape. GPU architectures bring a notable increase of
compute capabilities that make them attractive to achieve consid-
erable speed-up for high-resolution simulations, making it possible
to acquire much higher accuracy simulations to provide better
experimental control in real-time, which will be essential for burn-
ing plasma experiments currently under construction. Here, we
consider a fusion plasma application, EFIT-Al, that aims to im-
prove real-time and offline simulations for tokamak experiments
and burning plasmas using different computational techniques in-
cluding improving the core solver code and introducing machine
learning and model order reduction surrogate models [4]. The EFIT-
Al core solver consists of the solution of an inverse problem by
solving the Grad—-Shafranov equation on a spatial grid to provide
a complete equilibrium description of a plasma. The algorithmic
solution involves loop iterations on a grid, where each point in
space requires information on physical constraints or computation
of derivatives where neighboring values are needed. Most of those
time-consuming loops are typically constrained by memory band-
width, and thus GPU-porting algorithms should exploit data reuse
to exhibit high performance.

Here, we will focus on the acceleration of the core solver and
detail the process of porting EFIT-AI to new HPC platforms us-
ing GPU-offloading directives, such as OpenACC and OpenMP on
NVIDIA, AMD and Intel GPUs.

OpenACC and OpenMP offer a straightforward way to accel-
erate Fortran do-loops and handle data management with unified
memory that gives us the flexibility to achieve speedup and perfor-
mance portability without changing the code entirely or keeping
maintenance for codes written in different languages. The porting
process mainly consists of identifying the main CPU bottlenecks,
changing portions of the original code to expose more parallelism
in terms of do-loops, and thoroughly analyzing code performance

https://doi.org/10.1145/3624062.3624607
https://doi.org/10.1145/3624062.3624607

SC-W 2023, November 12-17, 2023, Denver, CO, USA

to avoid overheads related to data movement due to some code
parts that will still be operating on the CPU.

The main goals of this effort are to review two of the most
widely used GPU-offloading techniques and the caveats that we
need to introduce to achieve performance on the new HPC plat-
forms (Perlmutter-NERSC [6], Frontier-OLCF [7], and Sunspot-
ALCEF [8]). Moreover, we analyze the performance with same or
similar pragmas for NVIDIA, AMD and Intel GPUs, ensuring per-
formance portability.

This paper is organized as follows: Section 2 explains the main
EFIT-AI core solver and describes the fitting and equilibrium recon-
struction algorithm. Related work about OpenACC or OpenMP on
several GPU architectures and applications is described in Section
3. Section 4 presents the GPU targets and compilers, programming
models and environmental variables. Section 5 introduces the GPU-
offloading directives used in this work with OpenACC and OpenMP.
Section 6 reports baseline CPU timings and analyzes GPU perfor-
mance for NVIDIA, AMD and Intel platforms. Finally, Section 7
draws some conclusions and recommendations for porting Fortran
code to the new HPC architectures.

2 EFIT CORE SOLVER

EFIT’s core solver computes the poloidal magnetic flux function ¢
by solving the equilibrium Grad-Shafranov equation [9, 10] while
approximately conserving the available experimental data and the
imposed physics constraints:
A*Y(R Z) = —poR]p (R,), 1
FF’

JoR) = RP () + D) @
where, ¢ is the poloidal magnetic flux per radian of the toroidal
angle ¢ enclosed by a magnetic surface and A* = RV x (V/R?).
Jo is the toroidal current density, P is pressure and F = 27RB,, /1o
is the poloidal current stream function with B, as the toroidal
magnetic field at the major radius R.

EFIT reconstructs the current source flowing within the plasma
based on the external magnetic measurements and the spectroscopic
and kinetic profile measurements inside the plasma by distributing
the current density J, among grid points in a rectangular spatial
(R,Z) mesh. The Grad-Shafranov equation is solved by transforming
the non-linear optimization problem into a sequence of linear opti-
mization problems using the Picard iteration scheme[1-3] where
convergence is achieved by efficiently finding the solution vector
that best fits the available measurements and the imposed physics
and free-boundary magnetohydrodynamic equilibrium constraints.
The iteration process continues until the maximum ¢ residual be-
tween subsequent iterations over the grid is less than the tolerance
€.

EFIT is a computationally intensive code for real-time equilib-
rium reconstructions. On between-shot or post-shot analysis of dis-
charges for experimental support, the fitting procedure for a time
slice could converge on hundreds or thousands of iterations; thus,
time per iteration becomes critical to decrease time-to-solution.
Low spatial resolution grids (65x65, 129x129) are used to overcome
the lack of code performance. At the same time, high-resolution
grids (257x257, 513x513) are required to get more accurate infor-
mation for plasma control allowing exploring new computational

Antepara et al.

methods that exploit HPC systems to improve the performance
of equilibrium reconstruction codes at high spatial resolution. In-
side EFIT, the equilibrium reconstruction is done by the subroutine
fit_, which consists of several function calls, such as setting up the
appropriate response functions (green_), computation of the cur-
rent density (current_), calculation of the poloidal fluxes (pflux_),
computation of the dimensionless poloidal fluxes and the location
of the plasma boundary (steps_). In EFIT-AI, depending on the
shot to be solved, fit_ could take between ten or hundreds of it-
erations, making fit_ to be around 50% to 90% of time spent on a
single EFIT-AI run.

We measured the time per invocation, in seconds, for the fitting
call (fit_) on one time slice from the DIII-D shot #186610. All CPU
timings for fit_ and different grid sizes are reported in Table 1.
CPU timings were collected using one CPU core on AMD EPYC
7763 (Milan) on Perlmutter, an AMD EPYC 7A53 Optimized 3rd
Gen EPYC on Frontier, and an Intel Xeon "Sapphire Rapids" CPU
on Sunspot.

Table 1: EFIT core solver timing per invocation for the fitting
call fit_ using one CPU.

Baseline CPU. Wall-clock time per call in seconds
for fit_ subroutine.
65X65 129%x129 | 257%x257 | 513%513
Perlmutter 0.004 0.024 0.17 1.15
Frontier 0.004 0.023 0.16 1.15
Sunspot 0.003 0.02 0.21 1.34

To accelerate fit_, we profiled it to pinpoint the most time-
consuming inner subroutines. We used the Cray Performance Mea-
surement and Analysis Tools [11] to identify bottlenecks in Cray
systems, such as Perlmutter and Frontier. Once the main calls in-
side fit_ were identified, wall clock timings were collected us-
ing omp_get_wtime() that is available on Perlmutter, Frontier and
Sunspot. Figure 1 is a pie chart for the relative timings of different
subroutines inside fit_ for a 513x513 grid to highlight the most
time consuming call for the highest resolution grid on all the ma-
chines. Close to 90% of the time in fit_ is about computing the
poloidal fluxes through pflux_, making this subroutine a very good
candidate to be accelerated with OpenACC or OpenMP directives
since most of the subroutine is based on do-loops as described in
Section 5.

Table 2 also shows the percentage of time that pflux_ represents
in fit_whereitis clear that pflux_ dominates the fitting procedure
across different grid sizes. Moreover, Table 2 presents the time per
invocation for pflux_ on the host. As the time per call is generally
milliseconds to seconds, there are opportunities to accelerate dozens
of loop nests. However, 10us of latency will impede acceleration of
the smaller loops.

3 RELATED WORK

Prior work on GPU-acceleration of EFIT [12] leveraged CUDA to
accelerate several key routines by optimizing matrix operations to
solve Grad-Shafranov equation. Although broadly successful, adop-
tion of a new programming model and language effectively forked

Performance-Portable GPU Acceleration of the EFIT Tokamak Plasma Equilibrium Reconstruction Code

H pflux (90%)

m steps (3%)
current (4%)

mgreen (3%)

SC-W 2023, November 12-17, 2023, Denver, CO, USA

H pflux (92%)

M steps (2%)
current (3%)

mgreen (3%)

H pflux (88%)

M steps (4%)
current (49%)

M green (4%)

Figure 1: Breakdown of timings, in percentage, for the most expensive calls inside the fit_ subroutine for grid size 513x513
on (left) an AMD EPYC 7763 CPU on Perlmutter, (middle) an AMD “Optimized 3rd Gen EPYC” CPU on Frontier and (right)
an Intel Xeon CPU on Sunspot. As we can observe, pflux_ dominates the fitting subroutine with a 90% of the time across all

architectures.

Table 2: Time per call in seconds for pflux_ with different
grid sizes and the percentage of time that pflux_ represents
in fit_.

Baseline CPU. Wall-clock time per call in seconds.

65X65 129%x129 | 257x257 | 513X513
Perlmutter time 2.4e-3 1.6e-2 1.4e-1 1.04e+0
% of fit_ 57% 72% 84% 90%
Frontier time 2.2e-3 1.7e-2 1.4e-1 1.05e+0
% of fit_ 61% 75% 85% 92%
Sunspot time 1.5e-3 1.2e-2 1.8e-1 1.18e+0
% of fit_ 47% 61% 84% 88%

the code base demanding a substantial increase in software engi-
neering efforts to keep them in sync. New parallelization strategies
have been implemented in different parts of both the Fortran and
CUDA branches. As such, neither is currently the ideal implemen-
tation. Ultimately, an easily maintainable, single source implemen-
tation capable of targeting CPUs or GPUs in a high-performance
portable manner is required.

For a smaller code or a larger software development team, a
complete rewrite in C++ to leverage executors [13] or Kokkos [14]
would be a viable and attractive option. However, scope, funding,
and time necessitate a more expedient solution.

Many research technologies promise performance portability
across platforms. However, operators of production fusion devices
will ultimately demand production software solutions that will be
supported for decades (e.g. there are still Fortran 77 compilers). As
such, we are focused on leveraging OpenMP and OpenACC pro-
gramming models due to their support for Fortran, support across
multiple vendor compilers, and robust standardization efforts.

Using GPU-offloading directive models require optimizations
depending on the architectures and the devices used and is still an
area of research as heterogeneous systems form part of the current
and new HPC architectures [15].

GPU acceleration of a Fortran code related to quantum many-
body application [16] showed several optimizations and suggestions
about acceleration on NVIDIA and AMD GPUs using OpenACC or
OpenMP, where no one method for reductions was best in all situa-
tions. A proxy for LAMMPS, was accelerated using OpenMP and
several optimizations were evaluated using the roofline model on

earlier GPUs [17]. As most of the kernels studied were intended to
be compute bound, the roofline model showed that the kernels were
memory bound as data reuse and locality become imperative on
GPUs. Ibrahim et al. [18] investigated the performance portability of
sparse block diagonal matrix times multiple vectors (SpMM) using
CUDA, HIP, OpenACC and Kokkos implementations on NVIDIA
and AMD GPUs, where native implementations as CUDA and HIP
achieved the highest speedup. However, OpenACC presented a
competitive performance on NVIDIA A100 GPU but a poor perfor-
mance on AMD MI250X GPU. Compared to prior studies applied to
gpu-offloading using OpenACC and/or OpenMP, the work in this
paper is distinguished by looking at recent GPUs and providing
suggestions and the experiences on performance analysis and op-
timizations for performance portable GPU directives for a fusion
plasma application with a code written in Fortran.

4 EXPERIMENTAL SETUP

In this paper, we evaluate our performance portability efforts us-
ing three GPU-based systems — NVIDIA A100 GPU in NERSC’s
Perlmutter [6], AMD MI250X GPU in OLCF’s Frontier system [7]
and Intel PVC GPU in ALCF’s Sunspot test system [8]. Perlmut-
ter is the new HPE Cray EX supercomputer at NERSC. The GPU
partition includes over 1500 GPU-accelerated nodes and 35PB of
all-flash storage. Each GPU node consists of a single socket of an
AMD EPYC 7763 (Milan) processor and four NVIDIA Ampere A100
GPUs. Frontier is the new OLCF exascale system. Frontier computer
nodes consist of one 64-core AMD EPYC 7A53 (an optimized 3rd
Gen EPYC) CPU and four AMD MI250X GPUs. Sunspot is a test
system with identical hardware to the new Aurora exascale system.
Sunspot computer nodes consist of a pair of Intel Xeon CPUs based
on Sapphire Rapids architecture and six Intel Xe GPUs based on
Ponte Vecchio (PVC) architecture.

In all of our experiments, we use only one GPU as EFIT’s typical
usage will MPI parallelize multiple time steps across multiple cores
(or GPUs in an accelerated framework). As Perlmutter and Frontier
machines use a similar node architecture with one AMD EPYC 64-
core CPU connected to four GPUs (technically, there are 8 Graphical
Compute Devices on Frontier), the nominal threshold for positive
acceleration is 16X (64 cores / 4 GPUs) on Perlmutter and 8x (64
cores / 8 GCDs) on Frontier. On Sunspot, one node contains two
Intel CPU Xeon, each CPU with 54 cores, and 6 PVC GPUs, each
one containing two stacks, which means a nominal threshold of

SC-W 2023, November 12-17, 2023, Denver, CO, USA

acceleration of about 8.7X. These speedups represent the minimum
for performance optimization.

4.1 GPU Architectures

NVIDIA A100: is NVIDIA’s latest GPU [19]. It instantiates 108
streaming multiprocessors (SM) each with four warp schedulers
of 16 integer units and 8 double-precision floating point units. Al-
though there is also a double-precision tensor core, it is unlikely
to be exploited in EFIT. As such, the GPU provides a peak perfor-
mance of about 9.7 TFLOP/s in double-precision. The SMs each
include a 192KB shared memory/data cache and share a 40MB L2
cache and 40GB of HBM accessible at 1.5TB/s. Although the four
GPUs are interconnected via NVLINK, they are individually con-
nected to the CPU with a PCle 4.0 X16 link providing at most about
32GB/s. The high discrepancy between HBM bandwidth and PCle
bandwidth demands at least 50 reuse of data lest the GPU become
PCle-bound.

AMD MI250X: is AMD’s latest compute oriented GPU [20].
It instantiates two Graphical Compute Dies (GCDs) each of 110
compute units (CU). Each CU includes four 16-wide 64b SIMD
units to execute either integer or floating-point instructions and a
small L1 cache. Each GCD also includes a 8MB L2 cache, provides
a peak FP64 performance of about 24TFLOP/s, and is connected to
4 HBM stacks of 64GB providing 1.6TB/s. Each GCD is connected
to the host CPU via AMD’s infinity fabric and is subject to the
same requirements on data locality. As the GCD forms the nominal
programmable device, we use it as the basis of our performance
analysis.

Intel Xe PVC: is Intel’s latest compute oriented GPU [21]. It
contains two tiles/stacks with a total of 1024 execution units (EUs).
Each EU has a 512b SIMD width to execute either integer or floating-
point instructions. EUs are grouped together into a Xe-core with
a shared cache. 16x Xe-core form a Slice and 64x Xe-core or 4x
Slice form a Stack, providing 15TFLOP/s peak FP64 performance
and 1.3TB/s HBM bandwidth. As one stack forms the nominal
programmable device, we use it as the basis of our performance
analysis. Thus, compared to A100 and one GCD MI250X, a Intel
PVC "stack" provides 1.5X more peak FLOP rate than A100 and
0.6 less FLOP rate than one GCD MI250X, comparable bandwidth,
and comparable host connectivity.

As a good practice, running one process per GCD MI250X or
one PVC stack is recommended. In this paper, our tests presented
use either one A100 GPU on Perlmutter or one MI250X GCD on
Frontier or one PVC GPU stack on Sunspot.

4.2 Programming Models and Compilers

At the core of this paper is an effort to assess the performance porta-
bility and ultimate potential of GPU acceleration using two different
directive-based programming models: OpenACC and OpenMP tar-
get. For OpenACC or OpenMP, different compiler flags have been
added to the EFIT building system to consider the architectures
requirements and enable unified memory for data management if
it is possible for the architecture. Table 3 enumerates the compiler,
version, flags and environment variables we used on our respective
test systems.

Antepara et al.

Perlmutter features the programming environment NVIDIA HPC
SDK (Software Development Kit) [22] to support diverse paral-
lel programming models such as OpenMP and OpenACC for our
Fortran code. On the other hand, the Frontier system provides
Cray compilers through modules and Cray Programming Environ-
ment [23]. On Sunspot, Intel oneAPI [24] provides the libraries
and compilers required to do GPU-offloading on Intel GPUs for
OpenMP and Fortran codes.

GPU data movement presented in Section 6 was collected using
GPU profilers as NVIDIA Nsight Compute[25] on NVIDIA GPUs,
AMD Rocprof[26] on AMD GPUs, and Intel Advisor[27] on Intel
GPUs. More details about command lines and formulas to compute
GPU data movement are in the Appendix A.

Finally, GPU porting efforts in this paper are based on using
Unified Memory. Since NVIDIA and AMD GPUs have this feature
available trough compiler flags(-gpu=managed) or environmental
variables (CRAY_ACC_USE_UNIFIED_MEM, HSA_XNACK), as described
in Table 3, data transfer between host and device are opportunis-
tically managed by the accelerator library. However, on Intel this
feature is not available yet, which means the user must ensure the
most efficient way to handle data transfers according to their own
application.

5 PORTABLE GPU-ACCELERATION

In this section, we will describe the implementations done for Ope-
nACC and OpenMP to accelerate do-loops that have been found
in the code. Most of the GPU code lines introduced are related to
directives for loops that go over the grid to do array computations
on the inner or the boundary elements. Most of the do-loops found
in the fitting function are of O(N?) complexity, where N is the
number of total elements(e.g., 65, 129, 257, 513), and O(N?) for spe-
cific nested loops that operate over boundary elements that require
information of inner elements over the grid, making O(N?) loops
the most time consuming operations in the code.

5.1 OpenACC Implementation

Following OpenACC best practices manual and examples [28] to
accelerate codes using GPUs, we have added OpenACC directives
on most of the do-loops inside the pflux_ subroutine call. Figure 2
shows an example of the directives introduced to accelerate a loop
of O(N?) complexity that is one of the most expensive calls. As
shown in this example, the proposed directives should make re-
ductions and be optimized for vector operations on the GPU; thus,
num_workers and vector_length are required to get the most
performant timings for this kernel. Depending on the OpenACC
specification, some features will be available for a GPU vendor;
as such, we will focus on OpenACC 2.7 specification for NVIDIA
GPUs and OpenACC 2.0 specification for AMD GPUs. See [29] for
more details about the specifications.

In Table 4, we show all the OpenACC directives and the number
of code lines introduced to accelerate the code and its percentage
compared to the total number of code lines for the subroutine
being accelerated, showing the potential of accelerating legacy
code without over manipulating or totally changing it and with a
minimal number of new code lines.

Performance-Portable GPU Acceleration of the EFIT Tokamak Plasma Equilibrium Reconstruction Code

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Table 3: Compiler versions, flags and environment variables used for OpenMP and OpenACC on Perlmutter-NERSC, Frontier-

OLCF and Sunspot-ALCF.

HPC System GPU offload Compiler version Compiler flags Env. variables
Perlmutter-NERSC ~ OpenMP NVHPC 22.7, -mp=gpu -gpu=cc80,managed
CUDAToolkit 11.7,
PrgEnv-nvidia/8.3.3
OpenACC NVHPC 22.7 -acc -gpu=cc80,managed
CUDAToolkit 11.7,
PrgEnv-nvidia/8.3.3
Frontier-OLCF OpenMP HPE/Cray PrgEnv 8.3.3, -h omp -hsystem_alloc CRAY_ACC_USE_UNIFIED_MEM=1,
CCE 14.0.2, HSA_XNACK=1,
ROCm 5.2.0 CRAY_MALLOPT_OFF=1
OpenACC HPE/Cray PrgEnv 8.3.3 -h acc -hsystem_alloc CRAY_ACC_USE_UNIFIED MEM-=1,
CCE 14.0.2, HSA_XNACK=1,
ROCm 5.2.0 CRAY_MALLOPT_OFF=1,
Sunspot-ALCF OpenMP oneapi/eng-compiler/ -fiopenmp

2023.05.15.003

-fopenmp-targets=spir64

!'$acc parallel loop gang worker num_workers(
numWork) vector_length(veclLen)
do j=1,nh
kk=(nw=-1)*nh+j
tempsum1=0.
tempsum2=0.
!'$acc loop vector reduction(+:tempsuml,
tempsum2)
do ii=1,nw
do jj=1,nh
kkkk=(ii-=1)*nh+jj
mj=abs (j-jj)+1
mk=(nw-1)*nh+mj
tempsuml=tempsuml -gridpc(mj,ii)*pcurrt (kkkk)
tempsum2=tempsum2 -gridpc(mk,ii)*pcurrt (kkkk)
enddo
enddo
psi(j)=tempsuml
psi(kk)=tempsum2
enddo

Figure 2: OpenACC implementation of a O(N?) loop to com-
pute a poloidal flux at the boundary elements.

Table 4: OpenACC directives and number of times that the
directive was used over pflux_.

Number of lines in the code
(% of the total code lines
in the subroutine)

OpenACC directives

1$acc kernel 4 (1.0%)

1$acc end kernel 4 (1.0%)

!$acc parallel loop gang worker 2(0.5%)
1$acc loop vector reduction 2(0.5%)

5.2 OpenMP Implementation

For OpenMP, we use OpenMP 4.5 and some directives available
from OpenMP 5.0 [30] for NVIDIA, AMD and Intel GPUs.

Figure 3 shows an example of the same piece of code that was
accelerated using OpenACC, in the last section, but now with
OpenMP directives. One can observe similarly parallelized loops.
However, OpenMP requires defining the reduction variables on
both directives, since the reduction should happen across threads
and GPU blocks. Another difference is that OpenMP requires the
use of "target teams distribute" as a compiler indication to
gpu-offload the loop, instead of a simple "parallel do" thatis used
to parallelize the loop over CPUs threads. Furthermore, on OpenMP
implementations, we are using the collapse clause, collapsing two
loops to enable parallelization of NxN iterations that is critical for
good utilization of GPUs.

Table 5 summarizes the OpenMP lines used for GPU acceleration
that map precisely to the OpenACC lines in Table 1. In this way,
it is easier for the reader to compare and have a code translation
from OpenACC to OpenMP and vice-versa.

Table 5: OpenMP directives and number of times that the
directive was used over pflux_.

Number of lines in the code
(% of the total code lines
in the subroutine)

OpenMP directives

!$omp target teams

distribute parallel do collapse(2) 4(1.0%)
1$omp target team

distribute reduction 2 (0.5%)
!$omp parallel do

reduction collapse(2) 2 (0.5%)

6 PERFORMANCE PORTABILITY RESULTS

EFIT is an equilibrium fitting code that provides a complete equilib-
rium description of a plasma. Several input parameters are needed

SC-W 2023, November 12-17, 2023, Denver, CO, USA

!'$omp target teams distribute reduction (+:
tempsuml , tempsum2)
do j=1,nh
kk=(nw-1)*nh+j
tempsum1=0.
tempsum2=0.
!'$omp parallel do reduction(+:tempsuml,
tempsum2) collapse(2)
do ii=1,nw
do jj=1,nh
kkkk=(ii-1)*nh+3jj
mj=abs (j-3j)+1
mk=(nw=-1)*nh+mj
tempsuml=tempsuml -gridpc(mj,ii)*pcurrt(kkkk)
tempsum2=tempsum2 -gridpc(mk,ii)*pcurrt (kkkk)
enddo
enddo
psi(j)=tempsuml
psi(kk)=tempsum2
enddo

Figure 3: OpenMP implementation of a O(N?) loop to com-
pute a poloidal flux at the boundary elements.

to run an equilibrium fitting test, and are described as the measure-
ment values for diagnostics being fit corresponding to the chosen
shot and time. The tests in this section are looking at shot #186610,
at 2.4s into the discharge, from a DIII-D experiment and to measure
performance, we run the code with four grid sizes (65x65, 129x129,
257%257 and 513x513) until the fitting is good enough that € is less
than 1e-5, as described in Section 2. Baseline CPU timings are mea-
sured with the original code, as we start to implement GPU-offload
directives, general optimizations are applied to code. Optimization
as avoiding array sections on Fortran "(:)" and doing reductions on
scalar variables instead of array reductions, if possible. By doing re-
ductions on scalar variables, required for better GPU performance,
improved the performance on only CPU by 3X. For consistency, the
results and speed-up presented in this section are computed against
Baseline CPU (original code) and for completeness, baseline CPU,
optimized CPU and GPU implementations are plotted in Figure 7
for Perlmutter, Frontier and Sunspot.

6.1 Performance and Portability of OpenACC

Table 6 shows the time and benefit (acceleration vs. a single CPU
core) for pflux_ when using OpenACC and the associated code
modifications needed for reductions on NVIDIA and AMD GPUs.
As expected from loop nests with O(N?) and O(N?), larger grids see
increased acceleration. However, AMD sees acceleration saturate
around 257x257 grids, whereas NVIDIA continues to see increased
acceleration (see Figure 7 for speed-up achieved by OpenACC).
In fact, the nearly 4x and nearly 8% increase in run times when
doubling the grid dimension suggests that the NVIDIA architecture
is still dominated by the O(N?) while the AMD architecture is
dominated by the O(N®) loop nests — possibly extracting insufficient
parallelism from the OpenACC pragmas.

Antepara et al.

1.00E+01 W OpenMP w/-hsystem_alloc

B OpenMP w/o -hsystem_alloc
OpenACC w/-hsystem_alloc
B OpenACC w/o -hsystem_alloc

65x65 129x129 257x257 513x513

1.00E+00

1.00E-01

1.00E-02

EFIT Pflux run time (seconds)

1.00E-03

1.00E-04

Grid Size

Figure 4: Timing in seconds for pflux_ using OpenACC or
OpenMP with and without -hsystem_alloc on AMD MI250X
GPU (single GCD). We can observe that using the Cray com-
piler flag to use system configurations for memory alloca-
tions improves the GPU performance for small size problems
up to 10x.

OpenACC on AMD underperformed compared to Perlmutter for
small problem size as the data management for small size problems
becomes expensive. As some parts of fit_ still execute on the CPU
(necessitating copies between the host and the device), the poor
performance of this routine was exacerbated on small problems
and thus penalized overall run time and acceleration. Here, it is
important to note that the best performance achieved on AMD
was with CRAY_MALLOPT_OFF=1 and the flag —hsystem_alloc,
where the run-time for small size problems got between 10X to
2x faster by using the system default mallopt for OpenACC. We
can observe the boost on speedup in Figure 4, where it is clear
that the use of —hsystem_alloc improves the performance on AMD,
using Cray compilers on almost all grid sizes, mainly on small
size problems, and independently if is OpenACC or OpenMP. For
completeness’ sake, the flag —hsystem_alloc sets the system default
mallopt parameters instead of the compiler default parameters that
control the behavior of the memory-allocation functions.

For the finest grids, we can take a closer look to the O(N®) loop
nest by analyzing GPU data movement on the 513x513 grid. Fig-
ure 5 shows that OpenACC on AMD moves close to 3.7X more
data from GPU HBM compared to OpenACC implementations on
NVIDIA, indicating a lack of data reuse from the OpenACC direc-
tives compared to the same code but on NVIDIA GPUs. OpenACC
data on Intel GPUs are not available since there are no OpenACC
compilers supporting Intel GPUs.

Further optimization could be realized by explicitly setting the
vector length and the number of workers. However, the optimal
values for these parameters are accelerator-specific and thus defy
our performance portability goals. For the results presented in
this paper, num_workers was set to 4 and vector_length was set
to 32 (the warp size for the NVIDIA A100). For OpenACC tests
on Frontier, we kept num_workers equal to four and modified the
vector_length to 64 to match the warp size for AMD GPUs.

Performance-Portable GPU Acceleration of the EFIT Tokamak Plasma Equilibrium Reconstruction Code

Table 6: Time per call and speedup vs. a single CPU core for
pflux_ with OpenACC acceleration directives on NVIDIA and
AMD GPUs. Observe AMD acceleration with OpenACC satu-
rates at 257x257 grids and generally underperforms NVIDIA.

Grid Size
GPU | 65%x65 129%x129 257%257 513%513
NVIDIA time (s) | 9.10e-4 1.80e-3 4.45e-3 1.63e-2
speedup | 2.4X 10x 31x 65x%
AMD time (s) | 1.6e-3 3.4e-3 1.2e-2 8.4e-2
speedup | 1.4X 5% 12% 13%
10
7 e
8
° 6
8 = OpenMP
3 m OpenACC
g 4
R
2, mmll
s I
$ S ©
~)2 Q
5 QQ{L &
o e e
& & &
Qé*“ < @

Figure 5: GPU data movement of the most expensive kernel,
loop nests with O(N?) for the 513 x 513 test, in pflux_ using
OpenMP or OpenACC on NVIDIA A100 GPU, OpenMP or
OpenACC on AMD MI250X GPU (single GCD), and OpenMP
on Intel PVC GPU (single stack). Note that OpenMP is the
most efficient gpu-offload directive related to GPU data move-
ment across all GPU architectures. OpenACC moves 1.6x
more data than OpenMP on NVIDIA and 3.7X more data than
OpenMP on AMD GPUs.

From Figure 1, Amdhal’s law nominally limits fit_ to a 16x
speedup (infinite speedup of pflux_). From Table 6, we can infer
that after acceleration, pflux_ has been reduced to 10% of fit_’s
run time on NVIDIA GPUs and closer to 50% on AMD GPUs. Clearly,
continued acceleration of EFIT on NVIDIA GPUs must focus on the
other routines in fit_ as further acceleration of pflux_ will only
provide asymptotic benefits. Conversely, pflux_ will require more
adaptations or compiler updates that will optimize data movement
for OpenACC on AMD GPUs.

6.2 Performance and Portability of OpenMP

Table 7 shows the time and benefit (acceleration vs. a single CPU
core) for pflux_ when using OpenMP and the associated code
modifications needed for reductions on NVIDIA, AMD and Intel
GPUs. As with OpenACC, acceleration increases with grid size.
Concurrently, run time trends towards O(N 2) on NVIDIA, AMD
and Intel GPUs. This suggests the OpenMP compiler for AMD
much more effectively exploits parallelism in the O(N?) loop nests
ensuring they do not dominate the run time. We can revisit the
GPU data movement for the O(N3) loop nest on the 513x513 test in

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Figure 5. OpenMP is moving a similar amount of data from HBM on
NVIDIA, AMD and Intel, providing better performance portability
across architectures.

NVIDIA OpenMP run time nearly perfectly matches NVIDIA
OpenACC run time. Conversely, AMD OpenMP performance is
substantially faster than AMD OpenACC performance — nearly 4x
for the largest grid. Nevertheless, AMD GCD performance still lags
behind NVIDIA A100 performance by about 1.5x for larger grids
despite superior compute and comparable bandwidth and host con-
nectivity. It is important to notice that OpenMP implementation on
AMD GPUs gets the benefit from using "! $omp loop" directives on
O(N?) loop nests, and also by using —hsystem_alloc as in Figure 4,
where speedup on the smallest grids are nearly 10x faster with the
system allocation flags with the Cray compiler.

Intel OpenMP required additional clauses to achieve the perfor-
mance reported in Table 7. As on Intel GPU, explicit clauses for
data movement between host and GPU are not required to ensure
that the application runs and gives the right answer. The same
GPU-offload directives used for NVIDIA or AMD are applicable
on Intel GPUs. However, the compiler creates an executable that
incurs on continue copies of data from host to GPUs and vice-versa,
even if loop nests are one after the other and data should not be
moved continuously from GPU to the host. To avoid unnecessary
copies, the directive "!$omp target data map (to:) (from:)"
is used to ensure the compiler instructs the copies at that directive
and at the end with "!$omp end target data". In Table 7, Intel
OpenMP underperforms on all grid sizes compared to NVIDIA or
AMD, which clearly indicates that more optimizations are required
to avoid unnecessary copies from host to GPUs and vice-versa.

Ultimately, on a system like Perlmutter, one must attain an accel-
eration of 16X (GPU vs. single core) for the 4 GPUs to be faster than
the 64 host cores. We see that OpenMP reaches this threshold for
the 257x257 and 513%513 grids. Conversely, Frontier needs only an
8% acceleration for the 8 GCDs to deliver greater throughput than
the 64-core host. We see the AMD GPU attain this at 129X129 and
larger grids. Sunspot, with 6 GPUs and two stacks per each GPU,
needs 8.7x acceleration to be faster than the 104 total host cores,
which is reached for 257x257 and 513%x513, same as Perlmutter. As
such, the overall throughput of a Frontier node is higher than that
of a Perlmutter or a Sunspot node despite the lower per-device per-
formance compared to Perlmutter. Although, Frontier has a higher
per-device performance compared to Sunspot.

Figure 6 shows that the fraction of fit_ time spent in pflux_has
been reduced to 16% on NVIDIA GPU, 27% on AMD GPU and 44% on
Intel GPU using OpenMP. As such, further acceleration of fit_ can
only be realized through the acceleration of the other three principle
routines on NVIDIA and AMD. However, further optimizations on
Intel GPUs are required to minimize data movement from the host
to the device.

7 DISCUSSION AND CONCLUSIONS

In this paper, we evaluated the suitability of OpenACC and OpenMP
for providing performance portability when accelerating recon-
struction of tokamak plasma fusion equilibria. To that end, we
GPU-accelerated the most expensive function in the core solver
of EFIT, a Fortran-based equilibrium reconstruction code, in both

SC-W 2023, November 12-17, 2023, Denver, CO, USA

H pflux (16%)

m steps (40%)
current (2%)

M green (42%)

Antepara et al.

H pflux (27%)

W steps (40%)
current (6%)

M green (28%)

H pflux (44%)

M steps (25%)
current (3%)

M green (28%)

Figure 6: Pie-chart about relative timings for fit_ subroutine with OpenMP GPU-accelerated directives on (left) NVIDIA A100
GPU, (middle) single GCD on AMD MI250X GPU and (right) single stack on Intel PVC GPU for grid size 513x513. Notice that
GPU-offload acceleration provides a significant speedup for pflux_, reducing its contribution from 90% to under 50% on all

architectures.
100
B CPU (W/EFIT-AI opts)
H GPU (OpenACC)
g GPU (OpenMP)
8
i.g/ 10
[
3
o
o
©]
-
gi | I
o
=}
©
[
(]
o
n
0.1
N O A > H O A D N O A >
SN O MDA SN ZP NP SN 2 NP
o & A P & & AV P o & AV P
Q> O AT D QS O X % G O AT D
RS VP o VP o
Perimutter-NERSC Frontier-OLCF Sunspot-ALCF

Figure 7: Speedup for pflux_ compared with a single CPU core (Baseline) with all the optimizations and OpenMP or OpenACC
on Perlmutter with AMD CPUs and NVIDIA A100 GPUs, Frontier with AMD CPUs and AMD MI250X GPUs (single GCD),
and Sunspot with Intel CPUs and Intel PVC GPUs (single stack). Note that OpenMP achieves the highest speed-up across all
architectures, where GPU acceleration becomes significant on the finest grid size tests.

OpenACC and OpenMP and evaluated performance as a function
of grid size on NVIDIA A100, AMD MI250X and Intel PVC GPUs.
Figure 7 shows a final summary about the speed-up achieved on
all GPU architectures and grid sizes. Acceleration, relative to an
AMD EPYC CPU, ranged from 2X to 70x on the NVIDIA GPU
for both programming models, indicating both the importance of
coarse-grained offloading and the support for NVIDIA GPUs across
multiple programming models. Conversely, AMD GPU acceleration
topped out at 13X and 56X for OpenACC and OpenMP respectively
— a clear indication of momentum behind OpenMP compilers.
Nevertheless, AMD GCDs slightly underperformed NVIDIA
GPUs on large problems despite their advantage in computing
power and parity in bandwidth and host connectivity. This, cou-
pled with the nearly identical NVIDIA OpenMP and OpenACC

performance, suggests compiler and runtime development work is
still needed if Frontier is to live up to its potential.

On Sunspot, acceleration relative to their Intel CPU, was achieved
at most 13X using OpenMP. Indicating that more optimization
work is required from the user to avoid unnecessary copies from
host to device and vice-versa. Nevertheless, OpenMP still holds
with significant performance for high resolution grids, at least for
257257 and 513%513, independently of the architecture.

In terms of productive performance portability, we observe that
modification of only eight lines of source code (roughly 2% of the
routine) allowed close to 70X reduction in run time of the dominate
subroutine within the fitting routine on NVIDIA and AMD, and
close to 13x on Intel architectures. As a result, the pflux_ routine
went from 90% of fit_ time to 16% on NVIDIA, 27% on AMD

Performance-Portable GPU Acceleration of the EFIT Tokamak Plasma Equilibrium Reconstruction Code

Table 7: Time per call and speedup vs. a single CPU core for
pflux_ with OpenMP acceleration directives on NVIDIA and
AMD GPUs. Unlike OpenACC, AMD acceleration continues
to increase on larger grids attaining over 70% of the perfor-
mance of the NVIDIA GPU. Intel acceleration underperforms
as further optimization is required to minimize data move-
ment from host to device.

Grid Size

GPU | 65%x65 129%x129 257%257 513X%513

NVIDIA time (s) | 1.05e-3 1.39e-3 3.42e-3 1.48e-2
speedup 2% 11x 41x 70X

AMD time (s) | 6.9e-4 2.16e-3 4.6e-3 1.89%e-2
speedup 3% 8x 30x 56X

INTEL time (s) | 4.2e-3 6.73e-3 1.6e-2 8.84e-2
speedup | 0.35X 2% 11x 13%

and 44% on Intel. Further GPU acceleration of EFIT will require
similar optimization of the other routines in fit_, implementing
new algorithms that are more suitable for GPUs, and more user-
defined optimizations on Intel GPUs.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Fusion Energy Sciences, using
the DIII-D National Fusion Facility, a DOE Office of Science user
facility, under Award(s) DE-FC02-04ER54698, DE-AC02-05CH11231
and DE-SC0021203. This research used resources of the National
Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231, resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National Labora-
tory, which is supported by the Office of Science of the U.S. De-
partment of Energy under Contract No. DE-AC05-000R22725, and
resources of the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liabil-
ity or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government
or any agency thereof.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

A GPU PROFILING AND DATA COLLECTION

The paper focuses on the performance-portable GPU acceleration of
an equilibrium reconstruction code for burning plasma on NVIDIA
A100, AMD MI250X and Intel PVC GPUs, as well as, different GPU-
offload directives models such as OpenACC and OpenMP. Here,
we describe the hardware and software used to GPU accelerate the
most time consuming loops and the methodology to extract the
data needed for GPU data movement included in the paper.

Machines: Results presented in this paper were obtained on a
NVIDIA A100 GPU on Perlmutter at NERSC, AMD MI250X GPU
on Frontier at OLCF and Intel PVC GPU on Sunspot at ALCF. In
all experiments, we use only a single process running on one A100
GPU, one GDC on MI250X and one stack on Intel PVC GPU.

In this section we describe the command lines given to the pro-
filer to gather GPU metrics for the GPU data movement on the
figures described in the paper.

A.1 Perlmutter-NERSC

On Perlmutter-NERSC, NVIDIA Nsight Compute [25] command
line to gather GPU metrics for double precision is depicted below:

nv-nsight-cu-cli -k <kernel_name> --metrics
"dram__bytes.sum" <exe> <params>

The metric dram__bytes.sum gives the value for GPU data
movement presented in the paper. Another NVIDIA profiler to
get the roofline plots, and GPU data movement is NVIDIA Nsight
Compute by using the next command line:

srun -n 1 ncu -o output_file --set full <exe> <params>

where results in the output_file can be visualized using the NVIDIA
Nsight Compute API on your local machine. In the report, GPU
data movement can be found in the Memory Workload Analysis.

A.2 Frontier-OLCF

Amd-ROCProf [26] is the profiler available on Frontier-OLCF to
collect GPU metrics. The command line used is:

rocprof -i input_file.txt --timestamp on
-0 my_output.csv <exe> <params>

AMD ROCm Profiler needs an input file with the kernel name and
the metrics to be collected. An example of the input file is showed
below:

kernel: <kernel_name>

pmc : SQ_INSTS_VALU_ADD_F16 SQ_INSTS_VALU_MUL_F16
SQ_INSTS_VALU_FMA_F16 SQ_INSTS_VALU_TRANS_F16

pmc : SQ_INSTS_VALU_ADD_F32 SQ_INSTS_VALU_MUL_F32
SQ_INSTS_VALU_FMA_F32 SQ_INSTS_VALU_TRANS_F32
pmc : SQ_INSTS_VALU_ADD_F64 SQ_INSTS_VALU_MUL_F64
SQ_INSTS_VALU_FMA_F64 SQ_INSTS_VALU_TRANS_F64

pmc : SQ_INSTS_VALU_MFMA_MOPS_F16
SQ_INSTS_VALU_MFMA_MOPS_BF16
SQ_INSTS_VALU_MFMA_MOPS_F32
SQ_INSTS_VALU_MFMA_MOPS_F64

pmc : TCC_EA_RDREQ_32B_sum TCC_EA_RDREQ_sum
TCC_EA_WRREQ_sum TCC_EA_WRREQ_64B_sum

gpu: @

To compute GPU data movement, we use the rocprof metrics:

SC-W 2023, November 12-17, 2023, Denver, CO, USA

TCC_EA_WRREQ_64B, TCC_EA_WRREQ_sum, TCC_EA_RDREQ_32B,
and TCC_EA_RDREQ_sum.

So we compute GPU data movement with the next formula:

GPU Bytes Moved = 64x TCC_EA_WRREQ_64B +
32%(TCC_EA_WRREQ_sum - TCC_EA_WRREQ_64B)
+ 32*TCC_EA_RDREQ_32B +

64*(TCC_EA_RDREQ_sum - TCC_EA_RDREQ_32B).

More information can be found here: https://docs.olcf.ornl.gov/
systems/frontier_user_guide html#getting-started-with-the-rocm-
profiler.

A.3 Sunspot-ALCF

Intel provides several tools for GPU profiling. In this work, we have
used Intel Advisor [27] as the GPU metrics collector for GPU data
movement. To profile our application with Intel Advisor, we used
the following command line:

ZE_AFFINITY_MASK=0.0 advisor --collect=roofline
--profile-gpu -- <exec> <params>

where ZE_AFFINITY_MASK = 0.0, is at the beginning of the line
to run our executable with one stack. Intel Advisor will collect
the information in a directory that will be needed to create a html
report with the next line:

advisor --report=all --project-dir=.
--report-output=roofline.html

The html file can be opened with a web browser and it contains
general information as data movement across the memory hierar-
chy, FLOP count, instructions executed, etc. For a specific kernel
GPU data movement can be found in the tab GPU memory.

REFERENCES

[1] L.Lao, H.S. John, R. Stambaugh, A. Kellman, and W. Pfeiffer, “Reconstruction
of current profile parameters and plasma shapes in tokamaks,” Nuclear Fusion,
vol. 25, pp. 1611-1622, nov 1985.

[2] L. Lao, J. Ferron, R. Groebner, W. Howl, H. S. John, E. Strait, and T. Taylor,
“Equilibrium analysis of current profiles in tokamaks,” Nuclear Fusion, vol. 30,
pp. 1035-1049, jun 1990.

[3] L.L.Lao, H.E.S. John, Q. Peng, J. R. Ferron, E. J. Strait, T. S. Taylor, W. H. Meyer,
C. Zhang, and K. I. You, “MHD equilibrium reconstruction in the DIII-D tokamak,”
Fusion Science and Technology, vol. 48, no. 2, pp. 968-977, 2005.

[4] L. L. Lao, S. Kruger, C. Akcay, P. Balaprakash, T. A. Bechtel, E. Howell, J. Koo,

J. Leddy, M. Leinhauser, Y. Q. Liu, S. Madireddy, J. McClenaghan, D. Orozco,

A. Pankin, D. Schissel, S. Smith, X. Sun, and S. Williams, “Application of machine

learning and artificial intelligence to extend EFIT equilibrium reconstruction,”

Plasma Physics and Controlled Fusion, vol. 64, p. 074001, jun 2022.

] “Top 500 website” https://www.top500.0rg/.

[6] “NERSC: Perlmutter gpu nodes.” "https://docs.nersc.gov/systems/perlmutter/.

] “OLCF: Frontier gpu nodes.” "https://docs.olcf.ornl.gov/systems/frontier_user_
guide.html.
[8] “ALCF: Sunspot gpu nodes” "https://www.alcf.anl.gov/support-center/
aurorasunspot/getting-started- sunspot.
[9] H. Grad and H. Rubin, “Hydromagnetic equilibria and force-free fields,” Proc. 2nd
UN Conf. on the Peaceful Uses of Atomic Energy, vol. 31, p. 190, 1958.

[10] V. D. Shafranov, “Plasma equilibrium in a magnetic field, Reviews of Plasma
Physics, vol. 2, p. 103, 1966.

[11] “Cray performance measurement and analysis tools user guide 6.5.0 s-
2376 "https://support.hpe.com/hpesc/public/docDisplay?docld=a00113916en_
us&page=index.html.

[12] Y. Huang, Z. Luo, B. Xiao, L. Lao, A. Mele, A. Pironti, M. Mattei, G. Ambrosino,
Q. Yuan, Y. Wang, and N. Bao, “GPU-optimized fast plasma equilibrium recon-
struction in fine grids for real-time control and data analysis,” Nuclear Fusion,
vol. 60, p. 076023, jun 2020.

[13] J. Hoberock, M. Garland, C. Kohlhoff, C. Mysen, C. Edwards, G. Brown, D. Holl-
man, L. Howes, K. Shoop, L. Baker, and E. Niebler, “P0443r10: A unified executors

[14

[15

(16

(18]

[
-

Antepara et al.

proposal for C++ (Jan 2019).” https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p0443r12.html#proposed-wording.

H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J. Parallel Distrib.
Comput., vol. 74, p. 3202-3216, dec 2014.

J. Lambert, S. Lee, . S. Vetter, and A. D. Malony, “Ccamp: An integrated translation
and optimization framework for openacc and openmp,” in SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1-14, 2020.

B. Cook, P. J. Fasano, P. Maris, C. Yang, and D. Oryspayev, “Accelerating quantum
many-body configuration interaction with directives,” in Accelerator Programming
Using Directives (S. Bhalachandra, C. Daley, and V. Melesse Vergara, eds.), (Cham),
pp. 112-132, Springer International Publishing, 2022.

N. A. Mehta, R. Gayatri, Y. Ghadar, C. Knight, and J. Deslippe, “Evaluating perfor-
mance portability of openmp for snap on nvidia, intel, and amd gpus using the
roofline methodology,” in Accelerator Programming Using Directives (S. Bhalachan-
dra, S. Wienke, S. Chandrasekaran, and G. Juckeland, eds.), (Cham), pp. 3-24,
Springer International Publishing, 2021.

K. Z. Ibrahim, C. Yang, and P. Maris, “Performance portability of sparse block
diagonal matrix multiple vector multiplications on gpus,” in 2022 IEEE/ACM Inter-
national Workshop on Performance, Portability and Productivity in HPC (P3HPC),
Pp. 58-67, 2022.

“NVIDIA A100 GPU architecture.” https://images.nvidia.com/aem-dam/en-zz/
Solutions/data- center/nvidia-ampere-architecture-whitepaper.pdf.

“AMD CDNA 2 architecture.” https://www.amd.com/system/files/documents/
amd-cdna2-white-paper.pdf.

“INTEL IRIS XE GPU architecture” "https://www.intel.com/content/
www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-
architecture.html.

“NVHPC documentation.” https://docs.nvidia.com/hpc-sdk/archive/22.7/index.
html.

“Cray Compilers on Frontier-OLCF” https://docs.olcf.ornl.gov/systems/frontier_
user_guide html#compiling.

“Intel oneAPI on Sunspot-ALCF.” https://software.intel.com/ONEAPL

“NVIDIA Nsight Compute CLI documentation.” https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html.

“AMD rocProf documentation”” https://rocmdocs.amd.com/en/revamp/ROCm_
Tools/ROCm-Tools.html.

“Intel Advisor tool on Sunspot-ALCF.” https://www.intel.com/content/www/us/
en/developer/tools/oneapi/advisor.html.

“OpenACC programming and best practices guide.” https://www.openacc.org/
sites/default/files/inline-files/OpenACC_Programming Guide_0_0.pdf.
“OpenACC application program interface.” https://www.openacc.org/.
“OpenMP application program interface.” "https://www.openmp.org/.

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#getting-started-with-the-rocm-profiler
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#getting-started-with-the-rocm-profiler
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#getting-started-with-the-rocm-profiler
https://www.top500.org/
"https://docs.nersc.gov/systems/perlmutter/
"https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
"https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
"https://www.alcf.anl.gov/support-center/aurorasunspot/getting-started-sunspot
"https://www.alcf.anl.gov/support-center/aurorasunspot/getting-started-sunspot
"https://support.hpe.com/hpesc/public/docDisplay?docId=a00113916en_us&page=index.html
"https://support.hpe.com/hpesc/public/docDisplay?docId=a00113916en_us&page=index.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r12.html#proposed-wording
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r12.html#proposed-wording
https://images.nvidia.com/aem-dam/en-zz/Solutions/data- center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data- center/nvidia-ampere-architecture-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
"https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
"https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
"https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
https://docs.nvidia.com/hpc-sdk/archive/22.7/index.html
https://docs.nvidia.com/hpc-sdk/archive/22.7/index.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#compiling
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#compiling
https://software.intel.com/ONEAPI
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://rocmdocs.amd.com/en/revamp/ROCm_Tools/ROCm-Tools.html
https://rocmdocs.amd.com/en/revamp/ROCm_Tools/ROCm-Tools.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/
"https://www.openmp.org/

	Abstract
	1 Introduction
	2 EFIT Core Solver
	3 Related Work
	4 Experimental Setup
	4.1 GPU Architectures
	4.2 Programming Models and Compilers

	5 Portable GPU-Acceleration
	5.1 OpenACC Implementation
	5.2 OpenMP Implementation

	6 Performance Portability Results
	6.1 Performance and Portability of OpenACC
	6.2 Performance and Portability of OpenMP

	7 Discussion and Conclusions
	Acknowledgments
	A GPU Profiling and data collection
	A.1 Perlmutter-NERSC
	A.2 Frontier-OLCF
	A.3 Sunspot-ALCF

	References

