
Producing Software for Science with Class
Damian Rouson

Computer Languages and Systems Software (CLaSS) Group (http://go.lbl.gov/class)

SIAM CSE 2023, 1 March 2023

1

http://go.lbl.gov/class

Software Developed with CLaSS
— LLVM Flang, Caffeine, Matcha, Inference-Engine
— GASNet-EX, UPC, UPC Runtime, UPC++
— MetaHipMer, SIMCoV, symPACK
— Berkeley Quantum Synthesis Toolkit (BQSKit)

Conclusions

Thoughts on Sustainability
— Socially sustainable development
— Technologically sustainable development
— At the intersection of the social and the technological

Using agile techniques employed across many CLaSS
projects, we aim to accelerate Flang’s support for Fortran’s
parallel features.

• Employ agile software development
practices

• Test a comprehensive range of
standard-conforming and non-
conforming Fortran 2018 syntax

• Test-driven development: any
contributed tests that fail provide a
specification for new features to add
to Flang

Agile Acceleration of LLVM Flang Support for Fortran 2018 Parallel Programming
Katherine Rasmussen1, Damian Rouson1, Najé George2, Dan Bonachea1, Hussain Kadhem1, Brian Friesen1

1Lawrence Berkeley National Laboratory, 2San Diego State University

Figure 5: Updated static semantics test excerpt for the
co_sum subroutine that passes after interface is added

• Exhaustively delineate all of the
parallel programming features in
Fortran 2018

• Develop semantics tests for LLVM
Flang covering statically checkable
program errors that the Fortran
standard obligates the compiler to
detect

• Expand frontend support,
including additional error
checking, when tests identify
missing capabilities

Approach
Problem

LLVM's Flang Fortran compiler is
currently Fortran 95 compliant, and
the frontend can parse Fortran 2018.
However, Flang does not have a
comprehensive 2018 test suite and
does not fully implement the static
semantics of the 2018 standard.

Solution
Agile software encourages early
delivery of working software subject to
continual improvement. We are
investigating whether agile techniques
centered around pair programming
and test-driven development (TDD)
can help Flang to rapidly progress to
Fortran 2018 compliance. Because of
the paramount importance of
parallelism in high-performance
computing, we are focusing on
Fortran’s parallel features, commonly
denoted “Coarray Fortran.” We are
developing what we believe are the
first comprehensive, open-source tests
for Fortran 2018 parallel features. We
push our compile-time behavior tests
to the main LLVM-Project repository.
We push our runtime tests for parallel
Fortran features to the repository of
the Caffeine parallel runtime library
that we are concurrently developing.

• Because Flang cannot yet produce
executable files from Fortran 2018
source code, we are developing runtime
tests in a separate repository: Caffeine.

• Caffeine is a runtime library that
supports parallel Fortran 2018 features.

• Caffeine runs atop the GASNet-EX
exascale networking middleware.

go.lbl.gov/caffeine

• For more on Caffeine, see: Rouson &
Bonachea (2022) “Caffeine: CoArray
Fortran Framework of Efficient Interfaces to
Network Environments" SC22 Workshop
on the LLVM Infrastructure in HPC
doi:10.25344/S4459B

Test-Driven Development Example

Compile-Time Test Coverage

Figure 1: Exhaustive list of Fortran 2018 parallel programming features to test
https://go.lbl.gov/flang-testing

Figure 6: Interface to compiler for co_sum allows the test to pass when
combined with a static semantic check for coindexed objects (not shown).

Agile Development
• Test-driven development

• Pair programming sessions

• Valuable team member interactions

• Get feedback early and frequently

• Leverage existing git and Github
tools

• Leverage existing agile practices of
the LLVM developer community:

• Use LLVM’s continuous
integration (CI) test infrastructure
to quickly fix CI failures.

• Code reviews on Phabricator for
feedback, edits, and approvals

This research was supported in part by the Sustainable Research Pathways for High Performance Computing (SRP-HPC) a project of the Sustainable Horizons Institute.
This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Find
specification

for a language
feature in the
Fortran 2018

Standard

Write new test
based on

specification

Develop
additional
support for
language
feature

Can We Fix It?

Test passes

Create
issue on

LLVM Project
Repository and

contribute
test

Test Passes?

YesNo

No

Yes

Push to
LLVM Project

main branch after
review and
approval

Start

GitHub Project Board

Tests for intrinsic Fortran procedures include

Valid intrinsic function invocations or subroutine calls Invalid intrinsic function invocations or subroutine calls

Incompatible arguments

Pass too many argumentsPass not enough
arguments

With minimum required
arguments With optional arguments

With a comprehensive set
of compatible arguments With keyword arguments

With out-of-order
keyword arguments

Invalid keyword
arguments

Repeated keyword
arguments

Statically-checkable
semantic violations

Positive Tests Negative Tests

Objectives

Introduction

Outcomes

Runtime Tests

Video Walkthrough

go.lbl.gov/sc22-flang-testing

In Progress

Done

To Do

Figure 2: Diagram outlining the components of the static semantic tests for intrinsic
functions and intrinsic subroutines

 

GASNet-EX

 

Caffeine
Application C O

M
P
I
L

E
R

System Runtime & Memory Technologies

Figure 4: Static semantics test excerpt for the
co_sum subroutine, this test expectedly fails.

Figure 3: Signature for the intrinsic collective subroutine, co_sum, as defined by the Fortran
2018 standard. ‘a’ is the only required argument and the rest of the arguments are optional.

• The Berkeley Lab fork of the LLVM-
Project GitHub repository includes a
project board capturing an exhaustive
list of 41 parallel features to test.

• We have pushed static semantics tests
for 32 such features upstream to
LLVM-Project: intrinsic functions
supporting parallelism, collective
subroutines, atomic subroutines,
synchronization statements, and more.

• We have contributed additional static
semantic analysis and error checking
for 11 missing parallel features exposed
by our tests. More contributions are
under development or in code review.

• We contributed error checks for 2
non-parallel features.

• We have developed 44 runtime tests
that we exercise by developing Caffeine.

ERROR directives now produced for invalid code
that match the error the compiler produces.

XFAIL directive removed. The test passes now that the compiler knows that co_sum is an
intrinsic subroutine and knows its interface.

XFAIL directive to inform LLVM lit testing framework that test should expectedly fail. The
tests fails since compiler doesn’t know the interface to the intrinsic subroutine co_sum.

No errors produced for invalid code.

LLVM
Flang

— Parallel runtime tests drive the development of Caffeine.

— Compile-time semantics tests for parallel Fortran 2018
features drive our contributions to the LLVM Flang frontend*.

The Fortran front-end in the LLVM Compiler Infrastructure Project.

SC22 research poster: doi: 10.25344/S4CP4S:

Our agile practices include test-driven development (TDD),
continuous integration, pair programming, and git workflows.

TDD

https://dx.doi.org/10.25344/S4CP4S

Caffeine
Co-Array Fortran Framework of Efficient Interfaces to Network
Environments (Caffeine)

LLVM for HPC Workshop paper:
doi:10.25344/S4459B

 
GASNet-EX

System Runtime & Memory Technologies

Application
C O

M
P
I
L
E

R

 
Caffeine

Caffeine leverages GASNet-EX,
a high-performance networking
middleware that undergirds a
broad ecosystem of languages,
libraries, frameworks, and
applications.

Caffeine supports the parallel features of Fortran 2018
for compilers.

https://doi.org/10.25344/S4459B

Motility analysis of T-cell histories in activation (Matcha)

A parallel virtual T-cell model that captures the speed and
turning angle distribution of T-cell motions in tissue.

GASNet-EX

Caffeine

Matcha
C

L

M
O

P

I

ER

System Runtime & Memory Technologies

Matcha is the first target application for Caffeine.

Matcha

Inference-Engine is a library for researching the efficient runtime
inference in high-performance computing (HPC) applications using
deep neural networks exported from Python by the companion
package nexport.

Inference
Engine &

nexport

The implementation language, Fortran 2018, makes it
suitable for integration into high-performance computing
(HPC) applications. First target: the Intermediate Complexity
Atmospheric Research (ICAR) model.

A pure, elemental inference procedure facilitates
optimized, including GPU-accelerated, large-batch inference
via array statements or do concurrent loops.

https://go.lbl.gov/inference-engine

https://go.lbl.gov/nexport

https://go.lbl.gov/inference-engine
https://go.lbl.gov/nexport

UPC++ &
GASNet-EX

UPC++ is a C++ template library
supporting Partitioned Global Address
Space (PGAS) parallel programming
and interoperability with other common
HPC frameworks, including MPI,
OpenMP, C++/POSIX threads, CUDA,
ROCm/HIP. https://go.lbl.gov/upcxx
UPC++ leverages the GASNet-EX
networking middleware to deliver low-
overhead, fine-grained communication,
including Remote Memory Access
(RMA) and Remote Procedure Call
(RPC). https://gasnet.lbl.gov/

��*$61HW�(;

������

6+0(0

1HWZRUN�+DUGZDUH�
�,QILQL%DQG��&UD\�$ULHV��+3(�6OLQJVKRW��(WKHUQHW��,QWHO�2PQL�3DWK������

$FWLYH�0HVVDJHV

2QH�VLGHG�*HW�3XW�50$

&ROOHFWLYHV$WRPLFV

1RQ�FRQWLJXRXV�50$

0HPRU\�7HFKQRORJLHV�
�+RVW�PHPRU\��*38V������

)RUWUDQ�
FRDUUD\V�83&&KDSHO ���

1:&KHP([�([D*UDSK�)/H&6,)OH[)ORZ� ([D%LRPH

/HJLRQ 83&��

$05H;�$UNRXGD�

6FLHQWLILF�$SSOLFDWLRQV

https://go.lbl.gov/upcxx
https://gasnet.lbl.gov/

MetaHipMer,
SIMCoV,

symPACK

MetaHipMer,
SIMCoV,

symPACK

77

Application case studies
UPC++ has been used successfully in many applications to improve
programmer productivity and runtime performance

We discuss several applications written in UPC++:

• symPack, a sparse symmetric matrix solver
• SIMCoV, agent-based simulation of lungs with COVID

• MetaHipMer, a genome assembler

Yelick, Kamil, Rouson / UPC++ / SC21 Tutorial / upcxx.lbl.gov

SC21 Tutorial: https://go.lbl.gov/sc21

BQSKit

An optimizing quantum
compiler framework.
Quantum synthesis
converts a quantum
program’s mathematical
description, given as a
unitary matrix, to an
executable quantum
circuit.

Berkeley Quantum
Synthesis Toolkit

• QSearch: Optimal depth synthesis up
to four qubits

• LEAP: Best quality of solution
synthesis up to eight qubits

• QFAST: Scales good solution quality
synthesis up to eight qubits

• QGO: Optimizing compiler combining
partitioning and synthesis

• QUEST: Scalable circuit
approximations

• QFACTOR: Fastest quantum optimizer

Toolbox

Software Developed with CLaSS
— LLVM Flang, Caffeine, Matcha, Inference-Engine
— GASNet-EX, UPC, UPC Runtime, UPC++
— MetaHipMer, SIMCoV, symPACK
— Berkeley Quantum Synthesis Toolkit (BQSKit)

Conclusions

Thoughts on Sustainability
— Socially sustainable development
— Technologically sustainable development
— At the intersection of the social and the technological

Socially Sustainable
Development
In a diversifying workforce, any

sufficiently large project must diversify
to be sustainable.

2015 - 2022 2022-

Sustainable Research Pathways

LLVM Flang &
Caffeine Team
Broadening participation includes
engaging a diverse ensemble of

educational and professional
backgrounds.

Katherine Rasmussen
B.S. History/M.S. Linguistics

Brad Richardson
B.S./M.S., Nuclear Engineering

Damian Rouson
B.S./M.S./Ph.D., Mechanical Engineering

Hugh Kadhem
B.S. Comp. Sci., Math, Stat.

M.S. Pure Mathematics
Ph.D. Candidate, Math

Engaging Users in Development Broadens
Participation

15

A subset of the Fortran 2018 non-parallel
features suffice for writing a runtime
library, mostly in Fortran, to support the
Fortran 2018 parallel features.

Writing a parallel runtime library in the
language of the users improves
sustainability by lowering a barrier to
community maintenance.

The Caffeine Proposition:

In Caffeine, writing in Fortran also
improves sustainability by reducing
complexity and maintenance costs

Engaging Users in Development Broadens
Participation

16

A subset of the Fortran 2018 non-parallel
features suffice for writing a runtime
library, mostly in Fortran, to support the
Fortran 2018 parallel features.

Writing a parallel runtime library in the
language of the users improves
sustainability by lowering a barrier to
community maintenance.

The Caffeine Proposition:

In Caffeine, writing in Fortran also
improves sustainability by reducing
complexity and maintenance costs

Develop Collaboratively and Train

17

Technologically
Sustainable

Development
Backwards compatibility ensures

continuity of user experience, protects
users’ investments in code and thus

improves sustainability.

GASNet-EX

GASNet-1

2002 —

Fortran 2018

Fortran 66

1957 —

Technologically
Sustainable

Development
Reducing maintenance costs improves

sustainability.

• Application source code never
directly references GASNet

• Applications benefit from new
GASNet feature releases without
revising their applications.

• Parallel programming languages
require specialized compilers.

• Using UPC++ requires only a
standard C++ compiler.

• This compiler-free approach
greatly reduces the of the code
base that the developers of
UPC++ must maintain.

At the Intersection of
Social & Technical

Workflow

Run ICAR & Save
Training Data

Run nexport to export
network to JSON

Import training
data into PyTorch and
train neural network

Import network into
ICAR via Inference-Engine

and validate

The Telephone Game

Solution Time = Development Time + Runtime

Run ICAR & Save
Training Data

Run nexport to export
network to JSON

Import training
data into PyTorch and
train neural network

Import network into
ICAR via Inference-Engine

and validate

Discussion Discussion Discussion

Sustainable Workflow

Runtime Training in
ICAR with embedded

Inference-Engine

Rinse, Repeat…

Software Developed with CLaSS
— LLVM Flang, Caffeine, Matcha, Inference-Engine
— GASNet-EX, UPC, UPC Runtime, UPC++
— MetaHipMer, SIMCoV, symPACK
— Berkeley Quantum Synthesis Toolkit (BQSKit)

Conclusions

Thoughts on Sustainability
— Socially sustainable development
— Technologically sustainable development
— At the intersection of the social and the technological

The CLaSS Group co-develops open-source software:

Conclusions

Our technologically sustainable practices include

1. Parallel programming compilers, runtime libraries, networking middleware,
2. An optimizing quantum synthesis toolkit,
3. HPC deep learning tools, and
4. Some targeted applications that use the above.

Our socially sustainable development practices include
1. Broadening participation through workforce development programs,

involving contributors with varied educational backgrounds, and lowering
barriers to community maintenance

2. Developing openly and collaboratively

3. Training new entrants to the field.

Exciting avenues for exploration lie at the intersection between
the social and the technological.

1. High levels of backwards compatibility.

2. Minimizing maintenance costs for users and contributors.

