
THEME ARTICLE: COLLEGEVILLEWORKSHOP 2021:
SCIENTIFIC SOFTWARE TEAMS

The PETSc Community as Infrastructure
Mark Adams, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Satish Balay , Oana Marin, Lois Curfman McInnes , Richard Tran Mills , Todd Munson , Hong Zhang , and
Junchao Zhang, Argonne National Laboratory, Lemont, IL, 60439, USA

Jed Brown , University of Colorado at Boulder, Boulder, CO, 80309, USA

Victor Eijkhout, The University of Texas at Austin, Austin, TX, 78712, USA

Jacob Faibussowitsch, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

Matthew Knepley , University of New York at Buffalo, Buffalo, NY, 14260, USA

Fande Kong, Idaho National Laboratory, Idaho Falls, ID, 83415, USA

Scott Kruger, Tech-X Corporation, Boulder, CO, 80303, USA

Patrick Sanan, ETH Zurich, 8092 Z€urich, Switzerland

Barry F. Smith , Flatiron Institute, New York, NY, 10010, USA

Hong Zhang, Illinois Institute of Technology, Chicago, IL, 60616, USA

The communities that develop and support open-source scientific software packages
are crucial to the utility and success of such packages.Moreover, they form an
important part of the human infrastructure that enables scientific progress. This article
discusses aspects of the Portable Extensible Toolkit for ScientificComputation
community, its organization, and technical approaches that enable community
members to help each other efficiently and effectively.

To meet the technological challenges of the 21st
century, the simultaneous revolutions in data sci-
ence and computing architectures need to bemir-

rored by a revolution in scientific simulation that provides
flexible, scalable, multiphysics multiscale capabilities in
both traditional and new areas. This simulation technol-
ogy rests on a foundation of numerical algorithms and
software for high-performance computing. This founda-
tion raises in importance to the level of classical hard
infrastructures but it requires human investment and
new ways of organizing the effort for software and algo-
rithmdevelopment, support, andmaintenance.

Much simulation technology today is developed
and supported with a communitya open-source

software paradigm.1,3,5,9 Many numerically oriented
open-source projects, including SciPy, Julia, and
Stan, thrive because of their communities; those
without a community die out, have only a fringe
usership, or are maintained (as orphan software) by
other communities.

In addition, an explicit focus on software ecosys-
tems—collections of interdependent products
whose development teams have incentives to col-
laborate to provide aggregate value—is addressing
growing HPC complexity.6 Notable efforts include
the xSDK, where community policiesb are helping
with coordination among numerical packages, and
E4S,c a broader effort addressing functionality
across the HPC software stack. These endeavors
are funded by the U.S. Department of Energy (DOE)
within the Exascale Computing Project (ECP).d

Moreover, communities are tackling challenges in
how research software is developed and sustained10

as well as software stewardship.8
This work is licensed under a Creative Commons Attribution
4.0 License. For more information, see https://creativecom-
mons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MCSE.2022.3169974
Date of publication 11 May 2022; date of current version 31
August 2022.

aThe source is developed in a public environment with con-
tributors from a variety of institutions.

bhtt _ps://xsdk.info/policies
chtt _ps://E4S.io
dhtt _ps://exascaleproject.org

Computing in Science & Engineering Published by the IEEE Computer Society May/June 20226



This article presents an explanatory case study of
the Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc),2 considering community as infrastruc-
ture. PETSc began in the early 1990s at Argonne
National Laboratory as a project for research on paral-
lel numerical algorithms. Since then, developers, users,
and functionality have grown substantially, driven by
continually expanding community needs to exploit
advances in HPC architectures for next-generation
science fully. The authors have over 160 years of com-
bined experience with PETSc; their training ranges
from mathematics to computer science to science
and engineering. One author also supports PETSc at a
supercomputing center; another maintains the testing
and merge request infrastructure. Several authors are
liaisons with other software communities. PETSc com-
prises software infrastructure (code and tools) plus
human infrastructure: the community of people who
develop, support, maintain, use, and fund PETSc, their
interactions, and their culture. The human infrastruc-
ture—people and their interactions as a community,
within the broader DOE, HPC, and computational sci-
ence communities—is foundational and enables the
creation of sustainable software infrastructure.

PETScwasnotoriginally purposefully designed to sup-
port long-term community software infrastructure.
Rather, work on the software inspired the creation of a
set of practices to enable a small development teamwith
large ambitions and a long time horizon to develop and
support software capable of solving problems of interest
to the developers and their collaborators. However,
these practices, reviewed in the following, have wider
benefits, and certain community properties could serve
as a template for long-term software infrastructure:

› enabling swift, in-depth engagement, especially
for new users;

› encouraging and offering opportunities for anyone
to contribute to the software and documentation;

› providing a virtual institution for collaboration;
› developing extensible interfaces that enable peo-
ple interested in mathematics and algorithms to
experiment and deploy research;

› supporting developer autonomy to pursue topics
aligned with individual research needs;

› enabling strong ties to academia, industry, and
laboratories worldwide;

› committing to continually advancing library
capabilities as needed by next-generation sci-
ence and HPC architectures.

Spread throughout the world, the PETSc community
allows the real-time transfer of knowledge across

institutions and application fields. Also, community inter-
actions promote algorithmic development, enable state-
of-the-art advances, and benefit the scientific
community.

We organize this article as follows. In the next sec-
tion, we discuss the purposes of the PETSc community
and the various roles that members play. After that, we
introduce several key organizational principles and
communication patterns. We then introduce the para-
digm of debugging by e-mail, which encapsulates the
philosophy and software technologies we use to help
each other (regardless of location) use, debug, and
improve PETSc. This section shows how technical
choices in design and software details can be made
specifically to enhance the community experience.

COMMUNITY
This section outlines the myriad purposes of the PETSc
software and its roles within the PETSc community.
First, of course, the PETSc community (similar to other
package communities) is embedded in the DOE, HPC,
and broader computational science communities.

Purposes of PETSc
PETSc serves many purposes as a software library that
connects research in applied mathematics to usage
within applications in science and engineering. These
include:

› a research platform targeting innovative algo-
rithmic development;

› a well-supported HPC library;
› a repository of template applications via a
wealth of example codes;

› a compendium of algorithms, with an algorith-
mic management system that provides con-
crete, scalable implementations of a wide range
of methods described in the applied mathemat-
ics literature;

› an application development framework;
› a pedagogical tool for training numerical ana-
lysts on HPC platforms4;

› a source of best choice numerical methods in its
role as an interface between academic algorith-
mic development and the needs of users in sci-
ence and engineering;

› an extensible interface to complementary HPC
software, such as SuperLU and hypre.

Roles of PETSc Community Members
Virtually all active PETSc community members are
PETSc users; a smaller subset of these, who often

May/June 2022 Computing in Science & Engineering 7

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



began as PETSc users, are also PETSc developers. All
PETSc users provide important contributions, including
bug reports, bug fixes, improved documentation, and
suggestions for new features. Individuals often move
between different roles in the PETSc community. There
is a “long tail” who contributes less frequently than the
most active developers, yet collectively contributes a
great deal. Over one hundred people are contributors
to the PETSc Git repository; hundreds more communi-
cate through e-mail and GitLab issues each year, and
thousands use PETSc directly or via other toolkits.

The community structure is crucial in providing a
pathway to increasing involvement for interested
users. One way is to characterize PETSc community
members along institutional lines.

› Academic-oriented users are students, faculty,
and staff focusing on research and development,
employed by universities and research laborato-
ries. Students may use PETSc to do homework or
develop a paper or thesis code. Students often
contribute code back to PETSc, and, as they
graduate, bring PETSc to their new institutions.
Some students have become PETSc developers.

› Industrial users employ PETSc in their company’s
research or commercial products. PETSc’s 2-clause
BSD license eases its commercial use. These users
may request support that is unlikely to be funded
by research grants, such as support for Microsoft
Windows; fortunately, there are avenues for PETSc
community members to help with these requests.
Industrial users require discretion and confidential-
ity. They cannot always share their use cases, so we
must provide general solutions without details of
the specifics. Developing the trust needed for indus-
trial users is a gradual process whose importance
must be recognized by both sides.

Another way to categorize
PETSc community members is
by the goals of their work, as
shown in Figure 1.

› Algorithm developers focus
on devising and analyzing
algorithms and hence may
be less concerned about
generality andusability. They
use PETSc because it pro-
vides infrastructure for HPC
architectures, allowing them
to avoid unnecessary cod-
ing. Algorithm developers

face the challenge of writing scalable imple-
mentations, which, even in PETSc, can be
time consuming with a steep learning curve.
However, such people find the benefits of
using PETSc, including the broad impact of
their work on HPC applications, outweigh
using packages with a less steep learning
curve, such as MATLAB.

› Scientific toolkit developers build systems that
tackle a subset of PETSc functionality but at a
higher level of abstraction, with more specific sup-
port for their target class of problems. Such tool-
kits, including Firedrake, MOOSE, and Deal.II,
leverage PETSc capabilities and introduce addi-
tional infrastructure.

› Application developers focus on creating a code
that addresses one specific simulation. They are
often discipline scientists or engineers, who ben-
efit from performance enhancements provided
through PETSc composability, where upgrades
in algorithms and data structures can occur
seamlessly from a user perspective, yet provide
significant performance increases.

ORGANIZATION AND
COMMUNICATION

We now summarize the organizational and communi-
cation patterns in PETSc due to its various purposes
and member roles. Besides communicating within
funded projects, institutional settings, and events,
users engage in the PETSc community through online
support mailings, GitLab issues, and Slack channels.
Annual PETSc user meetings include tutorials on
leveraging library functionality for research while also
highlighting users’ science achievements made possi-
ble by advances in PETSc features.

FIGURE 1. PETSc is a scientific junction, where the boundary between types of users and

developers is fluid; roles shift and change.

8 Computing in Science & Engineering May/June 2022

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



EngagementWhen Problems Occur
Support is a crucial aspect of a healthy software com-
munity. Members of the PETSc community usually
respond to requests within hours, if not minutes. This
engagement helps new users feel welcomed and val-
ued, make rapid progress, and gain confidence.
Through users’ feedback, developers learn what works,
what does not, and where improvements are needed.
PETSc community members discover new research
topics from feature requests and discussions.

However, providing excellent support is a substan-
tial effort, particularly when users encounter difficult
bugs or performance issues at scale. User-developer
communication on a particular topic can span weeks
or even months. PETSc developers need to be patient
and consistently engaged with users. One may ques-
tion whether this practice is sustainable, but it has
worked reasonably well. In the last section, we discuss
some technical approaches to providing support.

TrustWithin the Community
To maintain the vitality of the library, new algorithmic
developmentsmust be rapidly integrated, bugs promptly
fixed, and awkward constructions removed. These activi-
ties require the PETSc community to establish a high
level of trust, communicating that the library will be well
supported even in the face of rapid evolution, and that
code will continue to run with help from the community.
Members of the PETSc community have a wide range of
professions, backgrounds, and levels of involvement,
with individuals often participating in several ways over
the years. Engagement is key to disseminating tacit
knowledge and developing users’ skills and social sup-
port so that people can transition to become developers
and mentors. The PETSc community has developed a
broad base of people with expertise and kindness to
reduce and report bugs, mentor newcomers, and con-
tribute in other ways. To help improve the atmosphere,
which can be difficult for newcomers, the PETSc com-
munity has adopted a code of conduct.e

Community to Community
Application communities often treat PETSc as a software
ecosystem instead of a stand-alone package. As a result,
they rely on PETSc to manage necessary low-level tools,
such as MPI, BLAS/LAPACK, and vendor packages used
on accelerators. Application communities also appreci-
ate unified solver interfaces, particularly linear precondi-
tioners, which enable application codes to access third-

party libraries, such as MUMPS, SuperLU, and hypre
with little effort. Often “technical language” barriers
exist between communities. For example, an expert in
contact mechanics may describe a solver convergence
issue as “we found a PETSc error when contacts occur
with a frictionless model.” A solvers expert might find it
hard to resolve such an issue. Fortunately, other PETSc
community members may have domain expertise and
can serve as liaisons between communities. Such indi-
viduals speak the languages of both communities,
understanding both PETSc’s capabilities and the needs
of their communities. Thus, they can explore, explain,
and introduce PETSc features to their communities.
Such liaisons help expand PETSc’s reach across disci-
plines and reduce the centralized maintenance burden
by addressing many questions directly in their commu-
nities while contributing patches, feature requirements,
and even serving as testers of software releases.

An important PETSc subcommunity is systems engi-
neers who manage institutions’ computational infra-
structure. They often are the first to encounter problems
that need the attention of PETSc developers. Their exper-
tise can help rapidly debug problems and develop fixes.
Package maintainers, for example, for APT, are also a
valuable resource, as they track PETSc on particular con-
figurations; they often have excellent suggestions for
improvements to PETSc’s configuration and installation.

Responding to Change
Communitiesmust respondwith innovative and creative
solutions to changing circumstances. For numerical soft-
ware, this includes the continual emergence of new sci-
ence drivers and techniques, currently data science and
artificial intelligence, as well as new hardware architec-
tures. For example, a large shift in HPC is underway with
incorporating graphical processing units (GPUs) into sci-
entific computing. Major organizations, such as DOE
have responded with, for example, the ECP, where com-
munity open-source projects, including PETSc, are
aggressively developing innovations in data structures
and algorithms for new architectures,7,11 The PETSc com-
munity empowers developers to be creative by providing
the autonomy to be innovative while still maintaining
guidelines for developmentf and town squares to orga-
nize overall development plans. This approach, along
with PETSc’s wide variety of contributors, enables a level
of agility that might not otherwise occur. This approach
also promotes project-specific planning (for example, as
needed for work proposed and funded in particular

ehtt_ps://gitlab.com/petsc/petsc/-/blob/main/
CODE_OF_CONDUCT.md fhtt _ps://petsc.org/release/developers

May/June 2022 Computing in Science & Engineering 9

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



grants) and coordination among development communi-
ties overall.

Enabling Research Collaborations
PETSc’s community helps members identify funding
opportunities, access expertise, and transition between
roles in the project. One of the greatest difficulties in
maintaining a coherent software project over decades is
providing career paths for contributors. PETSc gives aca-
demic contributors a solid foundation for advancement
via awards (e.g., SC Gordon Bell prizes and SIAM prizes),
the highly cited users’ manual, professional recognition,
and productive collaborations born from PETSc develop-
ment, maintenance, and support. In addition, PETSc pro-
vides resource sharing from collaborative grants and
collaboration opportunities that extend beyond the
development group. Sometimes, PETSc affiliation may
be more important than departmental affiliation, espe-
cially since modern academic departments are often
atomized, with little internal collaboration. The commu-
nity provides strong academic connections for industrial
and laboratory members, tangible outputs recognized by
future employers, and active participation in the wider
computational science community.

EngagementWith Funding Institutions
Even the smallest community open-source projects can-
not exist without some funding and institutional support.
Usually, it is a combination of grants from governmental
or nongovernmental agencies, in-house funding within
particular institutions, and less formal systems that allow
employees to contribute to open-source packages dur-
ing a portion of their regular employment. Members of
the PETSc community are actively engaged with pro-
gram development, including communicating with pro-
gram managers at the U.S. Department of Energy, the
National Science Foundation, and with institutional man-
agement to ensure that support is provided and main-
tained. This form of interaction is crucial to the long-
term viability of all open-source software communities;
PETSc users and community members have played
important roles in various local, national, and interna-
tional conversations, including recent DOE activities
related to software sustainability.8,10

SOFTWARE DESIGN TO SUPPORT
THE COMMUNITY

Helping people when they encounter problems is
essential for the PETSc community. Members of the
community need to diagnose quickly where problems
occur and refer users to corresponding support if a

solution is beyond the expertise of PETSc developers.
Because of its complexity—users call PETSc through
its Python, Fortran, or C bindings; in Linux, macOS, or
Windows operating systems; on machines from lap-
tops to the world’s most powerful supercomputers; on
x86, Arm, Power, or other CPU architectures, possibly
accelerated by GPUs from different vendors—PETSc
community helpers cannot reproduce all problems
met by individuals. Thus, PETSc has a holistic remote
debuggable design, enabling a feature dubbed debug-
ging by e-mail, so PETSc community members can pin-
point causes of problems through conversations in
PETSc mailing lists and GitLab issues.

This approach enables the community to do more
with less. In this section, we introduce the debuggabil-
ity design of PETSc, which is designed and imple-
mented to improve engagement and support. PETSc’s
debuggability spans from configuration to code execu-
tion, with the salient features highlighted in Figure 2.
Our commitment to software support leads us to
maintain our own simple, integrated tools for many
tasks that conventional software wisdom would dic-
tate should be performed exclusively by full-featured
external tools. The combination of internally devel-
oped and external tools used in PETSc is unique to its
history and “high-end” HPC focus and is not necessar-
ily the best approach for other open-source packages.

Configuration Debugging
HPC software systems have complex execution envi-
ronments, including great variance in hardware and

FIGURE 2. PETSc has a holistic remote debuggable design,

enabling a feature dubbed debugging by email, so PETSc

community members can pinpoint causes of problems

through conversations in PETSc mailing lists and GitLab

issues.

10 Computing in Science & Engineering May/June 2022

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



software. Software developers must expend consider-
able effort to configure and build their code for different
situations. When failures occur, the software developers
need to have information available in a usable format to
diagnose and fix the problems. Configuration failures are
the most common support issues the PETSc community
faces. Thus, having a debuggable configuration system
with comprehensive logging is critical. Rather than using
a standard configuration system, such as GNUAutotools
or CMake, PETSc, has a bespoke configuration system
with extensive checking, written in Python, which logs
everything during configuration in a single file configure.

log. When a check fails, it generates clear error messages
and a Python stack trace. PETSc users attach configure.

log and another file make.log generated by make when they
meet configuration errors. By examining the two files,
PETSc developers can quickly determine why the config-
uration system made specific choices and what went
wrong. In addition, since the configuration system is
bespoke, the PETSc community can easily add new
checking, testing, and logging. CMake is notoriously diffi-
cult to debug by e-mail because it logs information in var-
ious directories and does not logmuch of its process.

Runtime Error Debugging
The PETSc library strives to provide descriptive error
messages that explain why and where errors have
occurred, making it easy for PETSc developers to diag-
nose by e-mail what went wrong and assist users with
fixes. PETSc has extensive code to assist in this
regard. See Listing 1, which shows code that adds two
vectors with y += alpha*x. Every PETSc function returns
a PetscErrorCode, indicating whether the function is suc-
cessfully executed, and if not, what error occurred. In
PETSc source code, every function call is error
checked, as in lines 12–14. We make errors manifest

early rather than later to avoid obscure error mes-
sages. The default error handler prints the stack trace
leading to the error, including function names, file
names, and line numbers. The stack trace is built
inside the two macros PetscFunctionBegin and PetscFunc-

tionReturn(0); see lines 3 and 16. PETSc also provides
utilities to check the integrity of function parameters;
see lines 4–10. All application programming interfaces
(APIs) shown here are public; users are encouraged to
apply the same strategy in their code.

PETSc also has APIs to assert properties of the
code so that useful error messages are generated
promptly if the code behaves unexpectedly. For exam-
ple, once a matrix is preallocated or assembled, one
can set a property of the matrix to indicate that in sub-
sequent insertions one will insert only to existing non-
zero locations.

Memory Debugging
Memory corruption problems are common; therefore,
memory allocations are done through a PETSc-spe-
cific API that records information and sets sentinels
around the allocations in debug mode. With com-
mand-line options, PETSc will initialize the allocated
memory with not a number; using the uninitialized
memory in floating-point operations will generate
an appropriate error message. Also, PETSc can check
the integrity of the entire heap of PETSc-allocated
memory at every allocation. PETSc codes also can out-
put information about memory that has never been
freed during the PETSc finalization stage, to detect
memory leaks. As lightweight Valgrind-like features,
the output can be shared with PETSc developers to
help understand a code’s misbehavior. But, of course,
we also recommend using more sophisticated tools,
including Valgrind and debuggers.

LISTING 1. Sample showing error checking in PETSc.

May/June 2022 Computing in Science & Engineering 11

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



Performance Debugging
Another challenging support task, which the PETSc
community also handles routinely, is debugging per-
formance problems, particularly for high levels of par-
allelism. PETSc provides APIs to allow developers and
users to set stages in their code and log the perfor-
mance of events of interest. For example, lines 12 and
14 in Listing 1 are for the VEC_AXPY event, rendering a
lightweight, integrated logging system that allows
users to quickly gather timings. Listing 2 shows a snip-
pet of the stdout output. From the top, we know that
the computation has two stages, labeled as setup and
solve. PETSc summarizes the computation and com-
munication statistics of the two stages. Below that, it
lists detailed statistics of events (functions) within
each stage (only the first stage is shown), including
the number of times an event has been called, time
and floating-point operations (flops) an event has
spent, MPI messages and reductions an event has
incurred, and other statistics. Interested readers are
referred to the PETSc/TAO Users Manual2 or hints in
the log view message itself. Because MPI processes
have different statistics in parallel, PETSc shows max-
ima overall processes and ratios of maxima to minima.
This information is useful because whenever we
encounter a large ratio in time or flops in output, we
know a load imbalance in the corresponding event
might exist. Sometimes, imbalance in one event can
distort the timing of other events (for instance,

processes might wait for messages from a lagging
partner), giving confusing results.

Having the profiling tools integrated with the
numerical algorithms in use, outputting by default to
stdout, is crucial because it allows all users to provide
quickly information on their usage, independent of
what computational systems they may use or which
additional analysis or logging tools they have available.
This allows PETSc developers to quickly and directly
view timings on the user’s system and facilitate perfor-
mance debugging of scalable solvers at “production”
scale, by e-mail, where direct reproduction of a user’s
issue is infeasible.

AlgorithmDebugging
PETSc includes an extensive suite of parallel precondi-
tioners, linear solvers, nonlinear solvers, and time inte-
grators. Composable and nested solvers are among
the most powerful PETSc features since they facilitate
numerical experimentation on a novel, complex prob-
lems, but keeping track of them can be difficult. PETSc
developers must see the detailed solver configura-
tions to spot potential problems. Hence, PETSc pro-
vides APIs to display all solver options being used.
Listing 3 shows a snippet of a longer output from a
nonlinear solver. With indention reflecting levels of the
composite solvers, we can see the nested solvers
used and key parameters employed at various levels
of the solvers.

LISTING 2. Sample output of -log_view.

12 Computing in Science & Engineering May/June 2022

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



PETSc provides flexible monitors to be used with
solver views, which print the residual or function norm
at each iteration of an iterative solver so that users
can check the convergence of the solver and compare
different algorithms. Listing 4 shows the output of
nonlinear and linear solver monitors.

In summary, PETSc offers a wide set of comple-
mentary options to aid debugging by e-mail with
the following common themes: users can enable
debugging regardless of their computing environ-
ment; errors appear as early as possible; and the

output is printed in well-formatted plain text for
copy-and-paste or file attachments to e-mails and
GitLab issues.

CONCLUSION
The increased prominence of data science and the
transition to computing architecture heterogeneity
require more, not less, high-quality numerical simula-
tion and analysis software. This software is often cre-
ated in community open-source environments; the

LISTING 3. Sample output of -snes_view.

LISTING 4. Sample output of -snes_monitor -ksp_monitor.

May/June 2022 Computing in Science & Engineering 13

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



communities are crucial to the utility of such software.
We have outlined some aspects of the open-source
PETSc community and its collaboration strategies.
Most of what was discussed apply to other numerical
software communities. We concluded by focusing on
mechanisms we use to allow community members to
efficiently help one another at a distance using
straightforward communication channels. The science
and engineering of scientific software communities are
only just beginning, and this topic is starting to receive
more consideration at institutional levels. By sharing
some of the PETSc community approaches, we hope to
contribute to the wider scientific computing commu-
nity as it seeks to improve the software programming
process.

ACKNOWLEDGMENTS
The authors thank all PETSc users and developers for
their many software, organizational, and conceptual
contributions to the community. This material was
based upon work funded in part by the U.S. Depart-
ment of Energy, Office of Science, under contract
DE-AC02-06CH11357. This work was supported in part
by the Exascale Computing Project under Grant
17-SC-20-SC, in part by a collaborative effort of the
U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, and in part
by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research
under Award Number DE-SC0016140. The work of
Matt Knepley and Jed Brown were supported in part
by U.S. DOE Contract DE-AC02-0000011838.

REFERENCES
1. G. Avelino, E. Constantinou, M. T. Valente, and

A. Serebrenik, “On the abandonment and survival of

open source projects: An empirical investigation,” in

Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.,

2019, pp. 1–12.

2. S. Balay et al., “PETSc/TAO users manual,” Argonne

Nat. Lab., Lemont, IL, USA, Tech. Rep. ANL-21/39,

Revision 3.16, 2021. [Online]. Available: https://petsc.

org/

3. W. Bangerth and T. Heister, “What makes

computational open source software libraries

successful?,” Comput. Sci. Discov., vol. 6, no. 1, 2013,

Art. no. 015010, doi: 10.1088/1749-4699/6/1/015010.

4. E. Bueler, PETSc for Partial Differential Equations:

Numerical Solutions in C and Python. Philadelphia, PA,

USA: SIAM, 2020, doi: 10.1137/1.9781611976311.

5. N. Eghbal, “Roads and Bridges: The unseen labor

behind our digital infrastructure,” 2016. [Online].

Available: https://www.fordfoundation.org/work/

learning/research-reports/roads-and-bridges-the-

unseen-labor-behind-our-digital-infrastructure/

6. L. C. McInnes, M. A. Erik, W. Heroux, A. Draeger,

S. S. Coghlan, and K. Antypas, “How community

software ecosystems can unlock the potential of

exascale computing,” Nat. Comput. Sci., vol. 1,

pp. 92–94, 2021, doi: 10.1038/s43588-021-00033-y.

7. R. T. Mills et al., “Toward performance-portable

PETSc for GPU-based exascale systems,” Parallel

Comput., vol. 108, 2021, Art. no. 102831,

doi: 10.1016/j.parco.2021.102831.

8. “Request for information on the stewardship of

software for scientific and high-performance

computing,” U.S. Dept. Energy, Office Adv. Sci. Comput.

Res., Oct. 2021. [Online]. Available: https://www.govinfo.

gov/app/details/FR-2021-10-29/2021-23582

9. M. J. Turk, “How to scale a code in the human

dimension,” in Proc. Conf. Extreme Sci. Eng. Discov.

Environ.: Gateway Discov., 2013, pp. 1–7, doi: 10.1145/

2484762.2484782.

10. “Workshop on the science of scientific-software

development and use,” U.S. Dept. Energy, Office Adv.

Sci. Comput. Res., Dec. 2021. [Online]. Available:

https://www.orau.gov/SSSDU2021

11. J. Zhang et al., “The PetscSF scalable

communication layer,” IEEE Trans. Parallel Distrib.

Syst., vol. 33, no. 4, pp. 842–853, Apr. 2022,

doi: 10.1109/TPDS.2021.3084070.

MARK ADAMS is a staff scientist in the Scalable Solvers

Group at Lawrence Berkeley National Laboratory, Berkeley,

CA, 94720, USA. Adams received his Ph.D. degree in civil engi-

neering from the University of California at Berkeley. Contact

him at mfadams@lbl.gov.

SATISH BALAY is a software engineer at Argonne National

Laboratory, Lemont, IL, 60439, USA. Balay received his

M.S. degree in computer science from Old Dominion Univer-

sity. Contact him at balay@mcs.anl.gov.

OANAMARIN is a numerical analyst at ArgonneNational Labo-

ratory, Lemont, IL, 60439, USA. Marin received her Ph.D. degree

applied mathematics from the Royal Institute of Technology.

Contact her at oanam@anl.gov.

LOIS CURFMAN MCINNES is a senior computational scien-

tist at Argonne National Laboratory, Lemont, IL, 60439, USA.

McInnes received her Ph.D. degree in applied mathematics

from theUniversity of Virginia. Contact her at curfman@anl.gov.

14 Computing in Science & Engineering May/June 2022

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS



RICHARD TRAN MILLS is a computational scientist at

Argonne National Laboratory, Lemont, IL, 60439, USA. Mills

received his Ph.D. degree in computer science from the Col-

lege of William and Mary. He is a member of IEEE. Contact

him at rtmills@anl.gov.

TODD MUNSON is a senior computational scientist at

Argonne National Laboratory, Lemont, IL, 60439, USA. He is a

member of IEEE. Munson received his Ph.D. degree in com-

puter science from the University of Wisconsin at Madison.

Contact him at tmunson@anl.gov.

HONG ZHANG is an assistant computational mathematician

at Argonne National Laboratory, Lemont, IL, 60439, USA.

Zhang received his Ph.D. degree in computer science from

Virginia Tech. Contact him at hongzhang@anl.gov.

JUNCHAO ZHANG is a software developer at Argonne

National Laboratory, Lemont, IL, 60439, USA. Zhang received

his Ph.D. degree in computer science from ICT, Chinese Acad-

emy of Science. Contact him at jczhang@anl.gov.

JED BROWN is an assistant professor at the University of

Colorado at Boulder, Boulder, CO, 80309, USA. Brown

received his Dr.Sc. degree in civil and environmental engi-

neering from ETH, Zurich, Switzerland. Contact him at

jed@jedbrown.org.

VICTOR EIJKHOUT is a research scientist at the Texas

AdvancedComputingCenter of TheUniversity of Texas atAustin,

Austin, TX, 78712, USA. Eijkhout receivedhis Ph.D. degree inmath-

ematics from Radboud University, The Netherlands. Contact him

at eijkhout@tacc.utexas.edu.

JACOB FAIBUSSOWITSCH is a graduate research student at

the University of Illinois at Urbana-Champaign, Urbana, IL,

61801, USA. Faibussowitsch received his B.Sc. degree in engi-

neering mechanics from the University of Illinois at Urbana-

Champagne. Contact him at faibuss2@illinois.edu.

MATTHEW KNEPLEY is an associate professor at the Univer-

sity of New York at Buffalo, Buffalo, NY, 14260, USA. Kenpley

received his Ph.D. degree in computer science from Purdue

University. Contact him at knepley@gmail.com.

FANDE KONG is a computational scientist and software

developer at Idaho National Laboratory, Idaho Falls, ID,

83415, USA. Kong received his Ph.D. degree in computer sci-

ence from the University of Colorado Boulder. Contact him at

fande.kong@inl.gov.

SCOTT KRUGER is a scientist/VP with Tech-X Corporation,

Boulder, CO, 80303, USA. Kruger received his Ph.D. degree in

nuclear engineering and engineering physics from the Univer-

sity of Wisconsin-Madison. Contact him at kruger@txcorp.com.

PATRICK SANAN is a postdoctoral researcher at ETH Zurich,

8092, Z€urich, Switzerland and an assistant computational

mathematician at Argonne National Laboratory, Lemont, IL,

60439, USA. Sanan received his Ph.D. degree in applied and

computational mathematics from the California Institute of

Technology. Contact him at psanan@anl.gov.

BARRY F. SMITH is a senior research scientist at the

Flatiron Institute, New York, NY, 10010, USA. Smith received

his Ph.D. degree in mathematics from New York University.

Contact him at bsmith@flatironinstitute.org.

HONG ZHANG is a research professor of computer science at

the Illinois Institute of Technology, Chicago, IL, 60616, USA.

Zhang received his Ph.D. degree in applied mathematics from

Michigan State University. Contact her at hzhang@mcs.anl.gov.

May/June 2022 Computing in Science & Engineering 15

COLLEGEVILLEWORKSHOP 2021: SCIENTIFIC SOFTWARE TEAMS


