

Methodology for Evaluating the Potential of Disaggregated Memory Systems

<u>Nan Ding</u>, Samuel Williams, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan, LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, Nicholas Wright

Lawrence Berkeley National Laboratory

Outline

- Need-to-know about Memory disaggregation
- Disaggregated memory system architecture
- Characterize application performance on a disaggregated memory system
- Case Study

What is memory disaggregation?

Today:

- Compute nodes are the basic unit of today's HPC systems
- Compute and memory resources are tightly coupled in each node
- Users request resources in the unit of a node

Memory Disaggregation:

- Decouple the compute and memory resources
- Allow for independent allocations of these resources regardless of where a job is placed

Compute node

J.S. DEPARTMENT OF

Office of

Science

Memory disaggregation addresses memory imbalance and improves memory utilization

Expensive memory is often under utilized:

- At Azure: ~50% of all VMs never touch 50% of their rented memory
- At NERSC: only 15% of the scientific workloads on NERSC's Cori supercomputer use over 75% of the available on-node memory
- At LLNL: 10% of jobs utilize more than 75% of the node memory capacity

Memory disaggregation is practical for public could

- Meet performance requirements and low hardware cost
- CXL-Based Memory Pooling Systems for Cloud Platforms

What impact will these emerging technologies have on HPC?

Memory Disaggregation on HPC: More Memory, Less cost

DRAM w/ 16 DIMMS HBM3 w/ 8 stacks 16-Hi HBM2 w/ 8 stacks 8-Hi

5

Outline

- Need-to-know about Memory disaggregation
- Disaggregated memory system architecture
- Characterize application performance on a disaggregated memory system
- Case Study

Conceptual disaggregated memory system architecture

- One compute node (C) = one APU + HBM3 (512GB) + one NIC
- One memory node (M) = one DDR5 socket (4TB) + one NIC

Available Remote Memory Capacity

BERKELEY LAB

Science

Available Remote Memory Capacity

- Not all jobs need remote memory
- HBM3 provides 512GB

BERKELEY LAB

> 512GB, need remote memory

Available Remote Memory Bandwidth

BERKELEY LAB

10

Science

Outline

- Need-to-know about Memory disaggregation
- Disaggregated memory system architecture
 - A structured system design model
 - Budgets, workloads
 - Available remote memory capacity/bandwidth
- Characterize application performance on a disaggregated memory system
- Case Study

Office of

Memory Roofline: bound by local memory or remote memory

- FLOP Roofline: Which takes longer?
 - o Data movement
 - Compute

- Memory Roofline: Which takes longer?
 - Local memory (= HBM data movement)
 - Remote memory (= DRAM data movement)

Bounded by Remote Memory Bandwidth? No, if High L:R

Remote Memory Access Pattern Implication on Different System Configurations [fixed C:M, vary workloads demands]

Remote Memory Access Pattern Implication on Different System Configurations [fixed C:M, vary workloads demands]

Less contention

↑		Remote memory bandwidth	Machine balance
	10%	100GB/s	65.5
	40%	25 GB/s	262

Remote Memory Access Pattern Implication on Different System Configurations [fixed workloads demand, vary C:M]

LAB

Remote Memory Access Pattern Implication on Different System Configurations [fixed workloads demand, vary C:M]

Characterize workloads in a single figure

Characterize workloads in a single figure

Science

BERKELEY LAB

19

Outline

- Need-to-know about Memory disaggregation
- Disaggregated memory system architecture
- Characterize application performance on a disaggregated memory system
 - Local : Remote memory access ratio
 - Required memory capacity
 - System configurations
- Case Study

Office of

Science

Experiment setup

- C:M=10K:1K
- 10% compute node that are requiring remote memory
- Each compute can access 4TB remote DRD5 memory on average
- Each compute can reach peak PCIe6 bandwidth 100GB/s
- L:R=65.5

Case Study: Al workloads

- The DeepCAM climate benchmark is based on the 2018 work of Kurth et al. which was awarded the ACM Gordon Bell Prize
- The L:R memory ratio is characterized by <u>FLOP:sample Byte</u> Flop:HBM Byte from Ibrahim et al.
- Training set = memory capacity (all in memory nodes)

Case Study: Eleven Workloads from Five Computational Scenarios

- 10 out of 11 workloads can leverage disaggregated memory without affecting performance
- STREAM can be a proxy for giant AI=O(1) linear solvers (stencil/sparse) without any multiphysics/AMR

Conclusions

- A practical and intuitive approach to assess how much disaggregation is needed or viable given the technology trend and the impacts to the diverse workload
- Low PCIe bandwidth does not destroy the value of memory disaggregation, combine Local:Remote memory access ratio, memory capacity requirement
- It's promising for HPC applications benefit from disaggregated memory system
- Beneficial to wider groups: HPC architects, scientists

