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ABSTRACT
Parallel sorting is an essential algorithm in large-scale data
analytics using distributed memory systems. As the number
of processes increases, existing parallel sorting algorithms
could become inefficient because of the unbalanced work-
load. A common cause of load imbalance is the skewness of
data, which is common in application data sets from physics,
biology, earth and planetary sciences. In this work, we in-
troduce a new scalable dynamic skew-aware parallel sorting
algorithm, named SDS-Sort. It uses a skew-aware partition
method to guarantee a tighter upper bound on the work-
load of each process. To improve load balance among paral-
lel processes, existing algorithms usually add extra variables
to the sorting key, which increase the time needed to com-
plete the sorting operation. SDS-Sort allows a user to select
any sorting key without sacrificing performance. SDS-Sort
also provides optimizations, including adaptive local merg-
ing, overlapping of data exchange and data processing, and
dynamic selection of data processing algorithms for differ-
ent hardware configurations and for partially ordered data.
SDS-Sort uses local-sampling based partitioning to further
reduce its overhead. We tested SDS-Sort extensively on Edi-
son, a Cray XC30 supercomputer. Timing measurements
show that SDS-Sort can scale to 130K CPU cores and de-
liver a sorting throughput of 117TB/min. In tests with real
application data from large science projects, SDS-Sort out-
performs HykSort, a state-of-art parallel sorting algorithm,
by 3.4X.

1. INTRODUCTION
Parallel sorting is a commonly used function by scalable

data management systems and scientific applications. For
example, data management systems, such as SciDB [7] and
Scientific Data Services (SDS) framework [12], sort large-
scale data records in parallel to improve the locality of data
accesses. Data clustering applications, such as BD-CATS[21],
use parallel sorting to order cosmological particles. Well-
known parallel sorting algorithms include bitonic sort [4],
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radix sort [30], and parallel sort by sampling (PSS) [24].
Among them, PSS minimizes the interprocess data move-
ment and communication, both of which are expensive op-
erations in distributed memory systems [2]. Because of the
reduced communication, PSS algorithm has been used by
multiple data analytics methods [12, 21] and has been exten-
sively optimized [24, 28, 19]. Implementations of PSS, how-
ever, generally target at a certain dataset or a specific hard-
ware. Hence, existing PSS algorithms could be ineffective
on some computing hardware and exhibit significant load-
imbalance on real-world datasets that are highly skewed. In
this research, we aim to explore a new PSS algorithm, which
can efficiently sort various datasets, including skewed data
and partially ordered data, and also can take into account
the features of the hardware of current supercomputers, i.e.,
high throughput network interconnect and multicore CPUs.

On a distributed memory computing system with p par-
allel processes and enough memory to hold data in core,
classical PSS algorithm [19] has three steps. 1) Pivot selec-
tion: using a random sample of the data to choose p − 1
ordered global pivots. These p − 1 global pivots partition
the value space of the data into p ranges and each range is
assigned to a single process. 2) Exchange: perform all-to-
all data exchange to gather the data records belonging to
a value range onto a single process. 3) Local ordering : or-
der the data records within each process. This is the final
ordering step that produces a globally ordered output.1

It is widely accepted that partitioning the data (i.e., load
or workload) evenly among processes will significantly ben-
efit the overall sorting performance by reducing the time
of exchange and local ordering step [28]. Applying existing
PSS algorithms in sorting uniformly distributed data with
N records, the upper bound on the workload for a process is
O(2N/p) [24, 28, 19]. But, when applying these methods to
sort the skewed data, which widely appears in physics, bi-
ology, earth, and planetary sciences [20, 21, 12], this upper
bound increases linearly as the skewness of data increases
[19]. A dataset is said to be skewed when its value dis-
tribution is not uniform, for example, having a cluster of
very popular values toward one end of its distribution func-
tion [14]. Often, a skewed dataset contains many duplicated
values and the amount of duplicates represents the skew-
ness of data. These duplicated values might produce du-
plicated global pivots, which eventually cause existing PSS

1The pivot selection step might also employ the local order-
ing operation. When it is necessary distinguish these two
ordering steps, we will call the one in pivot selection the
initial ordering step and step 3 the final ordering step.



algorithms to assign more data to a single process than oth-
ers leading to significant load imbalance. In some applica-
tions, users might also require stable sorting algorithm to
maintain the relative order of duplicated values[19]. Using
secondary sorting keys, such as payload [18] or the rank of
data record in original place [28], could alleviate these is-
sues. However, the presence of these secondary sorting keys
increases the amount of work in all three steps of a PSS
algorithm, increasing both CPU time and communication
time. Moreover, requiring secondary sorting might also let
users have limited sorting keys to choose or spend extra ef-
forts to pick up secondary sorting keys. Thus, it is highly
desirable to develop parallel stable sorting algorithms that
do not require such secondary sorting keys.

In order for a parallel sorting algorithm to execute effi-
ciently, it must be able to take advantage of the new hard-
ware. For example, current supercomputers typically have
multicore CPUs and high-throughput interconnect network.
However, existing PSS algorithms [28] are generally opti-
mized for slow network through merging the data from mul-
tiple CPU cores on the same node to avoid slow data ex-
change step. New research indicates that using multiple
CPU cores to saturate high-throughput network is equally
important in reducing the time of the data exchange [8,
17]. At the same time, because the high-throughput inter-
connects could reduce the data transfer time so much that
the benefit of overlapping data exchange and local ordering,
widely used by existing PSS algorithms [24, 28], might also
be significantly reduced.

In the local ordering step, if we use a straightforward sort-
ing algorithm, its time complexity would be O(Nlog(N)). If
we view the data as p ordered chunks received from p pro-
cess, we might achieve a lower time complexity ofO(Nlog(p))
using merging [28]. However, if the data records are par-
tially ordered, the complexity of sorting might reduce from
O(Nlog(N)) to O(N) [9]. In some cases the input data
might be partially ordered [9], or the data produced by the
data exchange step might be nearly sorted [28]. Therefore,
it would be useful to recognize the partially ordered data
and use efficient approaches for the local ordering step.

To achieve the design goals above, we propose a novel
scalable dynamic skew-aware parallel sorting algorithm, called
SDS-Sort. SDS-Sort only needs to exchange data once among
processes in the whole sorting procedure. More importantly,
based on the characteristics of the data and the computing
hardware, SDS-Sort employs adaptive idea to dynamically
select the most appropriate subroutine for each step. Specif-
ically, SDS-Sort has following unique features:

• SDS-Sort achieves tight upper bound of O(4N
p

) on the
workload of each process and achieves balanced load
among processes in sorting skewed datasets without
rely on secondary sorting keys.

• SDS-Sort performs various optimizations dynamically
to make use of multicore processing and high-speed
interconnects. SDS-Sort has dynamic optimizations in
local ordering and in overlapping data exchange and
local ordering.

• SDS-Sort is capable of performing parallel stable sort-
ing algorithm to maintain the relative order of same
values. To the best of our knowledge, this is the first
sampling-based stable parallel sorting algorithm for
distributed memory systems.

• SDS-Sort uses the local pivots-based parallel partition
to further reduce the overhead of data partition.

We provided theoretical analysis for the workload on each
process. On Edison, a Cray XC30 supercomputer, we eval-
uated SDS-Sort with both synthetic and real datasets. We
show that SDS-Sort outperforms HykSort, a state-of-art par-
allel sorting algorithm, by 3.4× in sorting highly skewed
Palomar Transient Factory data, which contains around 28%
duplicated values. We have scaled SDS-Sort up to 128K
CPU cores and where it delivers ∼ 117TB/min throughput
in sorting highly skewed data.

The rest of the paper is organized as follows. In Section
2, we present the details of SDS-Sort and its design consid-
erations. Section 3 describes our experimental setups. In
Section 4, we evaluate the performance of SDS-Sort algo-
rithm. In Section 5, we provide related research efforts of
parallel sorting algorithm. We conclude the paper with a
discussion of future work in Section 6.

2. SDS-SORT ALGORITHM DESIGN

2.1 SDS-Sort algorithm overview
With the goal of developing a parallel sorting algorithm

that works on skewed and partially ordered datasets, uses
multicore processors efficiently, and preserves the order of
duplicate values, we propose SDS-Sort, a scalable dynamic
skew-aware parallel sorting algorithm. We introduce a new
skew-aware partition strategy to ensure the balanced load of
all parallel processes in sorting highly skewed data. Through
the same skew-aware partition method, SDS-Sort can also
preserve the order of duplicated values scattered across dif-
ferent compute nodes. By supporting dynamic node level
merging and overlapping of data exchange and local order-
ing phases, we devise SDS-Sort to take full advantage of
hardware features on HPC systems such as high-throughput
network interconnect and multicore CPUs. Our algorithm
also incorporates strategies to work with partially ordered
data, which can be ordered more quickly than random data.
We allow using different local ordering strategies based on
the characteristics of the data.

The overall SDS-Sort algorithm is shown in Fig. 1. We fol-
low the single instruction and multiple data (SIMD) pattern
used by MPI [16] to describe the algorithm. All the func-
tions shown in Fig. 1 run in parallel on multiple cores or on
multiple computing nodes or both. The standard functions
of MPI (prefixed with “MPI”) are used to clearly express the
operations. The functions prefixed with “Sdss” are defined
in this paper and will be discussed in the following sections.

Let A be a vector of data records to be sorted and each
record has a key for sorting and an arbitrary number of non-
key values (also called payload). B is a vector to hold the
sorted output data. Assume that there are N records in the
input array to be sorted using p MPI processes. Each MPI
process works on n data records, where n = N/p. The size
of B on each MPI process, referred as m, is dynamically de-
termined based on the data partition of global pivots. The
MPI communicator comm and the number of cores per node
c are passed into SDS-Sort for communication and adaptive
merging, respectively. Theoretically, c might be any num-
ber from 1 to p. In our implementation, we set c to be the
number of CPU cores per node, which can avoid merging
data cross nodes. We provide a flag sf to specify whether



function SDS-Sort(A[1, . . . , n], B[1, . . . ,m], com, c, sf , τm, τo, τs)
A : data array with size n to sort sf : flag of stable sorting (TRUE or FALSE)
B : sorted data array with size m τm : merging parameter
com : MPI communicator for all process τo : overlapping parameter
c : the number of CPU cores per node τs : local ordering parameter

0. p = MPI Comm size(com) . get the number of processes used to sort data /
1. r = MPI Comm rank(com) . get the rank of current process, ( 0, p− 1) /
2. A = SdssLocalSort(A, 1, sf ) . SdssLocalSort is described in § 2.2 /
3. if (n

p
≤ τm) then . merge data when the average size of all-to-all exchange is small /

4. (cg , cl )= SdssRefineComm(com) . SdssRefineComm is described in § 2.3 /
5. A = SdssNodeMerge(A, cl) . SdssNodeMerge is described in § 2.3 /
6. n = n× c, p = p

c
, com = cg , c = 1 . update parameters, n, p, com, and c /

7. end if
8. Pl[0, . . ., p-1] = A[1+bn

p
c, . . ., 1+(p− 1)bn

p
c] . local sampling /

9. Pg [0, . . ., p-1] = SdssSelectPivots(pl) . SdssSelectPivots is described in § 2.4 /
10. (sdisp[0, . . . , p], scount[0, . . . , p]) = SdssPartition(A, Pl, Pg , p, r, sf , com) . SdssPartition is described in § 2.5 /
11. MPI Alltoall(scont, p, rcont, p, com) . exchange the size of data to receive /
12. rdisp[0, . . . , p] = Accumulate(rcont) . compute the displacement of received data /
13. m = rdisp[p− 1] + rcount[p− 1]
14. B = Memory Alloc(m)
15. if( sf == TRUE or p > τo) then . no overlapping for stable sorting and larger number of processes /
16. MPI Alltoallv(A, B, sdisp, scont, rdisp, rcont, comm) . all-to-all data exchange /
17. if( p < τs) then
18. B = SdssMergeAll(B, rdisp, rcont, p, c) . SdssMergeAll is described in § 2.6 /
19. else
20. B = SdssLocalSort(B, sf , c) . SdssLocalSort is described in § 2.6 /
21. endif
22. else . overlap all-to-all exchange and local sorting /
23. C = Memory Alloc(m)
24. aid[0, . . . , p]=SdssAlltoallvAsync(A, C, sdisp, scont, rdisp, rcont, comm) . SdssAlltoallvAsync is described in § 2.6 /
25. while( (id1, id2) = SdssFinished(aid) != (NULL, NULL) ) do . SdssFinished is described in § 2.6 /
26. B = SdssMergeTwo(C, rdisp, rcont, (id1 ,id2), c) . SdssMergeTwo is described in § 2.6 /
27. end while
28. end if

Figure 1: SDS-Sort algorithm overview

SDS-Sort needs to perform stable sorting. If sf = TRUE,
SDS-Sort preserves the order of duplicate keys, and if sf =
FALSE, SDS-Sort ignores the stability in the output. Ad-
ditionally, SDS-Sort accepts three parameters, τm, τo, and
τs, to determine the merging for data exchange, overlapping
data exchange with local ordering, and choosing sorting or
merging to perform local ordering. Even though determin-
ing optimal values for these parameters is out the scope for
this paper, we will provide their empirical optimal values in
our test results section § 4.1.1.

To ensure the quality of global pivots selected, SDS-Sort
starts a local pivots selection process on each MPI process by
first sorting the local content of A with the function SdssLo-
calSort. This function is described in § 2.2. Then, SDS-Sort
detours to merge the data from all processes located at the
same node when the average message size (n

p
) is smaller than

τm. Merging the data before actual local pivot selection can
determine the number of local pivots to select. More impor-
tantly, local node based merging provides SDS-Sort adaptive
capability for the network with different throughput and the
computing node with different numbers of CPU cores. To
support the merging at each node, SDS-Sort refines its com-
munication through SdssRefineComm (discussed in § 2.3)
and updates the number of processes (p), that would be pro-
cessing data from there onwards. The function SdssNode-
Merge (see § 2.3) is used to merge data at each node. In
step 8 of Fig. 1, SDS-Sort selects local pivots (stored in pl)
using equal striping length bn

p
c, also called regular sampling

[19]. Based on local pivots, the global pivots (stored in vec-
tor pg) are chosen using the function SdssSelectPivots which

is described in § 2.4.
After the global pivots are determined, the data is parti-

tioned with function SdssPartition(described in § 2.5). Es-
pecially, SDS-Sort uses local pivots (pl) to speedup the par-
tition function SdssPartition. Meanwhile, SdssPartition is
skew-aware and therefore it can partition the skewed data
evenly among the processes. From steps 10 to 13, the dis-
placements (i.e., sdisp and rdisp) and amounts (i.e., scount
and rcount) required for the data exchange are computed.
In step 14, the memory space for storing the sorted data in
B is allocated. When one requires stable sorting or the num-
ber of processors is larger than τo, SDS-Sort does not overlap
data exchange and local ordering steps. In this case, SDS-
Sort uses MPI alltoallv to exchange data in step 16. After
the data exchange is finished, the received data is local or-
dered. The local ordering step uses SdssMergeAll (described
in § 2.6) when the number of processes is less than τs. Other-
wise, it calls SdssLocalSort to obtain globally ordered data.
Choosing different methods for local ordering enables SDS-
Sort to efficiently work on partially ordered data. When the
number of processes is smaller than τo and the stable sorted
is not required, SDS-Sort calls SdssAlltoallvAsync and Sdss-
Finished (§ 2.6) to overlap data exchange and local ordering.
In this case, SDS-Sort uses SdssMergeTwo (§ 2.6) to merge
the received data. We elaborate the steps involved in SDS-
Sort in the following subsections.

2.2 Skew-aware merging based local sorting
In line 2 and line 20 of SDS-Sort (Fig. 1), a shared mem-

ory parallel sorting algorithm (SdssLocalSort) is required.



Sorting local data at the beginning of SDS-Sort (line 2)
helps the sampling step (line 8) to thoroughly measure the
value distribution and also the final local ordering step (line
20) to quickly process the partially ordered data. A pop-
ular strategy to sort an array on a shared memory ma-
chine with c CPU cores is to divide the array into c chunks;
sort each chunk in parallel; and then merge these chunks
in parallel [11]. As sorting on each core is a straight for-
ward method, it is important to design an efficient parallel
merging method, especially for skewed data. The designed
SdssLocalSort function can quickly merge sorted chunks
from multiple cores via its skew-aware partition.

Our implementation of SdssLocalSort accepts three pa-
rameters: a vector of data to sort (A), the number of CPU
cores (c) , and the stable sorting flag (sf ). In line 2 of SDS-
Sort with c = 1 , the sequential version of SdssLocalSort is
used. Internally, SdssLocalSort partitions its input A into c
chunks. Then, depending on stable flag sf , SdssLocalSort
calls std::sort (when sf=FALSE) or std::stable sort (i.e.,
sf=TRUE) of C++ library [27] to sort each chunk. Fi-
nally, these sorted chunks are merged to be a single vec-
tor in parallel using OpenMP. A sampling based parallel
merging for shared memory local sorting was proposed in
previous research [28]. This method could suffer from load
imbalance issue in merging skewed data as it might cause
one CPU core to be assigned with more data to merge than
the others. In SdssLocalSort, we use the same skew-aware
partition method as described in the following sub-section
(§ 2.5) to partition each sorted chunk into subchunks and
then merge these subchunks in parallel. Hence, basically,
SdssLocalSort is a shared memory version of SDS-Sort with-
out network connection.

2.3 Node-level merging
When sorting data on low-throughput network, merging

sorted data from all CPU cores on a single node can reduce
the number of messages and therefore reduce the network
initialization overhead for the data exchange step. How-
ever, the same approach might not fully utilize the high
bandwidth network available on the current-generation su-
percomputer systems because a single process running on a
CPU core does not have the processing power to saturate
the network. To address this issue, SDS-Sort adaptively de-
cides whether or not merging the data at each node before
the data exchange process (from line 3 to line 7 of Fig. 1).
Specifically, we assume the average exchange size for data
exchange is n

p
. When n

p
is smaller than τm, SDS-Sort merges

the data package at each node. This approach is suitable for
low-throughput network. When the average data volume is
larger than τm, each process sends its own data records to
their respective destinations. This approach allows SDS-
Sort to quickly feed all data into high throughput network.

To implement node level merging, we use function Sdss-
RefineComm to create two MPI communicators: cg and cl.
SdssRefineComm uses MPI Comm split type2 of MPI with
the MPI COMM TYPE SHARED parameter. The local
communicator cl is used by SdssNodeMerge to merge the
data from all CPU cores into a single core. SdssNodeMerge
shares the same idea as the skew-aware merging used in local
sorting in previous section. One difference is that SdssNode-
Merge uses network communication instead of memory copy-

2http://www.open-mpi.org/doc/v1.8/man3/MPI\ Comm\
split\ type.3.php

ing. At line 8, the global communicator comm that is used
for the following all-to-all data exchange phase that occurs
later is replaced with global communicator cg.

2.4 Regular sampling and pivots selection
Sampling method is used to choose local pivots on each

process and global pivots at the global scale. The local piv-
ots are chosen from original data and global pivots from local
pivots. SDS-Sort uses equal-striped sampling method (also
called regular sampling [19]) to choose both local and global
pivots. In line 8 of Fig. 1, p − 1 local pivots are selected
at regular striping size bn

p
c. Since each node sorts the data

at the beginning, these p − 1 local pivots can represent its
local value distribution very well. In this case, each local
pivot represents at most 2 N

p2
values. To choose p− 1 global

pivots from local pivots, a popular method is to gather all
local pivots onto a single process, sort all local pivots, and
choose the global pivots at equal-striped distance p. In this
case, each global pivot represent at most 2 N

p2
× p = 2N

p
val-

ues. SDS-Sort uses this regular sampling to select pivots
and incorporates new optimizations from existing work in
implementations, as discussed in next paragraph.

Such sampling method is simple and efficient but when p is
large, these p(p−1) local pivots might overflow the memory
of single process. There are two solutions to address this is-
sue. The first one is histogram sorting [24], where each node
builds a histogram for a common global pivot vector and
uses a single node to gather the histograms to choose global
pivots. In sorting the non-skewed data that has a small num-
ber of replicated values, histogram sorting is useful as it can
choose distinctive global pivots easily. But for the skewed
data with highly replicated values, histogram sorting might
need secondary sorting keys to distinguish the same values.
The second method is to use the parallel sorting algorithms,
which do not require gathering local pivots onto single node
[28]. In SDS-Sort, we use the second approach and choose
bitonic sort [4] to select pivots (SdssSelectPivots). Although
bitonic sort needs a few data communications, the perfor-
mance of botonic sort is acceptable in sorting p(p− 1) local
pivots with p processes.

2.5 Fast and skew-aware partition
Equally partitioning data among all processes is key to

ensure the load balance in the final ordering step. In sort-
ing skewed data with highly replicated values, the selected
global pivots might be replicated too. Using replicated global
pivots to partition the data will cause serious load imbal-
ance. Specifically, among all the processes that share the
same global pivot, one of the processes could be assigned
with all the data belonging to these same global pivots,
while the other processes are assigned with no data. The
process that is assigned all data ends up being the bottle-
neck while other processes will be idle in the final ordering
step. Even worse, this might cause out-of-memory (OOM)
errors and crash the sorting program. Adding the original
rank or the non-key value (named secondary sorting key) of
each data record to distinguish the replicated global pivots
can avoid this issue, but it increases extra overhead of com-
paring and communicating one or more secondary sorting
keys. Such limitation might let users have limited sorting
keys to choose or spend extra efforts to pick up secondary
sorting keys. Our SDS-Sort does not rely on secondary sort-
ing keys to ensure the load balancing of local ordering. We



also propose to use local pivots to partition data and re-
duce the overhead of data partition. Our partition method
named SdssPartition is summarized in Fig. 2 and its details
are discussed in below subsections.

2.5.1 Local pivots based partition
The data partitioning step uses the p − 1 global pivots

(line 11 of Fig. 1) to partition the whole data space into p
chunks. Specifically, the goal of data partition is to find the
pairs of sdisp and scount for all-to-all data exchange. The
sdisp variable is the starting displacement of data in A and
the scount is the amount of the data after offset. A widely
used data partitioning method is to shift through the total
O(n) local data once. When n is large, shifting all data
may have significant overhead. To reduce this overhead,
SDS-Sort uses local pivots-based partition to reduce its shift
space from O(n) to O(n

p
). It is because local pivots and

their associated displacements provide good representation
and partition of the sorted local data space. The algorithm
to perform this partition is shown in Fig. 2 (from line 1 to
line 4). For a global pivot Pg[i], SDS-Sort firstly ranks it
among p − 1 local pivots via std::upper bound function of
C++, which is based on binary search [27]. Then, SDS-Sort
uses std::upper bound again to find the actual displacement
of pivot Pg[i] between Pld[pi] and Pld[pi + 1] of A.

2.5.2 Skew-aware partitioning
Next, we describe the skew-aware data partition method.

A key factor affecting the partition sizes in a parallel sort-
ing procedure is the presence of replicated global pivots. To
enable SdssPartition to detect replicated global pivots dy-
namically (line 5 of Fig. 2), we designed an algorithm named
SdssReplicated (in Fig. 3). For a specific global pivot Pg[i],
SdssReplicated scans all p−1 global pivots once and identifies
that “is Pg[i] duplicated with its neighborhood pivots?” If
Pg[i] is not a replicated pivot (fr=FALSE), SDS-Sort par-
titions the data as traditional method [19] (line 30 of Fig. 2).
Once Pg[i] is found replicated (fr=TRUE), SdssReplicated
continues to find “what is the number (i.e., rs) of pivots
that are equal to Pg[i]?” and “what is the rank (i.e., rr) of
Pg[i] in its replicated pivots?” When SdssReplicated detects
replicated pivots, it also finds the pivot (ppv) right before
all replicated Pg[i]. The rr, rs, and ppv are used to evenly
partition the skewed data among processes, as discussed in
rest of this subsection.

Since the requirement to maintain stability requires us
to handle the same key value differently, next we discuss
the two cases of partitioning with and without stability re-
quirement separately. We will refer to the version without
stability requirement as the “fast version” and the version
with stability requirement as the “stable version”.

Fast version of skew-aware partitioning. Without dupli-
cated keys, the theoretical upper bound for the number of
data records for each process in local ordering step is O(2n

p
)

[19]. When sorting skewed data, this upper bound of exist-
ing methods will increase proportionally as the number of
replicates increases [19]. Using secondary sorting key can
alleviate this issue, but, as mentioned above, requires extra
overhead in comparing and communicating. Without rely on
secondary keys in sorting skewed data, we device a more ef-
ficient partitioning method in SDS-Sort. More importantly,
this new partition method has fixed upper bound of O(4n

p
)

for the number of data records for each process in local or-

function SdssPartition(A, Pl, Pg , p, r, sf , com)
A : sorted data with size n p : number of processes
Pl : local pivots r : rank of processes
Pg : global pivots sf : flag of stable sorting
com : MPI communicator for all process

0. rdisp[0] = 0 . Initialization /
1. for i = 0, . . . , p− 2 do
2. pi = std::upper bound(Pl[0], Pl[p-1], Pg [i])
3. pd = std::upper bound(A[pibnp c], A[(pi+1)bn

p
c], Pg [i])

4. (fr, rs, rr, ppv) = SdssReplicated(Pg , p, i)
5. if fr == TRUE then . Replicated pivots detected /
6. ppi = std::upper bound(Pl[0], Pl[p-1], ppv)
7. ppd = std::upper bound(A[ppibnp c],

A[(ppi + 1)bn
p
c], ppv)

8. if sf != TRUE then . Fast version /

9. rdisp[i+ 1] = ppd + pd−ppd
rs

(rr + 1)

10. else . Stable version /
11. cr= ppd - pd + 1
12. MPI Allgather(cr, 1, cv , p, com)
13. sb = sum(cv [0, r − 1])
14. sa = sum(cv [0, p− 1])/rs
15. rt = sb

sa
. skip rt process /

16. for k = 0, . . . , (rt -1) do
17. rdisp[i+ k + 1] = ppd
18. for
19. for k = rt, . . . , rs do
20. if sb%sa + cr ≤ sa then
21. rdisp[i+ k + 1] = ppd + cr
22. else . Split replicated on a node /
23. rdisp[i+ k + 1] = ppd + sa
24. sb = sb + sa, cr = cr − sa
25. end if
26. for
27. i = i+ rs;
28. end if
29. else . No replicated pivots /
30. rdisp[i+ 1] = pd
31. endif
32. endfor
33. scount[0, . . ., p− 1] = difference(rdisp)
34. return (rdisp, scount)

Figure 2: SdssPartition Algorithm.

function SdssReplicated(Pg , p, i)
Pg : global pivots vector i : target process index
p : number of processes

0. fr = FALSE, rs = 1, rr = 0, ppv = Pg [0], j = i− 1
1. while (j >= 0) and Pg [j] == Pg [i] do
2. j −−, rs + +, fr = TRUE
3. end while
4. ppv = Pg [j]
5. rr = rs - 1, j = i + 1
6. while (j < p− 1 and Pg [j] == Pg [i] ) do
7. j + +; rs + +; fr = TRUE
8. end while
9. return (fr, rs, rr, ppv)

Figure 3: SdssReplicated Algorithm

dering step (see proof in §2.8). The partitioning method is
presented from line 6 to line 9 of Fig. 2. First, SDS-Sort
finds the index (ppi) and the displacement (ppd) of ppv in
Pl and A, respectively. Combined with the displacement pd
found in line 3, SDS-Sort knows that all replicated values
fall between ppd and pd. As the fast version of SDS-Sort
does not require to maintain the relative order of replicated
data, SDS-Sort equally partitions the replicated values be-
tween ppd and pd among all rs process (at line 9 of Fig. 2).
In other words, the partitioning method is equal to implic-
itly adding the rank of replicated pivots (i.e, rr) to distinct
the replicated values between ppd and pd. A simple example
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of three) are the same. In the fast version, each process
partitions its own replicated values evenly into two chunks,
denoted with brown boxes. The first brown box of all four
processes is gathered onto P1 and the second brown box of
all four processes onto P2. In the stable version, all repli-
cated values are partitioned into two groups. P0 and P2
belongs to the first group and P2 and P3 the second group.
All brown boxes on P0 and P1 are sent to P1 and all brown
boxes on P2 and P3 are sent to P2.

of this partition method is presented in Fig 4.
Stable version of skew-aware partitioning. In the stable

version of SDS-Sort, the replicated values in output must
have the same order as they have in the input. Especially,
the duplicated values located on different processes must be
ordered by their MPI process rank in final output. The
partition method used by the fast version of SDS-Sort can
not guarantee this stability request. For instance, in the
fast version example of Fig 4, process P3 sends its replicated
values to both P1 and P2. In the final output, the replicated
value sent from P0 to P2 could be placed between these
replicated values sent by P3, which breaks the requirement
of stable parallel sorting.

To address this issue, SDS-Sort uses a new partitioning
method for the stable version. The main idea of our method
is to consider all duplicated values from the first MPI pro-
cess to the last MPI process as a contiguous ’replicated value
space’, to evenly partition this space into groups, and then
to designate an MPI process in each group for gathering
and storing all the replicated values in its respective group.
When there are rs replicated pivots, the number of groups is
set equal to rs. These designated processes are the processes
assigned with duplicated global pivots. As each designated
process only gathers equally sized replicated values inside
its group, the load on these processes will be very small and
balanced. The upper bound on the load of each process of
this partition method is O(4n

p
), the same as the fast version

(see proof in Section 2.8). The implementation details are
presented from line 11 to 25 of Figure 2. SDS-Sort first lets
each process gather duplicated value count (cr) of all p pro-
cesses into a vector (sv), which has the size equal to p. Since
we have rs groups and also rs designated processes, the av-
erage size of replicated values for each designated process is
calculated as sa = sum(cv[0, p−1])/rs. The first designated
process will gather sa duplicated values from the first pro-
cess p0 until the process pi, where i ≥ 0 and sum(cv[0, i−1])
≤ sa ≤ sum(cv[0, i]). Note that when a single process has
more replicated values than sa, these replicated values will
then be divided into different groups (line 23 and line 24).

By applying the same idea, each designated process can find
its sa contiguous duplicated values within its group. In the
gathering process, we preserve the order of value as their
MPI process rank by taking advantage of the blocking (non-
asynchronous) MP alltoallv function (line 16 of Fig. 1). A
very simple example of the partition method is also shown
in Fig 4, where the number of replicated values on P0 and
P2 is equal to that on P2 and P3.

2.6 Adaptive all-to-all data exchange
When performing the data exchange, SDS-Sort can dy-

namically choose between two options: synchronous and
asynchronous. The asynchronous data exchange is used to
overlap data exchange and local ordering phases. This op-
tion is effective when CPU is relatively fast compared to the
network, where the CPU could process the data to be sent
without waiting for the receiver to acknowledge the mes-
sage, and then wait to perform the local ordering operations
as soon as the data arrives. On HPC systems with rela-
tively weak CPUs, the CPUs might have to devote a large
portion of its computing power to feed the network with
no opportunity to conduct other operations. Furthermore,
asynchronous communication requires the senders nad re-
ceivers to dedicate a certain amount of system resources
to monitor the progress of the messages. In a large scale
all-to-all data exchange, the competition for these system
resources could introduce unexpected delays and reduce the
overall performance. In such a case, using synchronous com-
munication might be faster. In the current implementation,
we use a threshold τs, certain number of processes, to choose
synchronous and asynchronous data exchange adaptively.

As the asynchronous might break the order of data ex-
change but the stable sorting requires to maintain relative
order, SDS-Sort uses synchronous to perform all-to-all data
exchange for stable sorting. SDS-Sort uses MPI Alltoallv
to perform synchronous data exchange (line 16 of Fig. 1)
and MPIAlltoallvAsync (line 24 of Fig. 1) to perform asyn-
chronous data exchange. Note that MPIAlltoallvAsync is
not a standard MPI function, but a function we imple-
mented with MPI Isend, MPI Irecv, and MPI Test func-
tions. MPIAlltoallvAsync returns two received data chunk
ids: id1 and id2, corresponding to the ranks of two processes.
Function SdssMergeTwo, a special case of SdssMergeall re-
ported in following subsection 2.6, is used to merge two re-
ceived data chunks.

2.7 Adaptive local ordering
After the all-to-all data exchange, SDS-Sort performs the

final local ordering within each process to place the data
records in their output order. In this process, SDS-Sort
could dynamically decide to use a number of different pro-
cedures as shown from line 17 to line 21 of Fig. 1. By design,
the input to this final ordering step on each MPI rank is a list
of p ordered chunks. Currently, we only consider two options
named merging and sorting, where the first option merges
the p ordered chunks into a single order array and the second
option simply invoke a standard sorting algorithm on the in-
coming data. The reason is that the complexity of merging
increases as the number of processes p increases, but the
complexity of sorting decreases as p increases. Specifically,
the time complexity of merging p sorted chunks (received
from p processes) is O(nlog(p)), which highly depends on
the number of sorted chunks. On the other hand, p sorted



chunks form a partially ordered data. The best complexity
of sorting partially ordered reduces from O(nlog(n)) to O(n)
[9]. It is obviously that given certain number of processes p,
choosing sorting or merging wisely can reduce the time spent
on local ordering. In implementation, we uses two functions:
SdssMergeAll and SdssLocalSort. Both can run in parallel
on shared memory if its input parameter c is larger than one.
SdssMergeAll takes advantage of sorted order of the chunks
from other processes and uses std::merge of C++ to obtain
globally sorted data. As described in previous Section 2.2,
SdssLocalSort is a shared memory sorting algorithm which
is based on std::sort or std::stable sort of C++.

2.8 Analysis of workload on each process
Following the analysis by Li et al. [19], we usemi to denote

the number of data records on the ith process in the final
local ordering step and

U = max
1≤i≤p

mi = 2
N

p
− N

p2
− p+ 1 + d

where N is the number of data records, p is the number of
processes used, and d is the number of the records whose key
value is duplicated most. In the analysis done by Li et al.,
the big O notation is also used to denote the dominant term
(also called the ‘upper bound’) in the expression. Assuming
both p and d are much smaller than N , Li et al. express the
upper bound of U as O(2N

p
). Using these conventions, we

have the following theorem:

Theorem 1. The upper bound of workload on each pro-
cess ( U ) with SDS-Sort in sorting N data records using p
processes is O(4N

p
).

Proof. We divide the proof into two parts based on whether
or not there are any duplicated global pivots.

When there are no duplicated global pivots, the worst
case bound on U is same as given by the analysis of Li et
al. [19]. In this case, the worst case value for d can be
computed as follows. Since there is no duplicated global
pivot, there are at most p− 1 replicated local pivots. Since
SDS-Sort orders original data before choosing local pivots,
each local pivot represents at most 2 N

p2
replicated values.

Hence, we have d < 2 N
p2
× (p − 1) < 2 N

p2
× p = 2N

p
. Thus,

U < 2N
p
− N

p2
− p + 1 + 2N

p
= 4N

p
− N

p2
− p + 1 + 2, which

gives that the upper bound of U as O(4N
p

).
When there are duplicated global pivots, SDS-Sort de-

notes the number of duplicated global pivots with rs and
the rank of each replicated global pivot with rr, where 1 ≤
rs ≤ p− 1 and 0 ≤ rr ≤ rs − 1. As the fast version and the
stable version of SDS-Sort partition the data with different
methods, we prove the upper bound for them separately as
below:

• The fast version SDS-Sort uses rs and rk to partition the
replicated values equally among rs processes. In this par-
tition method, a replicated global pivot implicitly assigns
its rank value (i.e., rr) to all duplicated values which are
represented by it. This will make the duplicated values
represented by different replicated global pivots are dis-
tinct from each other. Meanwhile, we have that each
global pivot represents at most 2 N

p2
× p = 2N

p
duplicated

data records. Hence, the maximum number of the dupli-
cated values reduce from d to 2N

p
. As indicating in above

steps, the upper bound of sorting data with at most 2N
p

values is O(4N
p

). Therefore, we have that the upper bound

of U is equal to O(4N
p

) in this case.

• The stable version of SDS-Sort partitions the number of
processes into rs groups and uses a designated process
within a group to gather the duplicated values. This
partition method implicitly attach a rank value rk to all
the duplicated values within a single group. Thus, it can
distinct the values belonging to different groups. As the
number of duplicated values of a single group is at most
2 N
p2
× (p) = 2N

p
, which is also equal to the number of

data records represented by a single pivot, the maximum
number of the duplicated values reduce to be 2N

p
. As in-

dicating in above steps, we have that upper bound of U
is equal to O(4N

p
) in this case. This completes the proof.

3. SYSTEM CONFIGURATION
We have conducted all the experiments reported in this

paper on Edison 3, a Cray XC30 supercomputer at the Na-
tional Energy Research Scientific Computing Center (NERSC).
Edison is equipped with 133,824 compute cores and 357 ter-
abytes of aggregate memory. Each compute node of Edison
is configured with two 12-core Intel “Ivy Bridge” processors
at 2.4 GHz and 64 GB DDR3 1600 MHz memory. Edi-
son uses Cray Aries [6] high-speed interconnect, which has
0.25µs to 3.7µs MPI latency and 8GB/sec MPI bandwidth.
The high-speed interconnect of Edison uses Dragonfly topol-
ogy, which is able to deliver 23.7TB/s global bandwidth.
Our SDS-Sort implementation code is written in C++ and is
compiled with Intel Compiler version 16.0 and Cray’s imple-
mentation of MPI. We have scaled our sorting experiments
up to 131, 072 CPU cores. The measured performance in this
paper does not include the time to read the data from the
parallel file system, i.e., the measured time includes sorting
time after the data is loaded into memory.

4. EXPERIMENTAL EVALUATION
In this section, we conduct an in-depth evaluation of SDS-

Sort, and compare it with the most efficient in-memory sort-
ing algorithm known as Hyksort [28]. The evaluation uses
two synthetic data sets and two real scientific data sets from
cosmology and astronomy.

4.1 Performance evaluation of SDS-Sort
Two synthetic data sets, a Uniform data set and a Skewed

data set, are used to evaluate SDS-Sort. Uniform data set is
generated by standard Uniform distribution, which is widely
used in previous research to test various parallel sorting algo-
rithms [28]. The Skewed data set is generated by Zipf distri-
bution: p(i) = C

iα
, where i = 1 to N , α is the Zipf exponent,

and C is the normalization constant [26]. Since the number
of duplicates is a critical parameter to the performance of
parallel sample sorting algorithms, we next introduce a pa-
rameter δ as the maximum replication ratio. For a data set
with d denoting the number of the records whose key value
is duplicated most, δ is defined as d

N
× 100%, where N is

the number of data records to sort. All tests were repeated
three times and the best performing values are reported.

3http://www.nersc.gov/users/computational-systems/
edison/
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Figure 5: Performance test results of exploring optimal value for parameters τm, τo, and τs.

Using these synthetic workloads, we first explore the op-
timal values for the parameters τm, τo, τs that are used by
SDS-Sort. Next, we explore the performance characteristics
of std::sort and std::stable sort from C++ Standard Tem-
plate Library as SDS-Sort uses them to perform sequential
sorting on a CPU core. Finally, we compare SDS-Sort with a
state-of-art parallel sorting algorithm, namely HykSort [28].
HykSort has a parameter, k, representing k-way communi-
cation. Previous study [28] shown that 128 is the optimal
for k, which is used in our evaluation. Specifically, we com-
pare SDS-Sort and HykSort in terms of different replication
ratio values (i.e., δ) and varying number of MPI processes.

4.1.1 Evaluation with varying parameters
The SDS-Sort algorithm has a number of parameters, such

as the threshold τm for merging data in the exchange phase,
the threshold τo for overlapping communication with com-
putation, and the threshold τs in the local ordering phase.
Next, we use the synthetic data sets to find the optimal
values of these parameters.

Performance with merging data before the exchange
phase (τm). The merging parameter (τm) of SDS-Sort de-
cides whether to merge data of each CPU node for the all-
to-all data exchange phase. Fig. 5a reports the execution
time for all-to-all data exchange with varying message size.
It is clear that when the message size is small (i.e., less than
160MB), merging data at each node is beneficial. On the
other hand, when the message size is larger than 160MB,
merging data at each node has high overhead. The main rea-
son is that merging small messages on each node can avoid
the overhead of establishing all-to-all communication. But,
when the message size is large, using all the CPU cores to
feed data individually into the network without merging can
take advantage of high bandwidth of the network. Our test
results indicate that setting τm to be 160MB is reasonable
on our test bed, Edison.

Overlapping of the exchange and the local order-
ing phases (τo). The threshold τo decides whether over-
lapping the all-to-all exchange with the local sorting phases
of SDS-Sort. To explore the optimal values of τo, we tested
the time for overlapping and not overlapping using different
numbers of MPI processes. The results reported in Fig. 5b
show that overlapping all-to-all data exchange with local or-
dering is faster than not overlapping when the number of

Table 1: Time (s) of using std::sort and std::stable sort of
C++ to sort 1GB data.

Uniform
Zipf (a (δ%))

0.7 (2) 1.4 (32) 2.1 (63)
std::sort 26.1 14.6 8.9 6.6
std::stable sort 35.2 24.3 16.5 12.5

processes is smaller than 4096. A reason for this behavior
is that when the number of processes is small, the network
bandwidth that the sorting phase obtains is small. As a re-
sult, when data is transferred on network, the CPU might
be idle and overlapping data exchange and local ordering
can reduce the overall time. As the number of processes
increases, the workload that local ordering phase requires
to do increases too. Hence, overlapping the all-to-all data
exchange and local ordering phases can delay the rate of
feeding the data into network. As a result, the performance
with overlapping degrades. Through our tests on Edison,
we decide the optimal τo to be 4096.

Merging vs. sorting (τs). In SDS-Sort, τs decides
whether to use merging or sorting to perform the local or-
dering phase. In our analysis in Section 2.6, we argue that
the time for using merging to perform local ordering phase
will increase as the number of processes increases. On the
other hand, the time to sort partially sorted data will re-
duce. We report the time used by sorting and merging with
different number of processes in Fig. 5c. As expected, the
time for using merging to perform local ordering phase in-
creases sharply from 512 processes to 64K processes. On
the other hand, the time for using sorting on CPU cores to
perform local ordering is much more stable and decreases
gradually. Hence, the test results are consistent with the-
oretical analysis. 4000 MPI processes is the turning point
where using merging becomes more expensive than sorting.
Hence, in following tests on Edison, τs is set to be 4000.

Evaluation of std::sort and std::stable sort. The
standard C++ functions std::sort and std::stable sort are
used as the sequential sort algorithm in SDS-Sort. In Table
1, we show the performance of sorting 1 GB data (268 mil-
lions float values) from both uniform and skewed data sets.
In the skewed data set tests, we used skewed data sets with
different Zipf distribution settings. As expected, std::sort is
faster than std::stable sort. The time to sort highly skewed
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Figure 6: Micro performance comparison of different optimizations: skew aware merging, local pivots based parallel partition,
and skew aware sorting.

data is smaller than sorting the uniform distributed data set.
Moreover, the time to sort skewed data gradually decreases
as the replication ratio (δ) increases.

4.1.2 Large-scale comparison with HykSort
In this section, we compare SDS-Sort and HykSort[24]

using the synthetic data sets. We first compare their two
components: shared memory parallel merging and data par-
tition methods. Then we compare SDS-Sort with HykSort
to sort the skewed data set with different replication ratios
and to run using on different numbers of CPU cores. We la-
bel SDS-Sort to denote the fast version and SDS-Sort/stable
to denote the stable stable version of SDS-Sort.

Skew-aware parallel merging. Parallel merging is an
important step in functions SdssLocalSort, SdssMergeSort
and SdssNodeMerge. Compared with the parallel merging
used by HykSort, SDS-Sort uses a skew aware partition
method to support parallel merging. In Fig. 6a, we com-
pare the time to merge different data workloads and differ-
ent data sizes. The parallel merging used in HykSort uses
more time when merging skewed data represented by Zipf
distribution. This is consistent with the analysis by Li et
al [19], which indicates that a high number of duplicated
values would increase the load imbalance. On the other
hand, the skew-aware parallel merging used in SDS-Sort de-
livers stable performance in both Uniform and Zipf work-
loads because the skew-aware parallel merging is better at
maintaining load balance.

Local pivots-based data partition. In Section 2.5, we
propose the function SdssPartition that uses local pivots to
partition data. Here we evaluate this idea experimentally. In
this test, we fix the data size for each process at 2GB and test
different number of processes. The test results are reported
in Fig. 6b. In this test, we compared the performance of
full scan partition, parallel partition used by HykSort, and
local pivot based partition used in SDS-Sort. As the test
results indicate that using local pivots can reduce the time
for data partition to almost zero. Hence, the proposed local
pivots based data partition is an efficient method to reduce
the data partition overhead.

Replication ratios δ scaling tests. Next, we compare
SDS-Sort with HykSort using the skewed workloads of differ-
ent replication ratios. The performance comparison is shown

Table 2: Relatioship between δ and α.
α 0.4 0.5 0.6 0.7 0.8 0.9

δ (%) 0.2 0.5 1.0 2.0 3.7 6.4

in Fig. 6c. The α and δ values in the test data are reported
in Table 2. The timing results in Fig. 6c indicate that both
SDS-Sort and SDS-Sort/Stable deliver scalable performance
with different replication ratios. On the other hand, Hyk-
Sort can only work when the replication value is less than
1.0% (δ=0.6). The reason is that skewed data causes load
imbalance in HykSort. When the replication ratio is too
high, certain nodes will be assigned so much data that the
processes running on those nodes run out of memory.

Scalability of SDS-Sort. We show weak-scaling per-
formance of SDS-Sort on uniform and skewed data sets in
Fig. 7 and Fig. 8, respectively. In these tests, we fix the
data size per process at 400MB (i.e., 100 millions records)
and increase the number of CPU cores from 512 (0.5K) to
131,072 (128K). The data size for sorting with 128K cores
is 52.4TB (i.e., 1013 data records). For uniform workload,
HykSort takes 42.6 seconds to sort the 52.4TB. Using sort-
ing throughput, a popular metric [29], to express this per-
formance number, HykSort archives at most 73.8TB/min
sorting throughput using 128K cores. SDS-Sort takes 28.25
seconds to sort the same data, resulting in 111TB/min sort-
ing throughput. SDS-Sort is 51% faster than HykSort. For
the SDS-Sort/stable, it delivers 54TB/min in sorting the
same data. The reason for SDS-Sort/Stable is slower than
both HykSort and SDS-Sort is that it takes more time to
select pivots and to perform local ordering as discussed in
the previous sections. For the skewed workload, HykSort
fails to execute due to the Out-of-Memory (OOM) error be-
cause of the load imbalance issue after the all-to-all data ex-
change phase. Both SDS-Sort and SDS-Sort/stable deliver
performance similar to that of sorting the uniform data set.
Using 128K processes, SDS-Sort delivers 117TB/min sort-
ing throughput, and SDS-Sort/stable delivers 55.8TB/min
sorting throughput.

We now evaluate the impact of load balancing of different
sorting algorithms in the above scaling tests. Popular met-
ric used to compare the load balancing of sorting algorithms
is RDFA, which is the Relative Deviation of the size of the



Table 3: RDFA of different parallel sorting algorithms
Number of Cores

512 1024 2048 4096 8192 16384 32768 65536 131072

Uniform
HykSort 1.0692 1.0433 1.0232 1.0145 1.0126 1.0096 1.0085 1.0073 1.2051
SDS-Sort 1.0025 1.0044 1.0049 1.0076 1.011 1.0177 1.0264 1.0353 1.0546

SDS-Sort/stable 1.0025 1.0044 1.0049 1.0076 1.011 1.0177 1.0264 1.0353 1.0546

Zipf(0.7-2.0)
HykSort ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
SDS-Sort 1.6816 1.8172 1.8411 1.9222 1.9552 1.9556 1.9732 1.4889 2.6753

SDS-Sort/stable 1.6816 1.8172 1.8411 1.9222 1.9552 1.9556 1.9732 1.4888 2.6753
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largest partition From the Average size of the p processes,

and is defined as: RDFA =
max

p
i=1(mi)

ave
p
i=1(mi)

[19], where mi de-

note the load on the ith processes. The RDFA of all scaling
tests are reported in Table 3. HykSort uses histogram sam-
pling to choose pivots. SDS-Sort uses striped-equal sampling
(also called regular sampling) to choose pivots. For the Uni-
form distribution workload, we can see that HykSort, Hyk-
Sort/stable and SDS-Sort have almost equal RDFA values.
The difference of RDFA values between these sorting meth-
ods is negligible. For the skewed data set generated using
Zipf distribution, both SDS-Sort and SDS-Sort/stable de-
liver almost similar RDFA values. But, histogram sampling
used in HykSort assigns a lot of replicated values to single
node, which causes out-of-memory errors. Hence, we denote
the RDFA values for HykSort as ∞ in these tests. Using

external values or rank of replicated values to distinct the
replicated one can turn HykSort to allocate replicated val-
ues among processes [29]. But, it requires extra overhead
to store, exchange, and process external values. Also, user’s
objective selection for secondary sorting keys can impact the
tests results. Hence, we only compare the method without
using secondary sorting keys here. In summary, we can see
that SDS-Sort works on different workloads and also show
good scalability to different number of processes.

4.2 Evaluation of SDS-Sort with Real Appli-
cation Data Sets

We next compare SDS-Sort with HykSort using two real
scientific data sets from Palomar Transient Factory (PTF)
observations and a Cosmology simulation of billion particles.

Palomar Transient Factory (PTF) data. The PTF
is an automated survey system of the sky for identifying su-
pernova and other transient events in the universe [5]. An
important component of the survey is the automated tran-
sient detection pipeline to enable the early detection of these
events. One task among this pipeline is to make automated
real/bogus decision about each detected objects based on
image and context features using real-bogus (RB) classifier
[5]. In the PTF data sets, the RB classifier is represented
by real-bogus score as a real number. Hence, sorting the
objects by real-bogus score is one typical method used by
the RB classifier. In our sorting tests, we used a 27GB data
set (with 1 billion records) for measuring the performance
of SDS-Sort and HykSort. Before SDS-Sort and HykSort
starts to work, the time to read the data into memory is
19.6 seconds.

The PTF data shows high skewness as its replication ratio
(δ) of real-bogus score is 28.02%. We show the performance
of sorting PTF data using HykSort and SDS-Sort in Fig. 94.
The RDFA values of different sorting methods are reported
in Table 4, where load imbalance with HykSort for PTF data
is significantly larger than that of SDS-Sort. As each node
of Edison has 64GB memory, the whole data can be stored
on a single node. Hence even though HykSort has serious
load imbalance (RDFA=32.68), it can still finish the sorting
without out-of-memory (OOM) issues. Overall, SDS-Sort
is 3.4× faster than HykSort in sorting PTF data and SDS-
Sort/stable is 2.2× faster than HykSort.

Cosmology simulation data. Large-scale cosmological
simulations such as GADGET-2 [25] and NyX [1] play criti-
cal roles in exploring the unknown structure formation pro-
cess of the universe. Analyzing the data generated by cos-
mological simulations is essential step to extract its insights
of cosmological discoveries. Recently, researchers proposed
BD-CATS, a KD-tree based clustering method, to analyze

4The Exchange time for HykSort also contains the time for
local ordering as it uses overlapping inside
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Figure 9: Sorting 27GB PTF data with 192 cores.
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Figure 10: Sorting 2.1TB Cosmology data with 16K cores.

the particle data from GADGET-2 [21]. An important step
in BD-CATS is to sort the particles based its clustering ID.
In this test, we apply both SDS-Sort and HykSort to sort a
2.1TB particle data by using its clustering ID as the sort-
ing key. Before SDS-Sort and HykSort starts to work, the
time to read the data into memory is 438.1 seconds. Specif-
ically, the 2.1TB data contains 68 billion particles and we
sort these particles by their clustering IDs. Meanwhile, each
particle data record also contains spatial location (x, y, and
z), and particle velocities (vx, vy, and vz). In sorting tests,
we trade these extra attributes as payload. In the data,
the replication ratio (δ) for clustering ID is 0.73. Hence,
the cosmology data used in this test is a typical example
of skewed data. The performance of sorting is reported in
Fig. 10. The RDFA values of sorting this 2.1TB data are re-
ported in Table 4, which are small for SDS-Sort. The RDFA
value for HykSort is ∞ because that HykSort fails to sort
the cosmology data set due to OOM errors. Both SDS-Sort
and SDS-Sort/stable can sort the Cosmology data quickly,
giving 15.63TB/min and 7.87TB/min sorting throughput,
respectively.

5. RELATED WORK

Table 4: RDFA values of sorting Cosmology and PTF data
HykSort SDS-Sort SDS-Sort/stable

PTF data 32.6759 1.9908 1.6908
Cosmology data ∞ 1.3962 1.3962

Non-sampling based parallel sorting algorithms include
bitonic sort[4], radix sort [30], bubble sort[3], merging sort[11],
and so on. Bitonic sort [4] focuses on converting a random
sequence of numbers into a bitonic sequence which mono-
tonically increases and then decreases. Radix sort [30] is a
non-comparative integer sorting algorithm that sorts data
with integer keys by grouping keys by the individual digits
that share the same significant position and value. Bubble
sort [3] repeatedly steps through the data to be sorted, com-
pares each pair of adjacent items and swaps them if they are
in the wrong order. Merge sort [11] divides data list into the
small unit, then compare each element with the adjacent list
to sort and merge the two adjacent lists. Generally, these
non-sampling based parallel sorting algorithms need a signif-
icant amount of communication and data exchange, which
are expensive operations on parallel systems [28].

Sampling based sorting algorithm was invented in 1970s
[15] and it is based on the divide and conquer idea. Paral-
lel sampling sorting [24] was then devised to sort large-scale
data on distributed memory systems. A theoretical study
on the load balancing of parallel sampling sorting algorithms
was conducted in [19], where authors proved O(2n

p
) upper

bound for load balancing without highly duplicated keys.
Parallel sorting by sampling was compared with other algo-
rithms [2], e.g radix sort and bitonic sort. Authors found
that sampling sorting is good at the distributed memory
machine where interprocess communication and data move-
ment are expensive.

To reduce the sampling size and improve scalability of
parallel sampling sorting, Solomoik et al [24] use histogram-
based method to choose pivots and propose to overlap data
exchange and local ordering to reduce its overhead. In out-
of-core parallel sorting, similar idea have been employed
to overlap computation and disk I/O operations [28, 10].
CloudRAMSort [18] performs multi-node optimizations by
carefully overlapping computation with inter-node commu-
nication. CloudRAMSort uses payload to be part of the key
to deal with skewed data.

HykSort was devised to reduce all-to-all communication
overhead via avoiding network transmission contentions [28].
As HykSort divides all process into groups to reduce trans-
mission contention, the global pivots used in HykSort are
reduced to k, a user controlled parameter. Based on the
number of pivots, HykSort is general sampling sorting algo-
rithm of quick sort [23] and standard parallel sampling sort
[19]. To the best of our konwledage, HykSort is the fastest
and the most scalable parallel sorting algorithm so far.

Other sorting algorithms, e.g., TritonSort [22] and NTOSort
[13], also exist. Being different from the above sorting al-
gorithms and from our SDS-Sort, these sorting algorithms
are generally disk-based sorting algorithms, or usually called
out-of-core sorting. These out-of-core sorting algorithms
mainly focus on optimizing the I/O performance and cache
efficiency in sorting.

6. CONCLUSIONS
The SDS-Sort algorithm, we introduced in this paper, ad-

dresses the issues inherited in parallel sorting algorithms
on common application data sets, such as skewed data and
partially ordered data. Furthermore, existing parallel sort-
ing algorithms are not designed for heterogeneous architec-
ture of current generation of supercomputers. SDS-Sort



uses skew-aware partitioning method to address the load
imbalance issue in working with skewed data. To run effi-
ciently on new computing and networking hardware and to
sort partially ordered data, SDS-Sort is capable of decide
many aspects of its execution dynamically, such as merging
data at each node, overlapping communication and compu-
tation, and selecting different approaches for local ordering.
Through extensive experiments with both uniformly dis-
tributed and skewed synthetic workloads, SDS-Sort scaled
to 131, 072 cores and was shown to be at 50% faster than a
state-of-the-art parallel sorting algorithm, HykSort. On two
sets of scientific data from astronomy and cosmology, SDS-
Sort outperformed HykSort by 3.4X. In the future, we plan
to systematically study the configuration parameters τm, τo,
and τs. We plan to perform more comparisons against vari-
ous parallel sorting methods and carry out more tests with
well-known sorting benchmarks and scientific data sets. We
are also interested in exploring the new hardware such as
general graphics processing unit (GGPU).
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