

BERKELEY LAB

NATIONAL LABORATORY

HPGMG on the Knights Landing Processor

Samuel Williams

Lawrence Berkeley National Laboratory (LBNL) SWWilliams@lbl.gov

KNL Testbed

- Single node, self-hosted KNL whitebox
- 68 cores, 1.4GHz, dual 512b vector units
- hierarchical memory architecture (16GB HBM + 96GB DDR)
- "quadflat" configuration of the memory hierarchy and cache directory
- single-node experiments

R) e directory

Baseline KNL Performance

- HPGMG-FV from repo without modifications or tuning
 - single process, 64 OpenMP threads
 - "numactl –m 1" to bind memory allocation to the HBM numa node
- Good performance on moderately large problems (256³ and 512³) that fit in 16GB of HBM
- Limited dynamic range (hard to get solve under 10ms)

Baseline Breakdown and Analysis

- Single process runs so...
 - no MPI for single process runs
 - bulk of run time is on level 0
 - bulk of the run time is in the smoother and residual stencils
- However, smoother performance was less than ideal (Roofline)
 - 172GB/s of "effective" bandwidth •
 - STREAM bandwidth exceeds 400GB/s in quadflat

- smooth
- residual
- BLAS1
- Boundary Conditions
- Restriction
- Interpolation
- Ghost Zone Exchange

Optimized KNL Performance

- Use flux-optimized variants ...
 - operators.flux.c is already in the repo
 - fissions/reorganizes loops around flux calculations
 - eliminates redundant calculations
 - leverages omp4 simd clauses
 - uses ICC-specific clauses for alignment
 - hand-crafted array padding to avoid L2 conflicts.
- Improved smoother by ~40%
- No change in dynamic range

Benefit of KNL's HBM over DDR

- numactl –m 0 to pin memory allocation to DDR to quantify the benefit of HBM.
- For moderately large problems (<16GB), HBM provides a nearly 3x boost in performance
- For small problems, HBM has no benefit over DDR
 - high memory latencies
 - high OpenMP overheads
 - lack of parallelism (compared to HW)

KNL Performance vs. lvy Bridge

- For large problems,
 - If using HBM, Knights Landing is 2.5x • faster than a 2P Ivy Bridge node (2x12)
 - If constrained to only use DDR, KNL is no ٠ faster than an Ivy Bridge (no surprise if bandwidth-limited)
- Ivy Bridge is moderately faster than KNL for small problems. (big concern when strong scaling)

OpenMP Scalability on KNL

- Generally speaking, performance scales well with threads for moderately large problems.
- HyperThreading generally hurts performance
 - benefit on ghost exchanges/boundary \bullet conditions dominated by irregular/strided access
 - substantial penalty on cache-sensitive smoothers

KNL Performance using HBM as a Cache

- KNL can configure its HBM as a large, HW-managed L3 cache
- allows seamless execution of a wide range of problem sizes without the productivity of a hierarchal memory
- We observe a strong cache effect when the problem size exceeds HBM capacity and is streamed from DDR.

*Data was collected on a 64c preproduction node. guadcache STREAM bandwidth is ~90% of quadflat. 68c production nodes are 5-10% faster than this system.

1.0E+09

November 2016 Ranking

HPGMG Rank	System Site	System Name	10 ⁹ DOF/s	MPI	OMP	Acc	DOF per Process	Top500 Rank	Notes
1	ALCF	Mira	500	49152	64	0	36M	6	
2	HLRS	Hazel Hen	495	15408	12	0	192M	9	
3	OLCF	Titan	440	16384	4	1	32M	3	K20x GPU
4	KAUST	Shaheen II	326	12288	16	0	144M	10	
5	NERSC	Edison	296	10648	12	0	128M	49	
6	CSCS	Piz Daint	153	4096	8	1	32M	8	K20x GPU
7	Tohoku University	SX-ACE	73.8	4096	1	0	128M	-	vector
8	LRZ	SuperMUC	72.5	4096	8	0	54M	27	
9	NREL	Peregrine	10.0	1024	12	0	16M	-	
10	NREL	Peregrine	5.29	512	12	0	16M	-	
11	HLRS	SX-ACE	3.24	256	1	0	32M	-	vector
12	NERSC	Babbage	0.762	256	45	0	8M	-	KNC
13	NERSC	KNL white box	0.170	1	64	0	128M	-	KNL

- KNL is 2.5x faster than a 2P IVB (required some loop fission and omp4 simd)
- The HBM cache worked well (and was productive)
- KNL was unable to exploit its full HBM bandwidth (in 4th order)
- KNL was unable to keep capacity misses to a minimum
- KNL was even more sensitive to dynamic range and generally required huge problems for best performance.
- Iooking forward to evaluating HPGMG on Cori...

num d generally

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Backup Slides

Baseline KNL Performance

Optimized KNL Performance

2M 16M **Problem Size (DOF)**

128M

1.70E+08 1.28E+08

Benefit of KNL's HBM over DDR

KNL Performance vs. lvy Bridge

