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ABSTRACT
Stencil computations in real-world scienti�c applications may con-

tain multiple interrelated stencils, have multiple input grids, and

use higher order discretizations with high arithmetic intensity and

complex expression structures. In combination, these properties

place immense demands on the memory hierarchy that limit per-

formance. Blocking techniques like tiling are used to exploit reuse

in caches. Additional �ne-grain data blocking can also reduce TLB,

hardware prefetch, and cache pressure.

In this paper, we present a code generation approach designed to

further improve tiled stencil performance by exploiting reusewithin

the block, increasing instruction-level parallelism, and exposing

opportunities for the backend compiler to eliminate redundant

computation. It also enables e�cient vector code generation for

CPUs and GPUs. For a wide range of complex stencil computations,

we are able to achieve substantial speedups over tiled baselines for

the Intel KNL, Intel Skylake-X, and NVIDIA P100 architectures.

CCS CONCEPTS
• Software and its engineering → Source code generation; •
Computing methodologies→ Parallel programming languages.
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1 INTRODUCTION
Stencil computations are ubiquitous in scienti�c applications that

solve partial di�erential equations using the �nite di�erence or

�nite volume methods, where the derivative at each point in space
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is calculated as a weighted sum of neighboring point values (a

“stencil”). A stencil’s order of accuracy is the exponent on the rela-

tionship between grid spacing (array size) and error — both small

grid spacings (large arrays) and high order can result in low error. A

stencil’s order greatly impacts the optimizations needed to achieve

high performance. Low-order discretizations result in smaller sten-

cils that have limited data reuse, are typically bound by memory

bandwidth, and thus underutilize the compute capability a�orded

by manycore, wide vector, and GPU architectures. Much of the

prior work in this �eld has been based on lower order stencils

and has thus focused on techniques to reduce main memory data

movement [6, 13, 14, 20, 21, 23, 28, 33, 36, 38, 41, 45].

As processor architectures become more compute-intensive [37],

computational scientists are increasingly turning to high-order

schemes that perform more computation per point (more compute-

intensive) but can attain equal error with larger grid spacings

(smaller arrays). Although higher-order stencils inherently result

in higher arithmetic intensity, they also place immense pressure on

register �le, cache, TLB, and hardware prefetchers. Worse still, to

further utilize available compute capability, stencil computations

are often a composition of multiple high-order stencils, such as

the 8
th
-order hypterm kernel, described in [12], and depicted in

Figure 1. It computes �ve stencils that operate on eight input �elds.

Prior work on optimizing high-order stencils leverages the as-

sociativity of the weighted sums in a stencil computation; such

operations can therefore be safely reordered to achieve the same

result within round-o� tolerances. Consequently, execution order

can be optimized to exploit data reuse, and thus reduce memory

load/store operations and reduce register pressure [3, 10, 24, 25, 29].

Prior associative reordering methods for stencils are limited in sev-

eral ways. Most focus on reuse of individual data elements, with

an eye towards optimizing scalar registers [24, 25]. Where reuse

of vectors is considered to support vector code generation, it is

limited to isotropic, constant-coe�cient stencils [3], or arises from

a post-pass vectorization, preceded by DLT (data-layout transfor-

mation) optimization [29]. In some cases, cross-iteration reuse is

identi�ed as a byproduct of loop unrolling [10, 25]. Only one of

these approaches targets GPUs, and it exploits reuse just within an

expression [24].

This paper addresses these limitations, describing a vector code

generator for general stencil computations targeting both CPUs

and GPUs. It identi�es data reuse without unrolling within a �ne-

grain block of a stencil computation. For further optimization gains,

this approach to reuse analysis and vectorization can also work in

tandem with a �ne-grained blocked data layout that decomposes

the original grid domain into small, �xed-size multi-dimensional

https://doi.org/10.1145/3295500.3356210
https://doi.org/10.1145/3295500.3356210
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subdomains [2, 17, 40], such as bricks [44], which have been shown

to achieve performance portability across CPU and GPU. Bricks are

stored contiguously in memory to enable a number of optimizations.

First, accesses within a brick are part of a single address stream,

mitigating the negative impact of blocking on hardware prefetch-

ers and TLB. Second, when combined with vector folding [39], an

individual dimension can be smaller than the vector width; this �ex-

ibility can reduce cache and register pressure for complex stencils

like hypterm. Other stencil optimizations such as temporal block-

ing and wavefront parallelism are beyond the scope of this paper,

but are complementary and can be combined with our method.

This paper makes the following contributions: (1) it presents a

vector code generation algorithm for general stencil computations

that exploits data reuse within a block without unrolling, and tar-

gets both CPUs and GPUs; (2) it compares the e�ectiveness of the

code generation approach for iteration space tiling vs. bricks on

CPUs, isolating the bene�ts of each; (3) it o�ers the �rst descrip-

tion of node-level vector code generation for bricks; (4) it presents

performance results on 24 stencils, including real-world proxy sten-

cils such as hypterm, demonstrating performance gains on Intel

Knights Landing (Xeon Phi) processors (up to 3.4×), Intel Xeon

Skylake-X (1.3×), and NVIDIA P100 (1.6×).

2 BACKGROUND AND MOTIVATION
In this section, we motivate our approach, using the hypterm ker-
nel, with code and the compiler’s expression tree shown in Figure 1.

Stencils like hypterm exhibit high temporal reuse across stencil iter-

ations, e.g., cons[imx][k][j][i+1] and cons[imx][k][j][i-1]
two iterations later. It is common to use tiling to exploit this reuse

in caches or unrolling/unroll-and-jam to enable optimizations for

reuse in registers. Additional array common subexpressions within

and across expressions, such as the results of the shaded operators

at the bottom of Figure 1, can also be reused in registers. Due to

the complexity of hypterm, exploiting such register reuse can lead

to severe register pressure; exposing cross-iteration reuse using un-

rolling may increase register pressure, and even cause instruction

cache misses. In addition, hypterm has high arithmetic intensity,

with 358 �oating-point operations per iteration. Achieving high

performance also demands e�cient use of wide SIMD units in CPUs

and SIMT threads in GPUs.

Another consideration is that hypterm places immense pres-

sure on the TLB and hardware prefetcher due to the number of

independent data streams. One k-j plane of hypterm requires 133
simultaneously active read or write data streams (corresponding to

di�erent registers, cache lines and potentially, TLB entries). Tiling

will exacerbate this problem. To reduce the number of data streams

for such stencils, prior work has developed variations of blocked
data layouts, where the original grid domain is decomposed into

small, �xed-sized multi-dimensional subdomains [2, 17, 40]. In this

paper, we expand on the concept of bricks, where these subdomains

are stored contiguously in memory [44]. Using an 8×8×8 brick

size and stencil radius ≤ 8, we access the elements within a brick

using a single stream as opposed to 64 streams for a tiled code. The

computation inside one brick would be similar to an 8×8×8 tiled

stencil.

Taken together, this paper describes a vector code generator

that can balance the aforementioned optimization requirements of

high-order stencils such as hypterm. Our approach exploits reuse

within a multi-dimensional data block, arising from either tiling,

which reorders the computation, or bricks, which also reorganizes

the data layout. As stencils are known to pose challenges to vec-

torization due to issues of alignment [15], the approach must ex-

pose aligned vector operations. Additionally, our approach further

reduces arithmetic intensity by exposing opportunities for array

common subexpression elimination [10]. The remainder of this

section provides the foundation for the code generation approach.

2.1 Stencils as Gather or Scatter Operations
The kernel of a stencil computation typically contains a weighted

sum of neighboring points. Such sums are most commonly ex-

pressed as gather operations, as in the 5-point 2D stencil code of

Figure 2(a), where the value of this sum is calculated for each iter-

ation of a loop nest by gathering its neighboring inputs (some of

which are widely spaced in memory), individually weighting them,

and summing them. Figure 3(a) visualizes this gather computational

pattern for the 5-point stencil code.

However, one can observe that these weighted sums are asso-

ciative and can be reordered without changing the meaning of

the computation. This concept is associative reordering. Therefore,
an alternative implementation of the 5-point stencil is a scatter
operation, where one input is weighted and scattered to all the

neighboring points that use it as a term in the sum. Figure 3(b)

shows the resultant scatter pattern for the 5-point stencil. Scatters

have several advantages including minimizing the number of loads,

and improving instruction level parallelism, but may increase the

number of stores. For high-order stencils that access a large number

of inputs to compute each output point, an approach that favors

reducing loads is preferable to one that reduces stores. We also �nd

that the output data often resides in registers, particularly on GPUs,

or in L1 cache, so store cost is typically low. Scatter also matches the

strengths and weaknesses of bricks. Loads are more costly, because

accesses that cross brick boundaries introduce indexing overhead

due to the adjacency list, and unaligned loads are not applicable.

In the following, we will select some portions of the computation

with high reuse to be computed using scatter.

2.2 Overview of Approach
The current code generator uses a domain-speci�c frontend, imple-

mented in Python, that accepts stencil descriptions as input, shown

in Figure 2(c). The output of the code generator is integrated into

C code as in Figure 2(d). From this speci�cation, we can generate

either tiled or brick code that incorporates scatter, as used in the

experiments of Section 5. The data layout for the tiled code is a

3D array. Individual bricks are stored in contiguous memory, and

a collection of bricks that represents a domain are organized as a

graph using an adjacency list. To compute a stencil, one iterates

over all indices of bricks and, for each brick, computes the stencil

at all (k, j, i) in the dimensions of a brick.

To detect reuse within and across stencils, we formulate the prob-

lem on an expression directed acyclic graph (DAG) of the stencil

kernel as in Figure 1. We identify the operands in the DAG that
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 flux[irho][k][j][i] =
            -dxinv0 * (
                ALP * cons[imx][k][j][i + 1] + -ALP * cons[imx][k][j][i - 1] +
                BET * cons[imx][k][j][i + 2] + -BET * cons[imx][k][j][i - 2] +
                GAM * cons[imx][k][j][i + 3] + -GAM * cons[imx][k][j][i - 3] +
                DEL * cons[imx][k][j][i + 4] + -DEL * cons[imx][k][j][i - 4]
            );
flux[irho][k][j][i] +=
            -dxinv1 * (
                ALP * cons[imy][k][j + 1][i] + -ALP * cons[imy][k][j - 1][i] +
                BET * cons[imy][k][j + 3][i] + -BET * cons[imy][k][j - 2][i] +
                GAM * cons[imy][k][j + 3][i] + -GAM * cons[imy][k][j - 3][i] +
                DEL * cons[imy][k][j + 4][i] + -DEL * cons[imy][k][j - 4][i]
            );
flux[irho][k][j][i] += -dxinv2 * ...

flux[imy][k][j][i] =
            -dxinv0 * (
                ALP * cons[imy][k][j][i + 1] * qup1 + -ALP * cons[imy][k][j][i - 1] * qum1 +
                BET * cons[imy][k][j][i + 2] * qup2 + -BET * cons[imy][k][j][i - 2] * qum2 +
                GAM * cons[imy][k][j][i + 3] * qup3 + -GAM * cons[imy][k][j][i - 3] * qum3 +
                DEL * cons[imy][k][j][i + 4] * qup4 + -DEL * cons[imy][k][j][i - 4] * qum4
            );
flux[imy][k][j][i] += 
            -dxinv1 * (
                ALP * cons[imy][k][j + 1][i] * qvp1 + -ALP * cons[imy][k][j - 1][i] * qvm1 +
                ALP * q[qpres][k][j + 1][i] + -ALP * q[qpres][k][j - 1][i] +
                BET * cons[imy][k][j + 2][i] * qvp2 + -BET * cons[imy][k][j - 2][i] * qvm2 +
                BET * q[qpres][k][j + 2][i] + -BET * q[qpres][k][j - 2][i] +
                ... );

Figure 1: CNS’s hypterm stencil excerpt (top) and derived expression trees (bottom).

are reused within or across iterations of the same expression. A

pro�tability analysis determines whether a scatter should be used

to optimize the redundant loads, and derives an iteration schedule.

Operators containing operands for which a scatter is pro�table

are marked for reordering. The unmarked portions of the com-

putation will use gather operations. We then group the marked

subexpressions into stages to be computed together to capitalize

on reuse across subexpression DAGs. Common subexpressions,

which by de�nition use the same input, are likely to be grouped

together. Indirectly, this may result in common subexpression elimi-

nation (ASE) [3, 10], as the backend compiler can more easily detect

such common subexpressions if they are adjacent instructions.

With the dimensions of the block, we use the stages and scatter

schedule to produce vectorized code. Given the results of analysis,

the code generator derives new loop bounds for the resulting tile,

constrained by the boundaries of the bu�ers, with loop peeling as

needed to implement the full block. Thus, instead of unrolling �rst

and identifying reuse patterns in the unrolled code, we identify

reuse based on indexing expressions of operands, and create the

loops indicated by the pro�tability analysis. The code generator

performs a few additional optimizations during vectorization. Our

approach, with vectorization, is portable across both CPUs and

GPUs. The code generation technique is detailed in the next two

sections. Section 3 discusses the analysis that identi�es reuse and

decides how to split the computation into stages. Section 4 describes

the actual vector code generation.

3 REUSE-BASED EXPRESSION SPLITTING
This section describes how to split a stencil kernel into compute

stages based on its reuse pattern. We �rst build an expression di-

rected acyclic graph (DAG) from the code. For simplicity, we illus-

trate the algorithm using the running example of Figure 2 whose

expression DAG is shown in Figure 4, but also refer to the DAG

for hypterm in Figure 1 when discussing operator grouping. The

code generation framework obtains this graph by identifying the

assignments to grids in the original abstract syntax tree (AST), and

the operators, constants and grid references on the right hand side.

The output grid is the target of the DAG, and the operand grids are
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1 f o r ( j = t j ; j < t j + 4 ; ++ j )

2 f o r ( i = t i ; i < t i + 4 ; ++ i ) {

3 c = In [ j ] [ i ] ∗ c o e f f [ 0 ]

4 + In [ j ] [ i +1] ∗ c o e f f [ 1 ]

5 + In [ j ] [ i −1] ∗ c o e f f [ 2 ]

6 + In [ j +1 ] [ i ] ∗ c o e f f [ 3 ]

7 + In [ j −1][ i ] ∗ c o e f f [ 4 ] ;

8 Out [ j ] [ i ] = c ∗ v e l [ j ] [ i ] ;

9 }

(a) Stencil in a tiled region.

1 f l o a t buf [ 4 ] [ 4 ] ;

2 / ∗

3 ∗ buf computed us ing v e c t o r s c a t t e r

4 ∗ as in F i gu r e 5 .

5 ∗ /

6 / / V e c t o r i z a t i o n d i r e c t i v e

7 f o r ( j = t j ; j < t j + 4 ; ++ j )

8 f o r ( i = t i ; i < t i + 4 ; ++ i ) {

9 Out [ j ] [ i ] = buf [ j− t j ] [ i− t i ] ∗ v e l [ j ] [ i ] ;

10 }

(b) Split stencil with bu�er to expose reuse.

1 # D e c l a r a t i o n s

2 i = Index ( 0 ) . . .

3 In = Gr id ( " In " , 2 ) . . .

4 c o e f f = [ Cons tRe f ( ' c o e f f [ 0 ] ' ) , . . . ]

5

6 c = In ( i , j ) ∗ c o e f f [ 0 ] + In ( i +1 , j ) ∗ c o e f f

[ 1 ] + In ( i −1 , j ) ∗ c o e f f [ 2 ] ) + In ( i , j +1 ) ∗

c o e f f [ 3 ] + In ( i , j −1) ∗ c o e f f [ 4 ]

7

8 Out ( i , j ) . a s s i g n ( c )

(c) Input to the code generator: kernel.py

1 / / t i l e c o n t r o l l o op s

2 f o r ( . . . ) / / T i l e s t a r t i n g a t t j , t i

3 t i l e ( " k e r n e l . py " , " FLEX " , ( 4 , 4 ) , / / T i l e

d imens ion

4 ( " t j " , " t i " ) ) ;

5

6 / / i t e r a t i n g over a l l b r i c k

7 f o r ( . . . ) / / b r i c k index b

8 b r i c k ( " k e r n e l . py " , " AVX512 " , ( 4 , 4 ) ,

9 ( 2 , 4 ) / ∗ F o l d i ng ∗ / , b ) ;

(d) Adding kernel to C code.

Figure 2: A 5-point stencil example.

(a) Gather (b) Scatter

Figure 3: Gather vs. scatter operations for 5 points in 2D.

annotated with their name and o�set from the iterator. In Figure 2,

with iterator [j,i], reference In[j][i-1] is represented by node

In:0,-1. Neighboring associative operators of the same type are

combined to a single operator with three or more terms, resulting in

the 5-way addition in Figure 4. Observe that such DAGs can repre-

sent a broad variety of stencil codes: variable coe�cients, multiple

stencils, and several inputs multiplied by the same coe�cient.

In: 0,1 In: 0,-1 In: 1,0

+

× vel: 0, 0

Out

In: -1,0In: 0,0

Figure 4: Expression DAG for the 5-point stencil of Figure 2.

In this phase we start from the expression DAG using two major

steps (1) identify reuse pro�tability and select associative operators

to be reordered by postorder traversal of the expression DAG; (2)

identify opportunities to group operators across expressions into

stages to further improve data reuse.

3.1 Reuse Pro�tability in Operators
The �rst step of the code generation algorithm is to mark associa-

tive operators in the expression DAG for reordering based on a

pro�tability analysis. We de�ne the pro�tability of scatter using

the reduction of the number of inputs that are simultaneously live

for each iteration step. We calculate pro�tability using a postorder

traversal of the expression DAG, and we then mark the operators

to be reordered that exceed a pro�tability threshold.

The postorder traversal collects R(E), grids and o�sets from the

DAG for expression E, as in Equation 1. The number of elements in

this set is then the number of unique reads when calculating this

subexpression as how they appear in the expression DAG.

R(E) = {〈д, ®o〉|grid д appears in E with o�set ®o} (1)

When E is an associative operator, it consists of multiple terms

(subexpressions), Ei . When we shift the terms of the associative

operator between iterations we are e�ectively adding a per-term

constant
®δi to the o�set of the corresponding term. This shift,

®δi , is
sometimes referred to as the retiming vector in loop shifting [29]. If

we add the shifts to all terms of the operator then we can collect the

set of grids and o�sets with Equation 2. The number of elements in

this set is then the number of unique reads when calculating the

associative operator with each term shifted by ∆ = { ®δi }.

R(E∆) =
⋃
i
{〈д, ®o + ®δi 〉|〈д, ®o〉 ∈ R(Ei )} (2)

Using the cardinality of the two sets from Equation 1 and Equa-

tion 2, we can evaluate the pro�tability P of a reordered expression

E∆ as in Equation 3. Reordering is marked as pro�table if reads

are reduced by a large fraction; that is, when P exceeds a global

threshold t1 ≥ 1.

P(E,E∆) =
|R(E)|

|R(E∆)|
≥ t1 (3)
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In: 0,1 In: 0,-1 In: 1,0

+

× vel: 0, 0

Out

In: -1,0In: 0,0

|R(E)| = 5

|R(E)| = 6

Expression DAG

Inspect
0,-2

In: 0,1

0,0

In: 0,-1

-1,-1

In: 1,0

1,-1

In: -1,0

0,-1

In: 0,0

In: 0,-1

Finding shifts: Algorithm 1

|R(�∆)| = 1,  P(E,�∆) = 5
In: 0,1 In: 0,-1 In: 1,0

δ
δ δ δ

δ
+

× vel: 0, 0

Out

In: -1,0In: 0,0

|R(E)| = 0

|R(E)| = 1

DAG with marked operator 

AnnotateTraversing up

Figure 5: Illustration of pro�tability analysis and operator marking for the 5-point stencil in Figure 2. During DAG traversal
(dashed arrow), Algorithm 1 is used to try to minimize distinct references by adding shifts to each term (numbers on edge). If
the operator should be reordered (per Equation 3), the DAG is marked with shift δi .

Note that |R(E)| is a property of the stencil computation. In order

to maximize P , we only need to �nd a set of shifts, ∆, that minimize

|R(E∆)|.
This process is illustrated in Figure 5 for the 5-point stencil.

During post-order traversal, when an associative operator is en-

countered, Algorithm 1 is used to inspect its terms; this is denoted

in the �gure by a dashed arrow. We note that in the original com-

putation there are �ve distinct references, thus |R(E)| = 5. The

algorithm assigns each term with one shift value that is marked on

the edges; with shift this produces the same reference: In: 0,-1.
Thus, from Equation 2, the number of distinct references after the

shift is 1. This gives us a reuse pro�tability of 5 from Equation 3.

Assuming this pro�tability is above the prede�ned threshold t1,
this addition is marked in the original graph with the shift values

produced from Algorithm 1, δ , annotated to edges leading to each

term.

The number of possible shift amounts for one term is related to

the radius of the stencil; the total search space is exponential in the

number of terms. This search space is potentially too large to search

exhaustively. However, the set of o�sets that minimizes P(E∆) has
the properties of Equation 4: the minimum only arises when for

each term, it either has no common grid input with any other terms,

or it has at least one read that can be reused after shifting.

∀Ei , either{
∀〈д, ®o〉 ∈ R(Ei ),д < R(E − {Ei }), or

∃〈д, ®o〉 ∈ R(Ei ), 〈д, ®o + ®δi 〉 ∈ R((E − {Ei })
∆−{δi })

(4)

Proof. Equation 4 can be proven using contradiction by assum-

ing the negation: |R(E∆
∗

)| is the minimum but has an Ei that shares
a common grid input and does not have reuse with shift δi . In this

case, we can change δi so that at least one read is reused with some

other term. We have the new |R(E∆
′

)|, which will be smaller by at

least one. It contradicts the assumption that ∆∗
gives the minimum.

Thus, Equation 4 must be true.

�

Based on (4), we developed a fast greedy algorithm in Algo-

rithm 1. The complexity of this algorithm is O(n4 logn) where
n =

∑
i |R(Ei )|. This n is bounded by the number of reads in the

original stencil code, N . In fact, this is only a loose upper bound

for the complexity, and for associative operators that only have

one o�set for all reads in one term, such as the hypterm stencil in

Figure 1 and many of other stencils, its complexity is only O(n).
After the scatter is decided, we can then compute the pro�tability

and mark associative operators for grouping.

Algorithm 1Greedy algorithm for deciding shift amounts for child

subexpressions of E

Initialize ∆ = { ®δi } = ∅

repeat
for all child subexpressions Ei do

for all 〈д, ®o〉 ∈ R(Ei ) do
for all 〈д′, ®o′〉 ∈ R(Ej,i ),д = д

′ do
®δ ′i =

®o′ + ®δj − ®o . Compute new shift

If obtains a lower |R(E∆)|, ®δi = ®δ ′i
. Update ∆

end for
end for

end for
until ∆ isn’t updated

return ∆

3.2 Cross-operator Reuse
Step 2 in our framework will enable optimization of loads across

parts of the expression DAG by attempting to group reordered

operators utilizing the same data as input to be computed together.

Eachmarked computation can be computed once all the values from

its subexpression are available, which includes all subexpressions

that are marked. This creates a dependence graph that includes

all marked subexpressions where edges are contracted from the

original expression DAG.

Beyond optimizing for reuse across subexpressions, operator

grouping also impacts the number of bu�ers that are simultaneously

live. We use a modi�ed topological sort based on a priority tuple

measure similar to the one used in [25] to break ties during the

sort when multiple alternatives are present. Applying this process

results in a linearized sequence that tries to balance bu�er usage

and the number of operators that can be computed concurrently.

This step has a complexity of at mostO(m2)wherem is the number

of marked subexpressions.

We can then scan the sequence and merge nearby operators into

one stage based on ameasure of hardware pressure, which is derived
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  v = (vl:vr)[3:7];
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Figure 6: Vector code generation for 5-point stencil example in Figure 2,5. The generated code employs dimensional splitting
and reuses aligned vector load.

from (1) the number of distinct inputs; and, (2) the number of

bu�ers accessed. Both of them can represent the grouped operators’

pressure on the registers. The �rst value can be computed using

Algorithm 1. To determine viability, we compute a weighted sum

of the two measures after the grouping and compare against a

global threshold t2 representing the architectural constraint, as in
Equation 5, where E represents the group of operators’ expressions

and |B | is the number of bu�ers in the current group. Merging

can be attempted at most twice for each bu�er. This results in a

similar complexity of Algorithm 1 where n = N , the number of

reads in the original stencil code. Since N > 1,m < N , we have a

total complexity of O(N 4
logN ). As noted previously, for stencils

whose associative operator has only one o�set for each term, this

complexity reduces to O(m2 + N ).

|R(E∆)| + k |B | ≤ t2 (5)

Consider the example in Figure 1. Our approach recognizes that

there is potential for reuse within the group of associative operators

colored by blue. Note that adding the blue operator on the left to a

group consisting of the blue operator on the right will not a�ect the

�rst term of Equation 5. The equation only approaches the threshold

by the extra bu�er. However, when adding the associative operator

colored red to this group, both terms increase and the threshold is

reached faster, preventing aggressive grouping.

4 VECTOR CODE GENERATION
Once all compute stages are created, we obtain a sequence of groups

of operators in the expression DAG. For any groups not identi�ed

by the algorithm as pro�table for reordering, a gather, using the

original computation, will be generated. Other stages contain asso-

ciative operators that are pro�table for reordering; these operators

will have a shift,
®δi , associated with each term, {Ei }, of the operator.

We can then generate code for each stage in the sequence using

either gather or scatter. In this section, we describe how vector code

is generated from {Ei } and ∆with loops. We also present additional

optimizations that we used. A walk through of the code generation

is shown in Figure 6 for the 5-point stencil.

The techniques in this section are based on scanning the iteration

space and the expression DAG side-by-side, which results in a

complexity of O(|S |Û|V |), where |S | is the size of the tile and |V | is

the number of nodes in the expression DAG.

4.1 Vector Scatter
While we focus on scattered computation with vectors, this is de-

rived from reordering using scalar values. We �rst use the shifts

computed for each term. For iteration ®p within the tile, we can

determine the shifted loop index, the source of the scatter, by sub-

tracting
®δi as in Equation 6. Each of the sources will scatter the

corresponding subexpression that is shifted by adding
®δi to all the

original array indices. The scatter can then walk through all such ®p′

and compute the value for each term to the destination with ®p′+ ®δi .

®p′ = ®p − ®δi (6)

When generating vector code, we add restrictions to the desti-

nation so that only destinations that are aligned are written. To

accommodate wide vectors and small data blocking, we assume the

vector is a multidimensional vector-sized rectangle, that exhibits

a length v(d) on each tile dimension d . Then we have an aligned
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destination whose o�set within the tile is a multiple of the vector

length on all dimensions. With this reduced set of destinations, the

meaning of the calculation is preserved since every location in the

block is in one of the aligned vectors.

We notice that we can generate some loops to reduce the code

size, since
®δi re�ects the amount of loop shifting applied to the term.

T (d) represents the tile size on dimension d . We can formulate the

loop bounds as in Equations 7-9. Equation 7 represents the total

range of the shifted iteration space. All or part of this range can use

loops while some iterations might need to be peeled from either

side of this range. {
0 −maxi (δi (d)),

T (d) −v(d) −mini (δi (d))
(7)

Equation 8 represents when the writes for all terms are inside

the original tiled space. A loop can be generated on the tiled code

for all iterations in this range.{
0 −mini (δi (d)),

T (d) −v(d) −maxi (δi (d))
(8)

Equation 9 represents when all reads are inside the blocked data

region. For bricks, a loop can be generated by combining Equation 8

and Equation 9.{
0 −mini (oi (d) + δi (d)),

T (d) −v(d) −maxi (oi (d) + δi (d))
(9)

The lower left of Figure 6 shows how loop bounds are inferred

for two of the terms that are split from the original stencil using

Equations 7 and 8.

4.2 Optimizations
We employ two additional optimizations when generating scatter

for one stage, (1) further data reuse within vector registers using

aligned vector load and vector align instructions; and, (2) dimen-

sional splitting which divides the stencil expression and calculates

it along one dimension at a time [18] to further reduce peeling.

These optimizations are illustrated in the upper half of Figure 6.

We noticed that more reuse can be exploited with an aligned

vector load. This optimization is especially useful for bricks where

a logical vector may cross the brick boundary and must be merged

using vector aligns. This merging, using alignr intrinsics on the

CPU, is happening for almost every iteration when we are travers-

ing the contiguous direction while the two aligned vectors will

be the same for several iterations. These aligned loads can then

be cached and reused for consecutive iterations. Upper right of

Figure 6 shows that we can create two temporary vectors vl and
vr to cache the aligned vectors. With this optimization, we only

load these values three times, 2 + 0 + 1, instead of �ve, 2 + 1 + 2.

We also employ dimensional splitting of the stencil to further

reduce the �nal code size. We observe that Equation 8 is only related

to the shift selected for each term, and it is often more constrained

than Equation 9. If we directly generate code for the 5-point stencil

example in Figure 6, the calculation for terms on the I-dimension is

unnecessarily peeled because of the two terms on the J-dimension.

We can then group the terms based on their values to increase the

range of Equation 8. We achieve this by picking one dimension

at a time and group the terms based on their shifts on the other

dimensions. We then select the most frequent groups to be com-

puted together. Larger loops can be created for the other dimensions

where they have a common shift value. We repeat this process for

each of the dimensions to fully split the stencils. This process is

applied to the 5-point stencil in Figure 6. For stencils such as CNS,

Figure 1, we can achieve a perfect split as peeling only happens for

one dimension at a time. Without dimensional splitting, no loops

are possible for the stencil with 8 × 8 × 8 tile.

4.3 Vectorizing on GPU
As observed by prior work [46], GPUs o�er the same vector merging

capability as alignr intrinsics on the CPU using either shared

memory or shu�e instructions, __shfl_up and __shfl_down. This
allows us to transfer our vectorization method onto NVIDIA GPUs

and use each warp as one vector that has a length of 32. Also,

through use of vector folding and combinations of multiple shu�es

we enable support for smaller data blocks such as 8×8×8 or 4×4×4.

5 EXPERIMENTAL RESULTS
This section presents performance results for the generated code

for both CPUs and GPUs, applied to tiled or brick code.

5.1 Target Architectures
Intel Knights Landing. The Intel Xeon Phi 7250 Knights Landing

(KNL) has 68 physical cores organized into a 2D on-chip mesh of 34

tiles each with two CPU cores
1
and a shared 1MB L2 cache. Each

core has a private 32KB L1 data cache, implements 4-way multi-

threading, and has two AVX-512 vector processing units (VPUs).

AVX-512 instructions operate on 8 double-precision or 16 single-

precision �oating-point data elements in a SIMD fashion. Its theo-

retical peak performance is 2611.2 GFLOP/s double-precision fused

multiply-and-add. Each chip has both standard DDR4 DRAM mem-

ory and high-bandwidth MCDRAM memory that we con�gured as

a last level cache using the quadcache mode, which yields a peak

STREAM performance of 332 GB/s.

Intel Xeon Gold (Skylake-X). The Intel Xeon Gold 6130 CPU has

16 physical cores. Each core has a private 32KB L1 data cache and

1MB L2 cache, implements 4-way multithreading, and has two

AVX-512 vector processing units (VPUs). Each core has a nomi-

nal frequency of 2.1GHz. The whole CPU has a theoretical peak

performance is 1075.2 GFLOP/s. Concurrently, 6 DDR4 memory

controllers provide a STREAM bandwidth of 85 GB/s.

NVIDIA P100. The P100 GPU has 56 streaming multiproces-

sors. Each streaming multiprocessor has 64 single-precision and

32 double-precision CUDA cores and has a warp size of 32. Each

streaming multiprocessor has a dedicated texture/L1 cache. The

P100 has a theoretical peak single-precision performance of 9.3 TFLOP/s,

a peak double-precision performance of 4.7 TFLOP/s, and a GPU-

STREAM [9] bandwidth of 586 GB/s.
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Figure 7: Performance on KNL and Skylake-X. For real-world stencil kernels, smaller blocking sizes may be bene�cial because
more input grids can put higher pressure on the cache. For higher-order and real-world stencils, the brick approach often
provides the best speedup: On KNL, hypterm – 3.4× and f3d125pt – 1.9×. On Skylake-X, hypterm – 1.3× and f3d125pt – 2.1×.

Name Grid FLOPS Name Grid FLOPS
Stencils from HPGMG

chebyshev 6 39 poisson 2 21

helm-v2 7 22 helm-v4 7 115

Stencils from CNS

hypterm 13 358 di�term 11 415

2D Star-Shaped Stencils

s2d5pt 2 9 s2d9pt 2 17

s2d13pt 2 25 s2d17pt 2 33

s2d21pt 2 41 s2d25pt 2 49

s2d29pt 2 49 s2d33pt 2 49

2D Full Stencils

f2d9pt 2 17 f2d25pt 2 49

f2d49pt 2 97 f2d81pt 2 161

3D Star-Shaped Stencils

s3d7pt 2 13 s3d13pt 2 25

s3d19pt 2 37 s3d25pt 2 49

3D Full Stencils

f3d27pt 2 53 f3d125pt 2 249

Table 1: Stencils used in experiments. Grid represents the
number of grids the stencil operates on, while FLOPS repre-
sents the number of FLOPS performed per point.

5.2 Benchmarks and Proxy Codes
We use three categories of stencil kernels of varying order shown

in Table 1. The �rst category includes smoothers from the HPGMG

benchmark suite [1]. The second category includes high-order sten-

cil computations from the Compressible Navier-Stokes computa-

tion [12]. The third category includes synthetic stencils to capture

the memory-compute ratio of di�erent kinds of stencil shapes and

radii. Many of the real stencils are a composition of these kernel

patterns. Stencils are named according to their class (“f” or “s”) and

the number of points where each point is weighted individually.

Class “s” refers to stencils for the Laplacian second derivatives, that

only operate on elements along each of the axes (star-shaped) in

each dimension. For Class “s”, the stencil radius is just half the

order; there are no o�-axis points in the stencil. Class “f” refers to

stencils for the “compact” Laplacian that touch all points in a cube

(dense), with Manhattan distance equal to the radius. The radius

is again just half the order; in some applications these stencils can

produce more accurate solutions.

The baseline code is written in C. Our code generator generates

code from the stencil written as python expressions in a python

script, as in Figure 2(c). This speci�cation can be used as a stan-

dalone DSL or as an intermediate output from the parser. The

thresholds described in Section 3 are exposed as parameters to the

code generator. We used t1 = 1.5 (reuse estimate), t2 = 20 (simul-

taneously active bu�ers), and k = 2 (weight assigned to bu�ers)

for our experiments. For all the stencils our code generator runs

1
We use 32 tiles for a total of 64 cores in all our experiments to isolate system overhead.
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in under two seconds. Further discussion on the relationship be-

tween the brick library, the code generator, and our choices for

these parameters is discussed in Section 5.5.

5.3 CPU Performance: KNL and Skylake-X
Figure 7 shows performance in GFLOP/s for the 24 stencils in our

experiment, running on KNL and Skylake-X. We compare the per-

formance of three code versions:

• a baseline version where the stencils are expressed as a

gather. The stencils are tiled on all dimensions and paral-

lelized using OpenMP. 2D stencils are parallelized using

threads on the outermost tile control loop (J-dimension). 3D

stencils are parallelized using threads on the two outermost

tile control loops (K-, J-dimensions). The innermost tiled loop

(I-dimension) is vectorized using #pragma omp simd. For
3D stencils we use three di�erent tile sizes: 4×4×4, 4×4×8,

and 8×8×8. For 2D stencils we use two sizes: 8×8, and 4×8.

This version reports the best performance out of these tile

sizes.

• a tile version, that uses the same thread schedule and tiling

as baseline but applies our code generator. Only reusing

aligned loads is not applied as it attempts to be more general

by keeping the array-format references. Vectorization is done

using #pragma omp simd.
• a brick version, where �ne-grained data blocking is used [44]
with our code generator. The thread schedule is kept the

same, and vectorization also uses the OpenMP simd direc-
tive. Aligned data loads and merge are implemented using

instrinsics to load vectors across brick boundaries. Reusing

aligned load is applied. Here we try to separate the e�ect

of di�erent brick sizes by using brick to denote the perfor-

mance for sizes 8×8×8 and 8×8 and use smaller brick to
represent other smaller sizes presents in the baseline.

The baseline and tile are compiled with either -O2 or -Ofast,
whichever achieves the best performance. The brick version is

compiled using -O2 only.
The results for the two CPU architectures in Figure 7 suggest

several observations. The trend of performance relative to the shape

and size of the stencil can be shown in the synthetic stencils. For

star-shaped stencils, both 2D and 3D, the relative performance of

tile to the baseline increases with larger stencil diameters due

to more temporal reuse. For lower order stencils, brick is slower
than both other versions due to indexing overhead. However, since

higher order stencils exhibit much higher temporal reuse, brick
becomes the fastest version due to both the data blocking from

bricks and operator reordering.

For the full stencils, on KNL, tile is able to obtain speedup on

3D but not on 2D stencils. This is due to 3D stencils exhibiting

much higher reuse for each loaded input. Due to the alignment

constraints, for each element read, f3d125pt is able to scatter to at

most 25 points, while for f2d81pt it can only have up to 9 points.

Although tile is often slower than brick, it is faster for f3d125pt
on KNL. Here, the generated code size becomes the bottleneck for

brick because Equation 9 limits the region that can use loops. For

tile, the code size for the entire kernel including outer loops is

around 34KB for 4×4×8, which is when tile gives the best per-

formance. Due to the extra indexing calculation and much wider

peeled region from data indirection, the code size for bricks is 54KB.

This is much higher than the L1 instruction cache size of 32KB.

We used Intel VTune Ampli�er to obtain pro�ling results to

further dissect the performance di�erence between di�erent ver-

sions. We selected two of the complex stencils to show in Figure 8.

When comparing brick to baseline on KNL, cache misses are

reduced by up to 19×, and TLB misses are reduced by up to 49×.

Similarly, on Skylake-X, brick also reduced L1 misses by up to 8×

and TLB-related metrics up to 14×. In addition, even though the

code generator increases the number of stores, these appear to be

serviced from L1 due to the decrease in cache misses as compared

to baseline. The e�ect of better locality is more pronounced on

KNL with more threads and much smaller cache per thread. For

f3d125pt, our code generation can also reduce the total number of

loads.

For the real-world stencils we noticed that tile o�ers similar

or worse performance compared to baseline. This is due to the

inherently higher L1 cache pressure for these stencils. Table 1 shows

the number of grids referenced for each of these stencils. While we

prefer each of the grids to be located in the fastest cache available

for reuse, the bu�ers from vector scatter increase L1 pressure and

detract from the better locality it provides. As seen in Figure 8, the

L1 miss count is even across all versions of the code for hypterm. As
noted previously, KNL threads have less cache capacity. baseline
and tile tend to achieve the best performance on 4×4×8 tiles or

sometimes 4×4×4 tiles. The smaller brick version, which relies

on vector folding, improves KNL performance due to reduced stores

and improved TLB behavior.

5.4 GPU Performance: NVIDIA P100
Figure 9 presents NVIDIA P100 performance. We compare the per-

formance of three code variants:

• baseline version (a gather) that is tiled using the thread-

block decomposition of CUDA, where each CUDA block is

comprised of 4×4×32 (K, J, I) threads for 3D or 8×32 for

2D. Each thread computes one stencil output. We also could

spawn 32 threads for each block and iterate on the (K, J)

dimension to further imitate the number of threads used for

the brick version, but it is always slower.

• tile version that applies our code generation on a tiled

thread-block, where it compute (K, J, I) elements using I

threads. The tile size is the same as the baseline. Only
aligned loads and reuse of those are not applied.

• brick version where �ne-grained data blocking is used [44]

with the code generator. The subdomain that each CUDA

block will compute is the same as baseline, but only 32

threads (one warp) are in each block to compute all stencils

in the subdomain, like a vector with width of 32. We also

tried smaller sizes such as 4×4×8 and 4×4×4 for real-world

stencils; these are reported as smaller brick. Note that the
I-dimension of these sizes are smaller than the vector width

on the GPU which is the warpsize, 32.

In Figure 9, the baseline shows very little performance varia-

tion. This is because FLOP/s are limited by data dependences. Our

approach reduces this bottleneck by exploiting input reuse. The

NVCC compiler can generate code where the bu�ers introduced
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Figure 8: Pro�ling metrics on KNL and Skylake-X. Each bar is the raw counter value, normalized to the baseline total number
of stores. The generated code provides a dramatic reduction in cache and TLB misses and page walks. On KNL, L1 L2 and
TLB misses are reduced as much as 19×, 7×, and 49× respectively. On Skylake-X, we also reduced L1 misses by up to 8× and
TLB-related metrics up to 14×. These indicates much better data locality and cache reuse.
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Figure 9: Performance on NVIDIA P100. Brick code generation produces the best performance for many of the stencils. For
synthetic stencils, using either 32 threads or full block results has little e�ect, but smaller block sizes reduce cache pressure
for real stencils. Bricks speedup many stencils, for example poisson (1.6×) and f3d125pt (7.0×).

by vector scatter reside in registers. With su�cient registers, one

element is read and scattered to multiple destinations in registers

so that the write cost is low compared to read. The e�ect of holding

bu�ers in registers is re�ected in the drop of performance between

(s2d21pt,s2d25pt) and (s3d13pt,s3d19pt). Also note that due to

alignment, fewer registers are required than for gather. For example,

for f3d125pt only 25 destination register are used when scattering

one input, whereas in gather 125 input are used.
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Figure 10: Pro�ling metrics on P100. Each bar represent transaction count normalized to the total number of global stores of
baseline. brick version reduces global loads by up to 12× and L2 loads by up to 2.6× implying much better locality.

We used NVProf to obtain several metrics related to memory

performance for the f3d125pt and hypterm stencils in Figure 10.

Our code generator improves register and cache reuse signi�cantly;

the number of global loads are reduced by as much as 12×. Higher

cache reuse results in lower L1 pressure that contributes to reduc-

tion in the volume of global load tra�c seen at L2. Some of the

generated code temporarily stages values in local memory, which

can be identi�ed by the local load and store metric (L-Load/Store).

The tile code also shows higher L2 tra�c. The performance im-

pact of these increases is signi�cantly outweighed by the higher

global and L2 loads of the baseline code. hypterm, one of the more

complex stencils, exhibits increased register and cache pressure,

resulting in extra local load and stores and HBM tra�c even when

using bricks. However, with a reduced brick size and vector folding,

this e�ect is completely eliminated. It is possible that TLB behavior

is improved on the GPU as it was on the CPU, but such metrics are

unavailable in NVProf.

5.5 Discussion
In this subsection, we consider the performance impact of vary-

ing the con�guration of the compiler and code generator to tease

out contributions of di�erent aspects of our approach. Suppose,

for example, the brick library were used without the vector code

generation. The brick library uses template expansion for address

calculation and incorporates indirection to represent neighboring

bricks; consequently, without code generation, backend compilers

will introduce redundant index calculations and cannot vectorize

on CPUs. In fact, stencils in the naive brick library version might

even be slower than the baseline. For the more compute-intensive

stencils such as the 125pt, our code generator provides an 18×

speedup when compared to the naive brick library version on KNL.

Even on P100, where these issues are less pronounced, the fully

optimized code is 7.5× faster.

The thresholds used in the experiment are �xed using lenient

values. These thresholds are especially relaxed for simple stencils.

Our reuse estimate of t1 = 1.5 applies to all associative operators

that have reuse potential in our tests. Aside from the value 1 that

denotes no potential reuse, the lowest reuse potential is 12/7 ≈ 1.86

in helm-v2. This is due to the fact that helm-v2 contains terms

using multiple grid references that are not perfectly reused after

applying the shifts.

Our estimate of t2 = 20,k = 2 is a proxy for how much register

pressure the algorithm incurs. These criteria are also only e�ective

for complex stencils and are rarely met for simple stencils. All syn-

thetic stencils have a value for Equation 5 of 3. For complex stencils

like helm-v4 and hypterm, it is theoretically possible to reach this

limit. However, this does not happen as our code generator strategy

requires reuse between operators in one stage but limits the number

of operators that can be put in one stage. This requirement may be

proven to be too greedy and further tuning of these parameters is

yet to be explored.

6 RELATEDWORK
Optimization e�orts for stencil computations can be broadly classi-

�ed as memory access optimization techniques, and optimization

methods to improve computation, although in practice, there is

often signi�cant interaction between them.

Most of the optimization e�ort has focused on stencils applied

on large grids that are usually bound by capacity or compulsory

cache misses, leading to a variety of studies on spatial and temporal

tiling [6, 7, 11, 13, 19–23, 26–28, 33–36, 38, 41, 45]. In addition,

domain-speci�c compilers have recently been developed for parallel

code generation from a stylized stencil speci�cation [4, 30, 42, 43]

or from a code excerpt [16].

The aforementioned tiling techniques have focused on loop or

iteration space tiling. In addition to loop tiling, researchers have also

tiled or blocked data (space). Data along with loop tiling e�orts have

been addressed by [2, 17, 31, 40]. TiDA [31] uses coarse-grained

data blocking, where the entire grid is tiled into sub-grids, each

with its own ghost zone. Fine-grained data blocking is explored in

Bricks [44] and Briquettes [17], YASK [40] and RTM on the Cell

processor [2]. All the �ne-grained blocking techniques targeted

large, compute-intensive stencils, and the small data blocks (bricks)

do not have per-block ghost zones.
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The �ne-grained data blocks used in our research are similar

to briquettes in [17], but there is signi�cant di�erence in our ap-

proaches. Briquettes were designed to perform 3D stencils split

into 1D stencils, thus requiring multiple sweeps to compute the

output. Furthermore, a data transpose was required between each

1D stencil sweep to ensure good SIMDization. Their code genera-

tion required data staging tailored for 1D stencils. In contrast to

Briquettes, we optimize 3D stencils without manual dimensional

splitting and perform complex stencil reordering in addition to

�ne-grained data blocking to improve computation by reducing

reads and improving SIMDization.

YASK is a C++ template-based approach to generating code for

large stencils with �ne-grained data blocks. YASK autotuned their

data block size, and used smaller data blocks than our method (e.g.

2×2×4 instead of 83). They can generate code for clusters of vectors

using unrolling and common expression elimination to improve

reuse, which is less feasible for complex stencils. They did not

directly target stencil reordering as presented in our paper.

Stencil reordering, one of the main characteristics of our ap-

proach, has been explored in di�erent ways. Manual optimization

of stencil computations has led to techniques such as semi-stencils
to reduce loads [8] and using common subexpression elimination

after unrolling to reduce �oating-point computations, improve reg-

ister reuse, reduce register pressure, or improve instruction level

parallelism [5, 7, 25]. Some works target speci�c properties of the

associative operation in stencils. Deitz et al. [10] describes an auto-

mated approach to common subexpression elimination for sum-of-

product computation and is not applicable to uniquely weighted

or variable coe�cient stencils where no common subexpressions

exist. Basu et al. [3] uses partial sums to reorder constant-coe�cient

isotropic stencils. Stock et al. [29] uses statement splitting to enable

loop shifting to expose reuse of the same input and autotuning to

determine the shift amount. They also do not target code generation

for the GPU. In comparison, the research presented in this paper

illustrates a new powerful stencil reordering method which works

on general stencils without manual optimizations. Our method tar-

gets tiled stencil computation to improve cache and register reuse,

and is designed to work with �ne-grained data blocking on modern

architectures with wide SIMD units.

High-order PDEs can also be implemented as dense matrix op-

erations as in [32]; this paper and other previous compiler/code-

generation research treats higher-order stencils as computations

on structured grids. Using dense linear algebra primitives, although

technically feasible for �nite di�erence and �nite volume methods,

would be ine�cient for our stencils as most of the entries in the

resultant matrices would be zero.

7 CONCLUSION
High-order stencil computations are simultaneously best-suited to

the trends in computer architecture (limited bandwidth coupled

with high arithmetic intensity) andmost-often underperforming. To

that end, in this paper, we introduce a novel compiler optimization

to exploit reuse and vectorization in block stencil computations.

When coupled with a �ne-grained blocked data layout (bricks) this

produces code that reduces vector loads and alignment operations,

exposes opportunities to eliminate redundant computation, and

reduces the data footprint of stencils in the memory hierarchy.

We show our approach improves the performance of real stencils

compared to a tiled baseline by up to 3.4× on a Intel Knights Landing

(Xeon Phi) processor, up to 1.3× on Intel Xeon Skylake-X, and up

to 1.6× on NVIDIA P100.
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