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Abstract—Ordering vertices of a graph is key to minimize
fill-in and data structure size in sparse direct solvers, maximize
locality in iterative solvers, and improve performance in graph
algorithms. Except for naturally parallelizable ordering methods
such as nested dissection, many important ordering methods have
not been efficiently mapped to distributed-memory architectures.
In this paper, we present the first-ever distributed-memory
implementation of the reverse Cuthill-McKee (RCM) algorithm
for reducing the profile of a sparse matrix. QOur parallelization
uses a two-dimensional sparse matrix decomposition. We achieve
high performance by decomposing the problem into a small
number of primitives and utilizing optimized implementations of
these primitives. Our implementation attains up to 38x speedup
on matrices from various applications on 1024 cores of a Cray
XC30 supercomputer and shows strong scaling up to 4096 cores
for larger matrices.

I. INTRODUCTION

Reordering a sparse matrix to reduce its bandwidth or profile
can speed up many sparse matrix computations [1], [2]. For
example, a matrix with a small profile is useful in direct
methods for solving sparse linear systems since it allows a
simple data structure to be used. It is also useful in iterative
methods because the nonzero elements will be clustered close
to the diagonal, thereby enhancing data locality. Given a
symmetric matrix A, a bandwidth-reduction ordering aims to
find a permutation P so that the bandwidth of PAPT is small.
Since obtaining a reordering to minimize bandwidth is an NP-
complete problem [3], various heuristics are used in practice
such as Cuthill-McKee, Reverse Cuthill-McKee (RCM), and
Sloan’s algorithms [4], [5], [6]. This paper solely focuses on
the RCM algorithm [5] because, with careful algorithm design,
it is amenable to massive distributed-memory parallelism — the
primary topic of interest of this paper.

The need for distributed memory RCM algorithms is driven
by the move to extreme-scale computing. In a large scale
scientific application, the matrix has often been distributed
already by the time one arrives at the numerical phases of
sparse matrix computations. Hence, it would be a waste of
time to gather a distributed matrix onto a single processor to
compute an ordering using sequential or multithreaded algo-
rithms. Furthermore, by clustering the nonzeros closer to the
diagonal, RCM ordering not only increases cache performance
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Fig. 1: The time to solve thermal?2 using the conjugate
gradient method with block Jacobi preconditioner in PETSc
on NERSC/Edison. thermal2 has 1.2M rows and columns
and 4.9M nonzeros. The bandwidths of the original and RCM-
permuted matrix are 1,226,000 and 795, respectively.

of iterative solvers, but it can often restrict the communication
to resemble more of a nearest-neighbor pattern. Figure 1
illustrates the performance effects of RCM ordering on a
preconditioned conjugate gradient solver of the popular PETSc
package [7]. Notice that the performance benefit of RCM
ordering actually increases as the number of cores increases,
possible due to reduced communication costs. Our goal in this
paper is therefore to design and develop a scalable distributed-
memory parallel implementation of the RCM algorithm [5].

Similar to many sparse matrix computations, RCM ordering
has been shown to be a difficult problem to parallelize [8].
The RCM algorithm traverses vertices of a graph level-by-
level using a specialized breadth-first search (BFS). Within
each level of the traversal tree, vertices are ordered by the
labels of their parents and their own degrees. This restriction
on how the vertices are numbered in the graph traversal limits
available parallelism in the RCM algorithm. Furthermore,
RCM is often used for matrices with medium-to-high diameter
while most of the existing work on parallel BFS has focused
on low-diameter graphs such as synthetic graphs used by the
Graph500 benchmark. A higher diameter increases the criti-
cal path of level-synchronous BFS algorithms, also limiting
available parallelism. Overall, the computational load of the



RCM algorithm is highly dynamic, especially if the graph has
high diameter. The problem exacerbates on high concurrency,
where load imbalance and communication overhead degrade
the performance of the parallel algorithm.

In this paper, we aim to overcome these challenges by using
the graph-matrix duality and replacing unstructured graph
operations by structured matrix/vector operations. First, we
use a specialized sparse matrix-sparse vector multiplication
(SpMSpV) whose addition and multiplication operations are
overloaded to satisfy the restriction of RCM ordering (see
Fig. 2 for an example). The linear algebraic formulation
with its operator overloading feature hides the RCM-specific
complexity and is able to achieve high performance despite
the deterministic nature of the computation. Second, within
a BFS level, we replace expensive global sorting of vertices
by a number of small sorting tasks each of which is limited
only to siblings. These two optimizations lead to a distributed-
memory RCM algorithm that scales well on thousands of cores
of modern supercomputers.

We make the following contributions:

« We present a scalable distributed-memory algorithm for
RCM ordering. Our algorithm relies on a handful of bulk-
synchronous parallel primitives that are optimized for
both shared-memory and massively parallel distributed
memory systems.

o The quality (bandwidth and envelope) of ordering from
our distributed-memory implementation is comparable to
the state-of-the-art and remains insensitive to the degree
of concurrency.

« We provide a hybrid OpenMP-MPI implementation of the
RCM ordering that attains up to 38x speedup on matri-
ces from various applications on 1024 cores of a Cray
XC30 supercomputer. We provide detailed performance
evaluation on up to 4096 cores, which sheds light on
the performance bottlenecks and opportunities for future
research.

II. PRELIMINARIES
A. Serial Algorithms

Let n be the number of columns in a symmetric matrix
A. Let f;(A) be the column subscript of the first nonzero
element in column ¢ of A: f;(A) = min{j | a;; # 0}. The
i-th bandwidth B;(A) is defined as 8;(A) =i — f;(A). The
overall bandwidth of matrix A is denoted $(A) and is defined
as S(A) = max{B;(A) |1 <i < n}. Using these notations,
the envelope Env(A) is defined as:

Env(A) = {{i,j}
”lf"hji quantity |Env(A)| is called the profile or envelope size
of A.

Reverse Cuthill-McKee ordering, or RCM, introduced by
George [9], is a variant of the Cuthill-McKee ordering [4],
which aims at reducing the bandwidth of a sparse symmetric
matrix A. This is of particular importance when the matrix is
to be stored using a profile based format. Finding a reordering

of the rows/columns of A corresponds to the process of
labeling vertices of the graph G(A) associated with A.

RCM repeatedly labels vertices adjacent to the current ver-
tex v; until all have been labeled, as depicted in Algorithm 1.
The algorithm essentially processes vertices levels by levels
and labels them in reverse order. The resulting reordered
matrix often has a smaller profile [9].

Algorithm 1: Reverse Cuthill-McKee algorithm

1 V<717

2 fori =11t n do

3 Find all the unnumbered neighbors of the vertex v;

4 L Label the vertices found in increasing order of degree

5 The Reverse Cuthill-McKee ordering is given by
wy, W, ..., w, where w; =v,_;4; fort=1,... n.

For the graph G(A) = (V, E) associated with A, V is the
set of vertices and F is the set of edges in G(A). The number
of vertices in G(A) is denoted n = |V'| and m is the number of
edges m = |E|. The eccentricity [10] of a vertex v is defined
as {(v) = max{d(v,w) | w € V}, where d(v,w) is the graph
distance between v and w.

The rooted level structure [11] of a vertex v € V is the
partioning L(v) of V satisfying

L(v) ={Lo(v), L1(v),- .., Lew) ()},
Lo(v) = {v}, Li(v) = Adj(Lo(v)),
Li(v) = Adj(Li-1(v)) \ Li—2(v),

The length of L(v) corresponds to the eccentricity £(v)
while the width v(v) of L(v) is defined by

where

i=2,3,...,0v).

v(v) = max{|L;(v)] | 0<i</l(v)}.

Algorithm 2: An algorithm to find a pseudo-peripheral
vertex r
1 r < {arbitrary vertex in V'}
2 L(r) < {Lo(r), L1(7), ..., Loy (r)}
3 nlvl+ £(r) —1
4 while /(1) > nlvl do
nlvl « ¢(r)
6 (Shrink last level): Choose a vertex v in Ly(,)(r) of
minimum degree.
E(’U) — {Lo(’U), Ll(”)? s aLZ(v)(U)}
T

W

L 2

The first vertex being labeled strongly impacts the band-
width of the permuted matrix. Experience shows that it is
better to start with a node having a large eccentricity. A
peripheral vertex is a vertex with maximum eccentricity.
Finding such vertex is prohibitively expensive, and a common
heuristic is to use a pseudo-peripheral vertex instead [13],
[5]. A pseudo-peripheral vertex is a vertex displaying a high



TABLE I: Matrix-algebraic primitives needed for the RCM algorithm.

Function Arguments Returns Serial . Communication
Complexity
IND x: a sparse vector local indices of O(nnz(z)) None
nonzero entries of x
Z: a sparse vector z < an empty sparse vector
SELECT y: a dense vector for ¢ € IND(z)
ezpr: logical expr. on y if (exzpr(y[i])) then O(nnz(x)) None
assume size(z) = size(y) z[i] < x[i]
return z
SET x: a sparse vector for i € IND(x)
y: a dense vector yli] < x[4] O(nnz(z)) None
return y
A a sparse matrix AllGather &
SPMSPV T: a sparse vector return A - x > nnz(A(: k)) AlltoAll on
.. keIND(x) .
SR: a semiring subcommunicator [12]
: a sparse vector mv = maximum value in y
REDUCE y: a dense vector for ¢ € IND(z) O(nnz(z)) AllReduce
mv < min{mv, y[i]}
T <« an empty array of tuples
Z: a sparse vector for ¢ € IND(x)
SORTPERM y: a dense vector T[] « (z[z], y[z], ¢) O(nnz(z) log nnz(x)) AllToAll

sort 1" in the ascending order
and return the permutation

eccentricity, as close to the graph diameter as possible. Gibbs
et al. [14] introduced an algorithm to find such a vertex,
which is later refined by George and Liu [13]. The process,
given in Algorithm 2, starts with an arbitrary vertex in V'
and computes its rooted level structure. Then, a vertex in the
last level is picked and the corresponding level structure is
computed. This process is repeated until the number of levels
in the rooted level structure converges. Computing the level
structure corresponds to a BFS of the graph G(A).

B. Previous Work on Parallel RCM

There is a strong connection between BFS, finding a
pseudo-peripheral vertex and computing the RCM ordering.
However, RCM is often used for matrices with higher diameter
than graphs for which parallel BFS is often optimized [12],
[15]. In addition, computing the actual RCM ordering is even
harder to parallelize because the vertices within each level of
the traversal tree have to be ordered by degree.

Computing sparse matrix orderings in parallel have received
intermittent attention over the last few decades. While RCM
is often used to accelerate iterative solvers, one of its first
reported supercomputer-scale implementations was in the con-
text of direct solvers by Ashcraft et al. [16] on a CRAY X-MP.
It is hard to compare results from 30 years ago, where both
the architectures and the sizes of matrices were significantly
different. Karantasis et al. [8] recently studied the shared-
memory parallelization of various reordering algorithms in-
cluding RCM.

III. ALGORITHMS BASED ON MATRIX ALGEBRA

In this section, we present a distributed memory algorithm
for computing the RCM ordering that takes advantage of the

equivalence between graph algorithms and sparse matrix alge-
bra to exploit latest hardware platforms. The nnz() function
computes the number of nonzeros in its input, e.g., nnz(x)
returns the number of nonzeros in x. We utilize the Matlab
colon notation: A(:,i) denotes the ith column, and A(3,:)
denotes the ¢th row.

A. Primitives for the RCM algorithm

With an aim to design a scalable parallel algorithm, we
redesign the sequential algorithms for RCM ordering (Algo-
rithm 1) and finding a pseudo-peripheral vertex (Algorithm 2)
in terms of matrix-algebraic operations. For this purpose, we
use the primitives summarized in Table I. A sparse vector is
used to represent a subset of vertices. Consider that a subset
of n; unique vertices V; is represented by a sparse vector .
Then, for each vertex v; in Vi, there is a nonzero entry in the
i-th location of z (i.e., z[i] # 0), and the number of nonzeros
nnz(x) in z is equal to n;. The nonzero entries of the sparse
vector can store arbitrary values depending on the context of
the algorithm. By contrast, a dense vector y stores information
about all vertices in the graph, hence the length of y is always
n. In sparse matrix computations, we often are interested in
where the nonzero elements are in the sparse matrices. Hence,
if A is an n X n sparse symmetric matrix, then we use a
graph G = (V, E) to describe the sparsity structure of A:
V ={v1,ve, -+ ,v,}, where v; corresponds to row/column i
of A, for 1 <i<mn, and {v;,v;} € E when A, ; # 0.

Let x be a sparse vector, y be a dense vector, expr be
a logical unary operation and A be a sparse matrix. IND(z)
returns the indices of nonzero entries in . SELECT(x, y, expr)
returns every nonzero entry x[i] of x where expr(y[i]) is
true. SET(y, ) replaces values of y by corresponding nonzero
entries of x (other entries of y remain unchanged). RE-



Algorithm 3: Reverse Cuthill-McKee algorithm in terms of matrix-algebraic operations. Inputs: a sparse adjacency matrix
A, a dense vector D storing the degrees of all vertices, and a pseudo-peripheral vertex r. Output: the RCM ordering R.

R+ —1

Leour {7’} s Loegt — 0]

R[r] + 0

nv <1

while L., # ¢ do

Leur < SET(Leyr, R)

Lpext < SPMSPV(A, L., SR=(select2nd, min))

Lnpext $ SELECT(Lypert, R, R = -1)

Runewt < SORTPERM(L ez, D)
the next frontier based on the

10 Rnemt — Rnemt + nv

o NN R W N -

11 nv < nv + nnz(Rpext)
12 R+ SET(R7 Rnext)
13 Ecur — Enezt

4 return R in the reverse order

—

// Dense vector storing the ordering of all vertices;

initialized to -1
// Current and next BFS levels (frontier)
// label of r is set to O

// Number of vertices labeled so far

// Visit neighbors of the frontier
// Keep unvisited vertices

// Lexicographically sorted permutation of vertices in
(parent_order,

degree) pair

// Global ordering

// Set orders of the newly visited vertices

Algorithm 4: Algorithm to find a pseudo-peripheral vertex r in terms of matrix-algebraic operations. Inputs: a sparse
adjacency matrix A and a dense vector D storing the degrees of all vertices. Output: a pseudo-peripheral vertex r.

1 7 < {arbitrary vertex in V'}
20+ 0,nlvl+/¢—1

3 while ¢ > nlvl do

4 L+ —1

5 Lcur — {7‘} 5 ‘Cnewt — (;b
6 nlvl < ¢, L[r] «+ 0

7 do

8 Lewr < SET(Leur, £)

9 Loyezt < SPMSPV(A, L., SR=(select2nd, min))
10 Lyext < SELECT(Lpent, £, L = -1)

1 if L,c0t # ¢ then

12 L+ SET(L, Lpext)

13 L ['cur — Enezt

14 {—10+1

15 while L,,c.; # ¢
16 | 7 REDUCE(L .y, D)

// Number of levels in current and previous BFS trees

// Dense vector storing the BFS level that each vertex belongs to

// Current and next BFS levels (frontier)
// Level of r is set to O

// Visit neighbors
// Keep unvisited vertices

// Set levels of newly visited vertices

// Find the vertex with the minimum degree

DUCE(x, y,0op) considers only the nonzero indices I of the
sparse vector x and performs a reduction on the values of
the dense vector y[I] using the operation op. In Table I,
we provide an example where the reduction operation is to
find the minimum value. SORTPERM(x,y) creates a tuple
(x[i], y[7],1) for each nonzero index i in z. The list of tuples
are lexicographically sorted and the function returns the sorted
permutation (the indices passed to the sorting routine are
used to obtain the permutation). Finally, SPMSPV(A, z, SR)
performs a sparse matrix-sparse vector multiplication over the
semiring SR. For the purposes of this work, a semiring is
defined over (potentially separate) sets of ‘scalars’, and has
its two operations ‘multiplication’ and ‘addition’ redefined. We
refer to a semiring by listing its scaling operations, such as the
(multiply, add) semiring. The usual semiring multiply for BFS

is select2nd, which returns the second value it is passed. The
BFS semiring is defined over two sets: the matrix elements are
from the set of binary numbers, whereas the vector elements
are from the set of integers.

B. The RCM algorithm using matrix-algebraic primitives

Algorithm 3 describes the RCM algorithm using the op-
erations from Table I. Here, we assume that the graph is
connected. The case for more than one connected components
can be handled by repeatedly invoking Algorithm 3 for each
connected component. Algorithm 3 takes a sparse adjacency
matrix A and a pseudo-peripheral vertex r as inputs, and
returns the RCM ordering as a dense vector R.

The i-th element R [i] of R is initialized to —1 and it retains
the initial value until the ¢-th vertex is visited and labeled. Let



1 Overload (multiply,add) with (select2nd, min)
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Fig. 2: An example of using specialized sparse matrix-sparse vector multiplication in exploring the next-level vertices in the
RCM algorithm. On the left, we show a BFS tree rooted at vertex a. The current frontier is the set of two vertices {e, b}.
Labels of the already explored vertices are shown in red numbers. The adjacency matrix representing the graph is shown on
the right. The input sparse vector corresponding to the current frontier is shown at the top of the matrix. The sparse vector has
two nonzero entries corresponding to e and b. The values of the nonzero entries are the labels of the vertices. The SpMSpV
algorithm over a (select2nd, min) semiring then selects the columns of the matrix corresponding to the nonzero indices of the
vector shown in gray columns and retains the minimum product in each row where there exists at least one nonzero entry in
the selected columns. The indices of the output vector represent the vertices in the next level while the values in the vector
denote the labels of parent vertices. The (select2nd, min) semiring ensures that a child v always attaches itself to a parent with
the minimum label among all of v’s visited neighbors. Therefore, vertex e is selected as the parent of vertex c¢ because e is
the lowest numbered vertex adjacent to e in the previous level. Previously visited vertex a is not shown in the output vector.

Leowr and L.+ be the set of vertices in the current and the
next BFS level, respectively. L., is called the BFS frontier
(the set of current active vertices). The algorithm starts by
labeling the pseudo-peripheral vertex r, inserting it into Ley.

The while loop (lines 5-13 of Algorithm 3) explores the
vertices level-by-level until the frontier £.,, becomes empty.
Vertices in L., have been already labeled in the previous
iteration or during initialization. Hence each iteration of the
while loop traverses the unvisited neighbors L,e.: of Loy
and labels vertices in L,,cz¢.

At the beginning of the while loop of Algorithm 3, the
values of the sparse vector L., are set to the labels of
vertices. Next, we discover vertices L.+ that are adjacent
to the current frontier L., by multiplying A by L., over
the (select2nd, min) semiring (line 7). Here the overloaded
multiplication operation select2nd passes the labels of parents
to the children and the overloaded addition operation min
ensures that each vertex in £,,..+ becomes a child of a vertex
in L., with the minimum label. This step is explained in
Figure 2 with an example. Notice that the specific operator
overloading by a (select2nd, min) semiring makes the vertex
exploration deterministic, and parallelizing the specialized
SpMSpV becomes more challenging than traditional BFS.
Thankfully, the linear algebraic formulation with its operator
overloading feature hides the RCM-specific complexity and
is able to achieve high performance despite the deterministic
nature of the computation.

After the vertices in the next level are discovered via
SpMSpV, previously labeled vertices are removed from L, ¢+
(line 8). The next step is to label the vertices in L¢,¢. For
this purpose, we sort vertices in L,,.;; based on the labels of
their parents and their own degrees. The sorted permutation
of vertices in L.+ returned by the SORTPERM funciton is
used to set their labels. In SORTPERM, the indices of vertices
are used to break ties when multiple vertices have the same
parent and degree. We observe that vertices within each level
are already partially sorted by their parents’ labels because
of the (select2nd, min) semiring used in SPMSPV. Hence, a
vertex with a smaller parent’s label will always be numbered
before another vertex with larger parent’s label. This breaks
the task of an expensive global sorting to a number of small
sorting tasks each of which is limited only to siblings. For
example, in Figure 2, vertices ¢ and h will be labeled before
f because the paprent of ¢ and h has a smaller label than the
parent of f. Hence, ¢ and h can be labeled based on their
degrees, independent of other vertices.

Finally, we update the labels of the newly visited vertices
(line 12) and proceed to the next iteration of the while loop.
When the current frontier becomes empty, Algorithm 3 returns
with the RCM ordering by reversing the labels of the vertices.

C. Finding the pseudo-peripheral vertex

Algorithm 4 finds a pseudo-peripheral vertex using matrix-
algebraic operations from Table I. Similar to Algorithm 2,



Algorithm 4 starts with an arbitrary vertex r. Initially, the
number of levels in the current and previous BFSs are set to 0
and —1, respectively, so that the while loop in line 4 iterates at
least twice before termination. Each iteration of the while loop
in line 4 runs a full BFS starting with r. As before, L., and
Lnext represent the subsets of vertices in the current and next
levels of the BFS. L stores the BFS level to which each vertex
belongs (—1 denotes an unvisited vertex). The do-while loop
(lines 8-16) performs the BFS traversal similar to Algorithm 3.
The overloaded addition operation of the SPMSPV at line 12
is set to min only for convenience. It can be replaced by any
equivalent operation because the order of vertices within a
level of BFS does not matter in the discovery of a pseudo-
peripheral vertex. At the end of the BFS, we find a vertex
with the minimum degree from the last non-empty level and
make it the root for the next BFS (line 17). The while loop at
line 4 terminates when the number of levels in the latest BFS
is not greater than the previous BFS. At this point, Algorithm 4
returns the pseudo-peripheral vertex r.

IV. DISTRIBUTED MEMORY ALGORITHM

In order to parallelize the RCM algorithm, we simply
need to parallelize the matrix-algebraic functions described in
Table 1. Since our RCM algorithm relies heavily on SpMSpV
and SortPerm, we mostly focus on these two primitives. We
note that distributed-memory algorithm for SpMSpV is not
a contribution of this paper; hence we cited our prior work
where the algorithm was first described. This paper provides
an analysis of SpMSpV in the context of RCM. We would
like to mention that our SpMSpV is specialized for RCM
with a (select2nd, min) semiring and the nonzero elements of
the vectors are (order, degree) pairs. A specialized SortPerm
algorithm is a new contribution of the paper and described in
Section IV-B.

A. Data distribution and storage

We use the Combinatorial BLAS (CombBLAS) frame-
work [17], which distributes its sparse matrices on a 2D p, X p,
processor grid. Processor P(i, j) stores the submatrix A;; of
dimensions (m/p,) x (n/p.) in its local memory. Vectors are
also distributed on the same 2D processor grid. CombBLAS
supports different formats to store its local submatrices. In this
work, we use the CSC format as we found it to be the fastest
for the SpMSpV operation with very sparse vectors, which is
often the case for matrices where RCM is commonly used.
CombBLAS uses a vector of {index, value} pairs for storing
sparse vectors. To balance load across processors, we applied a
random symmetric permutation P to the input matrix A before
running the RCM algorithm. Most methods in numerical
analysis can operate on a symmetrically permuted matrix
instead of the original matrix. Therefore, we argue that the
whole distributed-memory solver can work on the permuted
matrix PAPT, and we do not include the permutation time in
the reported results.

B. Analysis of the distributed algorithm

We measure communication by the number of words moved
(W) and the number of messages sent (S). The cost of
communicating a length m message is «+ Sm where « is the
latency and /3 is the inverse bandwidth, both defined relative to
the cost of a single arithmetic operation. Hence, an algorithm
that performs F' arithmetic operations, sends S messages, and
moves W words takes T' = F' + S + SW time.

Since the amount of work is variable across BFS iterations,
we analyze the aggregate cost over the whole BFS. For ease
of analysis, matrix and vector nonzeros are assumed to be
ii.d. distributed. We also assume a square processor grid
Pc=pr=4/p. Number of complete breadth-first searches is
denoted by |iters|. The value of |iters| is exactly one in
Algorithm 3, but it can be more than one in Algorithm 4.

We leverage the 2D SpMSpV algorithms implemented in
CombBLAS. The complexity of the parallel SpMSpV algo-
rithm has been analyzed in this context recently [18], hence
we just state the result here:

Tspmsey = O(E + B(@ + ﬂ) + [iters| a\/ﬁ).
P PP

As described in Section III-B, our RCM algorithm needs a
specialized SORTPERM function that sorts and labels siblings
based on their degrees. Observe that the number of children in
the next frontier £,,.,; is less than or equal to the number of
parents (vertices with at least one child) in the current frontier
L. Hence, we designate a bucket for each parent (i.e.,
nnz(Leyr) buckets in total) and place children to their parent’s
bucket. These buckets are distributed among processors. Each
processor sort its assigned buckets locally, which eliminate the
need for a global distributed sorting. More specifically, the ¢-
th processor is responsible for sorting vertices whose parent’s
labels fall in the range

nnz(Lewr) . nnz(Lewr)

[ p i, » (i +1)).

Hence, processors exchange tuples using AllToAll and the
responsible processors sort tuples locally. After sorting, the
vertex indices associated with the tuples work as the inverse
permutation. Processors conduct another round of AllToAll
(only the indices) to obtain the sorted permutation.

The total number of nonzeros sorted is exactly the sum of
the frontier sizes over all iterations, which is O(n). Hence the
per-process cost of SORTPERM is upper bounded by

nlogn

n .
Tsorrperm = O( + 55 + |iters| ap),

using personalized all-to-all [19]. We found our specialized
bucket sort to be faster than state-of-the-art general sorting
libraries, such as HykSort [20].

V. RESULTS
A. Experimental Platform

We evaluated the performance of parallel RCM algorithm
on Edison, a Cray XC30 supercomputer at NERSC. In Edison,



Name Dimensions BW (pre-RCM)
Description Spy Plot Nonzeros BW (post-RCM)
Pseudo-diameter

nd24k 72K x 72K 68,114
3D mesh 29M 10,294
problem 14
Ldoor 952K x 952K 686,979
structural prob. 42.49M 9,259

178
Serena . 1.39M x 1.39M 81,578
gas reservoir | 64.1M 81,218
simulation A 58
audikw_1 943K x 943K 925,946
structural prob 78M 35,170

82
dielFilterV3real I.IMx1.IM 1,036,475
higher-order 89.3M 23,813
finite element 84
Flan_1565 1.6Mx 1.6M 20,702
3D model of 114M 20,600
a steel flange 199
Li7Nmax6 "\ N\‘\ ) 664K x 664K 663,498
nuclear configuration | "\"\ 212M 490,000
interaction calculations ! = 7
Nm7 : AM x4M 4,073,382
nuclear configuration & 437M 3,692,599
interaction calculations i 5
nlpkkt240 \ T78M X 78M 14,169,841
Sym. indefinite \ 760M 361,755
KKT matrix 243

Fig. 3: Structural information on the sparse matrices used in our
experiments. All matrices, except two, are from the University of
Florida sparse matrix collection [21]. Li7Nmax6 and Nm7 [22]
are from nuclear configuration interaction calculations.

nodes are interconnected with the Cray Aries network using
a Dragonfly topology. Each compute node is equipped with
64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge
processors, each with 30 MB L3 cache. We used Cray’s
MPI implementation, which is based on MPICH2. We used
OpenMP for intra-node multithreading and compiled the code
with gcc 5.2.0 with —02 —-fopenmp flags. In our experiments,
we only used square process grids because rectangular grids
are not supported in CombBLAS [17]. The skewness of the
processor grid in SpMSpV has been subject to previous work
in the context of breadth-first search [23] where the authors
found that square grids are close to optimal in practice (within
10% of the best configuration in most cases).

When p cores were allocated for an experiment, we created a
\/p/tx+/p/t process grid, where ¢ was the number of threads
per process. In our hybrid OpenMP-MPI implementation,

TABLE II: The bandwidth and runtime of the shared-memory
RCM implementation in SpMP. SpMP did not finish in 30
minutes for Nm7. On Nm7 and nlpkkt240 matrices, our
distributed-memory implementation ran out of memory on a
single node of Edison.

Graphs SpMP Distributed RCM
BW Runtime (sec) Runtime (sec)

1t 6t 24t 1t 6t 24t
nd24k 10,608 0.26 0.06 0.03 145 038 0.12
Idoor 9,099 3.25 052 0.28 4.63 152 074
Serena 85,229 1.64 0.49  0.66 775 226 1.08
audikw_1 34,202 1.31 0.34 0.16 731 199 0.81
dielFilterV3real 25,436 1.99 0.73 046 8.63 237 095
Flan_1565 20,849 1.86 044 0.17 12.11 388 1.35
Li7Nmax6 443,991 4.62 148 0.87 2028 491 285
Nm7 - - - - - - -
nlpkkt240 346,556  57.21  25.17 992

all MPI processes performed local computation followed by
synchronized communication rounds. Local computation in
every matrix-algebraic kernel was fully multithreaded using
OpenMP. Only one thread in every process made MPI calls in
the communication rounds.

B. Matrix Suite

The sparse matrix test suite used in our experiments are
shown in Figure 3. These matrices came from a set of real
applications, where either a sparse system Ax = b is solved
or an eigenvalue problem Ax = Ax is solved. The matrices
were chosen to represent a variety of different structures and
nonzero densities. Since RCM is only well defined on sym-
metric matrices, all matrices are symmetric. In the last column
of Figure 3, the original (pre-RCM) as well as final (post-
RCM) bandwidth of the matrix are shown. In the majority of
the cases, RCM effectively reduces the bandwidth. Serena
and Flan_1565 seem to be the only two matrices where
RCM was ineffective in that regard. For Nm7 and n1pkkt240
matrices, our distributed-memory implementation ran out of
memory when executed on a single node of Edison because
of MPI buffers and other overheads. However, the amount of
memory available on that node is sufficient to hold the matrix
itself.

C. Shared-memory performance

Our implementation is fully multithreaded to take advantage
of the shared-memory parallelism available within a node of
modern supercomputers. Here, we compare the quality and
runtime of our algorithm with the RCM implementation in
SpMP (Sparse Matrix Pre-processing) by Park et al. [24],
which is based on optimization from [25] and on the algo-
rithm presented in [8]. The results from SpMP is shown in
Table II. For four out of eight matrices where SpMP was able
to compute RCM, the RCM ordering from our distributed-
memory algorithm (shown in Figure 3) yields smaller band-
widths than SpMP. SpMP is faster than our implementation
in shared-memory due to our distributed-memory paralleliza-
tion overheads. However, SpMP sometimes loses efficiency
across NUMA domains. For example, SpMP slows down for
Serena on 24 cores compared to 6 cores.
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Fig. 4: Runtime breakdown of distributed-memory RCM on different graphs on Edison. Six threads per MPI process are used
when the number of cores is greater than or equal to six. Nm7 and n1pkkt240 ran out of memory on a single node of Edison.

One very important thing to note is that in order to compute
an ordering using a serial or multithreaded implementation of
the RCM algorithm such as SpMP, the matrix structure has to
be gathered on a single node. Indeed, in many real-life appli-
cations, the matrix is already distributed and this mandatory
communication step has a non-negligible cost. For example,
it takes over 9 seconds to gather the nlpkkt240 matrix
from being distributed over 1024 cores into a single node/core.
This time is approximately 3x longer than computing RCM
using our algorithm on the same number of cores. One of
the key benefit of our approach is that it does not require
this step. Adding those times to the time required to compute
the ordering itself using SpMP makes our approach highly
competitive and often faster.

D. Distributed-memory performance

We ran the distributed-memory RCM algorithm on up to
4096 cores of Edison. All performance results shown in this
section used six threads per MPI process as it performed the
best. Figure 4 shows the strong scaling of the distributed-

memory RCM algorithm for nine graphs from Table 3. To
better understand the performance, we break down the runtime
into five parts at each concurrency where the height of a bar
denotes the total runtime of identifying a pseudo-peripheral
vertex and computing the RCM ordering.

Our distributed algorithm scales up to 1024 cores for all of
the nine graphs as shown in Figure 4. The RCM algorithm
attains the best speedup of 38x for Li7Nmax6 and 27x
on nd24k on 1024 cores. By contrast, it achieves 10x
and 13x speedups for 1door and Flan_1565. The sharp
drop in parallel efficiency on these graphs is due to their
relatively high diameters. The level-synchronous nature of our
BFS incurs high latency costs and decreases the amount of
work per processor on high-diameter graphs. Figure 4 shows
that SPMSPV is usually the most expensive operation on
lower concurrency. However, SORTPERM starts to dominate
on high concurrency because it performs an AllToAll among
all processes, which has higher latency. The size of the matrix
also contributes to the scalability of the distributed-memory
RCM algorithm. For example, the largest two matrices in our
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Fig. 6: Breakdown of runtime when computing RCM ordering
for 1door using one thread per MPI process on Edison.

test set (Nm7 and nlpkkt240) continue to scale on more than
4K cores whereas smaller problems do not scale beyond 1K
cores. This demonstrates that our algorithm can scale on even
higher core count if larger matrices are given as inputs.
Since the distributed-memory SPMSPV is the most expen-

sive step of our RCM algorithm, we investigate its perfor-
mance more closely. Figure 5 shows the breakdown of com-
putation and communication time of the distributed SPMSPV
primitive. We observe that on lower concurrency, SPMSPV
is dominated by its computation, as expected. The communi-
cation time of SPMSPV starts to dominate the computation
time on higher concurrency, and the crossover point where
the communication becomes more expensive than computation
depends on the properties of the matrices. Graphs with higher
diameters have higher communication overhead than graphs
with low diameters. For example, 1door has one of the
highest pseudo-diameters among all problems we considered.
Hence, the RCM algorithm on 1door becomes communica-
tion bound on 1K cores. By contrast, low-diameter graphs with
sizes similar to 1door remain compute bound on 1K cores
and scale beyond 1K cores on Edison.

We have also experimented with a flat MPI approach. This
non-threaded RCM implementation had higher communication
overhead and ran slower than the multithreaded implemen-
tation, especially on higher concurrencies. For example, the



flat MPI implementation took 5x longer to compute RCM on
the 1door matrix using 4096 cores of Edison as shown in
Figure 6.

VI. CONCLUSION AND FUTURE WORK

We have introduced the first distributed-memory implemen-
tation of the RCM algorithm. In particular, we have described
how the RCM algorithm can be reformulated using the sparse
matrix / graph duality, so that the parallel implementation can
be accomplished using a small set of parallel primitives that
have been highly optimized. Our experiments have shown that
the distributed-memory implementation of the RCM algorithm
presented in this work scales well up to 1024 processors
for smaller matrices, and even to 4096 cores for the largest
problems we have evaluated.

We have shown that this new approach is overall faster
than the traditional approach that gathers the matrix structure
on a single node, followed by the application of a serial or
a multithreaded implementation of the RCM algorithm, and
then redistributing the permuted matrix. More importantly, our
approach removes the memory bottleneck that may be caused
by having to store the entire graph with a single node.

A scalable implementation of the RCM algorithm is of
prime importance for many iterative solvers that benefit from
reordering the matrix. We have assessed this on a sample
problem using the conjugate gradient method with block
Jacobi preconditioner available in PETSc.

Immediate future work involves finding alternatives to sort-
ing (i.e. global sorting at the end, or not sorting at all and
sacrifice some quality). Longer term work would investigate
alternative BFS formulations that are not level-synchronous,
as the existing approach has trouble scaling to high-diameter
graphs.
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