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Abstract
We present optimizations to improve communication perfor-
mance by reducing on-node data movement for a class of
distributed memory applications. The primary concept is to
eliminate the data movement associated with packing and
unpacking subsets of the data during communication. With
the rapid rise in network injection bandwidth reducing off-
node data movement cost, on-node data movement can be
significantly more expensive than computation and network
communication. This data movement is especially costly
for small domains - as in memory-intensive multi-physics
codes or when strong scaling to reduce time-to-solution.
The optimizations presented include (1) optimizing data lay-
out through indirection to enable pack-free communication;
(2) creating contiguous views of memory using memory
mapping thus minimizing the number of messages; and (3)
applying these techniques to intra-node data movement in-
cluding CPU-GPU data movement. The benefits of these op-
timizations are demonstrated in stencil benchmarks against
a highly-optimized baseline, reducing communication time
by up to 14.4×.

CCSConcepts: •Computingmethodologies→Distributed
algorithms; • Software and its engineering → Software
libraries and repositories.

Keywords: MPI Communication, Data Layout, Data Block-
ing
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1 Introduction
Many parallel distributed algorithms, such as finite differ-
ence/element methods and Krylov sub-space methods, ex-
hibit a common communication pattern involving nearest-
neighbor data. This communication pattern has the following
properties: (1) Static: the addresses and size of the data to be
communicated are static across iterations of a simulation;
(2) Subsets: communication involves a subset of data, some
of which is not adjacent in memory; and, (3) Overlapping:
the subsets to be communicated are overlapping, so that the
same data is sent to multiple neighbors.
As an example, stencil computations exhibit this commu-

nication pattern; stencils are ubiquitous in scientific simu-
lations that solve partial differential equations. To calculate
stencils on logically regular grids in a distributed environ-
ment using MPI, the regular domain may be divided into
subdomains that are distributed amongMPI processes. These
subdomains are then extended with a ghost zone that con-
tains copies of the values from neighboring subdomains that
are needed each time a stencil is applied. After each stencil
application on a subdomain, called the timestep, the values
from the surface of the subdomain are used to populate the
ghost zones of neighboring subdomains, by sending the data
from the local surface to the corresponding remote ghost
zone, using MPI. Often, surface and ghost zones are fixed
across multiple timesteps, and a given surface region is sent
in multiple messages to different neighbors. This required
communication to update ghost zone values is called a ghost
zone exchange. As some of the surface regionsmay not be con-
tiguous in memory, a common practice to reduce the number
of messages is to pack data from the surface into MPI mes-
sages and unpack from the MPI messages to the ghost zone.
(For simplicity, we will describe both collectively as Packing
in this paper.) Packing introduces significant on-node data
movement, which increases overall communication costs.
To illustrate this overhead, consider performance of a

canonical 7-point stencil. Figure 1 shows results using the
state-of-the-art YASK stencil code generator [25] running
on 8 Intel KNL nodes of the Theta supercomputer (see end
of Section 2, below). We hold the number of nodes constant
and vary the subdomain size. This test is a proxy for strong
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Figure 1. Time breakdown per timestep on 8 Theta nodes
(KNL 7230), where each node is given one subdomain size
(𝑁 = 512)3 down to (𝑁 = 16)3, laid out in a periodic
3D cube (2 × 𝑁 )3. For comparison, YASK [25] (left bars)
uses an autotuned 7-point stencil, without overlapping MPI
communication (green) and computation (blue) using the
-no-overlap_comms option. For all but the largest subdo-
main sizes, a majority of the time is in Packing (red), which
is a type of on-node data movement that our approaches
entirely avoid.

scaling, where the overall problem size is fixed as the number
of nodes increases. As we shrink the subdomain dimension
by 2×, the resulting subdomain is comparable to scaling the
number of nodes by 8× for a fixed size domain. This also
corresponds to minimizing time-to-solution and/or mem-
ory footprint, as the case in many multi-physics or iterative
solver applications.When shrinking the subdomains, the sub-
domain size per node (volume of operations) shrinks faster
than the surface (volume of data communicated), resulting
in an increased fraction of time being spent on communica-
tion. In fact, Figure 1 indicates that on smaller subdomains,
the time spent on Packing, as a step of communication, be-
comes the majority of the ghost zone exchange time, while
the time spent in computation decreases rapidly. The total
communication time, which includes MPI and on-node data
movement such as Packing, exceeds the computation time,
even for the larger 2563 subdomain sizes.

Packing is expensive because ghost zones vary in size, and
may express unit-stride, stanza, or strided memory access
patterns. These patterns fight against the hardware trends
in SIMD and GPU-accelerated computing, resulting in ex-
pensive memory operations. This data movement cost ap-
plies to scientific applications beyond the domain of stencils
that also require Packing to communicate non-contiguous
data [14, 19].
In this paper, we introduce optimizations to eliminate

Packing to achieve a pack-free ghost zone exchange. As the

subdomain size gets smaller, Figure 1 shows that our ap-
proach becomes much faster than YASK, with as much as
a 14.4× speedup. Previous strategies for optimizing ghost
zone exchange have not attempted to eliminate on-node data
movement and instead focused on hiding or reducing the
costs during communication. These include: (1) overlapping
communication and computation, possibly combined with
time skewing, to hide latencies in the network and increase
parallelism [18, 23, 25]; (2) communication-avoiding opti-
mizations to reduce message frequency to amortize the cost
of communication [3, 5, 7, 15, 21]; and, (3) using MPI derived
types to describe strided ghost zone regions and the MPI
library to optimize packing performance [2, 4, 8].

We achieved pack-free ghost zone exchange based on logical-
to-physical indirection, so that underlying data ordering can
be rearranged while still preserving logical computation,
i.e., layout optimization. For heterogeneous systems using
GPUs, our methods also reduce data movement cost during
communication as a whole. Currently, data must be moved
between host CPU and GPU during the ghost zone exchange.
If Packing occurs on the CPU, the entire subdomain must be
moved between CPU and GPU; otherwise Packing occurs on
the GPU and only the packed buffers are moved. The appli-
cation programmer then needs to write corresponding opti-
mized Packing routines and shuttle data explicitly. In prior
work [29], MPI was found to take up only half of the commu-
nication time, with Packing and shuttling data on node taking
up the rest. New techniques such as CUDA-Aware MPI[1]
and Unified Memory facilitate CPU-GPU data movement by
allowing direct MPI communication on memory accessed
by the GPU. We use pack-free ghost zone exchange in con-
junction with these techniques to eliminate manual host and
GPU data movement, resulting in substantial performance
improvements.
The contributions of this paper are as follows: (1) we

eliminate data movement from Packing using Layout op-
timization, to achieve pack-free communication for 3D sten-
cil computations; (2) we combine this with virtual memory
mapping, MemMap, to further improve communication per-
formance and optimize data movement between CPU and
GPU, and between subdomains on the same rank; (3) we
implemented these communication methods as library func-
tions that extend the brick library [27] to multiple nodes; and
(4) we provide a detailed analysis of pack-free communica-
tion performance on both CPU and GPU platforms through
scaling experiments, where we achieve up to 14.4× faster
communication.

2 Motivation and Overview
Ghost zone exchange for stencil computations is a promi-
nent communication pattern with the three properties (Static,
Subsets and Overlapping) targeted by our optimizations. To
demonstrate this, Figure 2(L) shows the ghost zone exchange
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Figure 2. (L) An example 32×32 subdomain with an 8-cell-wide ghost zone is decomposed into surface regions (1 − 8, colored
separately) and ghost zone (grey) regions. (C) shows the dotted logical area decomposed into 4 × 4 data blocks. Blocks are
indexed (0, 1, . . . ) so that physically each surface region is contiguous with regions laid out in sequence according to their
numbers (linear color bar, bottom). (R) Each surface region is sent to one or more neighbors. Using this layout, 12 messages
are required because the side messages are not contiguous in memory (indicated by spaces), but an optimal layout requires
only 9 messages (see Section 3.2).

regions for a 2D stencil kernel. The inner blue and colored
regions represent the logical subdomain assigned to a partic-
ular process, while the grey outer rim represents the ghost
zone of the subdomain. The rectangles numbered 1-8 rep-
resent the different-sized surface regions that will be sent
to neighboring subdomains, potentially on other nodes. For
example, region 4 is sent to only the left neighbor, while
region 1 is sent to the left neighbor and two others. Thus,
they are disjoint surface regions.
Although a lexicographical array layout has one contigu-

ous axis, e.g. i in i-j-k, none of these surface or ghost zone
regions is a contiguous array in that case, and so commu-
nication requires Packing. These Packing operations result
from the need for a different physical ordering of the data
than the logical ordering used for computation. Instead, we
eliminate the need for Packing using layout optimization,
so that the physical ordering of the data is optimized for
communication, while preserving the logical ordering used
for computation.
The optimized layout is realized using fine-grained data

blocking. The original structured data is broken into fixed-
size data blocks, such as the 4×4 blocks in Figure 2(C). The
data in each block is stored contiguously, and the block is
assigned an index that reflects the physical order that blocks
are stored in memory. The logical order is represented as
a graph-like data structure consisting of all the blocks. To
clarify this point, consider how unstructured data is typically
represented in a graph: data associated with each vertex is
stored in an array based on its index. Layout optimization
on the unstructured data is achieved by simply reordering
the graph storage and its corresponding indices, while still
preserving its logical organization. Similarly, layout opti-
mization of structured data adds a level of indirection on top
of the fine-grained data blocking.

Applying fine-grained data blocking to ghost zones re-
quires ghost zones that are multiples of the block size. Sev-
eral factors govern the size of ghost zones. A computation
may apply multiple stencils in a sequence, and the ghost
zone for each stencil can share a data block. Also, stencil ap-
plications increasingly use high-order stencils [17, 26] where
the number of inputs to compute an output is large. In either
of these cases, a single timestep will require a wide ghost
zone that can be decomposed into these fine-grained data
blocks. For applications that use a low-order stencil, such
as a 2D 5-point stencil, even a 4×4 data block is larger than
the 1-cell-wide ghost zones. For such stencils, we can ex-
pand the ghost zone to a multiple of the block size (such as
8 = 2 × 4 in the example), and use communication avoiding
ghost cell expansion [7]. With ghost cell expansion, we ex-
change all of the elements in the expanded ghost zone, thus
exchanging roughly 8× the communication volume. Ghost
cell expansion improves performance by reducing commu-
nication frequency (by a factor of 8), trading off redundant
computation to use all the data exchanged. Using ghost cell
expansion, even this low-order stencil has a ghost zone large
enough for fine-grained data blocking.

During computation, these fine-grained data blocks repre-
sent aggregate units of parallel work where vectorization can
be easily implemented. The logical organization identifies
neighboring blocks that contribute values to the computation.
Examples of fine-grained data blocking and associated code
generators for stencil computations include briquettes [11]
and bricks [27, 28]. These showed that fine-grained data
blocking provides performance portability for stencil compu-
tations by improving vertical data movement, and reducing
cache and TLB pressure.
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This indirection approach is shown in Figure 2(C), where
each region of the surface or the ghost zone is stored con-
tiguously to avoid Packing within them. The data blocks are
indexed (0, 1, . . . ) so that the indices are contiguous within
each surface region and the indices from different regions fol-
low the numbering of the regions in Figure 2(L). The indices
are the physical ordering in memory, which is illustrated
with a colored bar at the bottom of Figure 2(C).

As illustrated in Figure 2(R), subsets of data that partic-
ipate during the communication can have more than one
destination, and so must appear in more than one message.
For example, surface region 1 is sent to three different neigh-
bors in 2D. Without Packing, we can send each instance
of the region independently and increase the number of
messages without increasing the volume of communication.
We can also leverage the storage order across regions, such
as 1-2-3, to reduce the message count, as discussed in Sec-
tion 3, below. This is dimension-dependent; we will show
in Section 3.3 that layout optimization is more effective for
lower-dimension problems. In addition, Section 4 includes
an additional optimization using virtual memory mapping
which allows multiple regions to be mapped to the same
section of data.
We have developed these two ideas targeting stencils on

structured data. This is because, while structured data needs
fine-grained data blocking to introduce indirection, it is also
the most representative and easiest to analyze due to fixed
dimensionality. In our experiments we use 3D stencils as the
prototypical application, however the same analysis in this
paper can be applied to many other applications with similar
repeated communication patterns.

The remainder of this paper is organized as follows. First,
in Section 3 we introduce the pack-free ghost zone exchange
via layout optimization for stencil computations using fine-
grained data blocking. In Section 4, we show how memory
mapping extends its applicability and potential to improve
the performance of pack-free ghost zone exchange. Section 5
discusses how both layout optimization and memory map-
ping apply to CPU-GPU communication.
Our results and analysis are from experiments on two

large-scale supercomputers:
• The Theta supercomputer uses Cray XC40 nodes, with a

single Intel Xeon Phi Knights Landing (KNL) 7230 on each
node. The processor has 64 physical cores, each with 4-way
multithreading and two AVX-512 vector processing units
(VPUs). The processor can operate at a turbo frequency of
1.50 GHz that may downclock to around 1.1 GHz with AVX-
512-intensive applications. This results in an effective sus-
tained double-precision performance of 2.2 TFlop/s. The pro-
cessor also has 16 GB of MCDRAMwhich is used as separate
addressable memory in “flat” mode that has a STREAM [13]
performance of 467 GB/s. The network uses the Cray Aries
interconnect with a Dragonfly topology. MPI used is Cray-
MPICH version 7.7.10.
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(c) Represented in code

Figure 3. Optimized 2D surface layout.

• The Summit supercomputer has IBM AC922 nodes. 6
NVIDIA Volta V100 GPUs are connected with each other
through NVLink, with two IBM Power9 CPUs acting as the
host processor. Computations are performed on the V100
GPUs. The V100 has 16 GB HBM2memory with a bandwidth
of 828.8 GB/s [24]. Each GPU has 5120 CUDA cores that
can operate at up to 1.5 GHz producing a theoretical peak
double-precision performance of 7.8 TFlop/s. The network is
connected with Mellanox EDR 100G InfiniBand in a fat-tree
configuration. MPI used is Spectrum-MPI 10.3.1.2.

3 Optimizing Layout for Communication
We can leverage indirection in the data representation to op-
timize the layout for communication, which we have termed
Layout optimization; this section describes how optimized
layouts are encoded in the library implementation. Second,
we present an analysis of messages required for ghost zone
exchange using Layout for structured data. Finally, we dis-
cuss the effectiveness of Layout.

3.1 Describing Layout for Communication
As each surface region has the same set of destination neigh-
bors, they should be stored together so that they can be sent
together as a unit. Figure 2(C) illustrates this, with regions
of the surface stored contiguously through reordering the
data blocks, which applies to ghost zone regions as well.
We use a system of notations to encode the regions of

the data and the neighboring nodes. 𝐷-dimensional data
has 𝑑 axes, 𝐴1, 𝐴2, . . . , 𝐴𝐷 . Each axis, 𝐴𝑖 , has a positive 𝐴+

𝑖

(up or right for 2D) and a negative 𝐴−
𝑖 (down or left for 2D)

direction. A set of axes and a direction can identify a neighbor
and surface region in those directions. For example, the the
northeast neighbor in Figure 2(C) is identified as neighbor
𝑁 ({𝐴+

1 , 𝐴
+
2 }), and surface region labeled 8 is identified as

region 𝑟 ({𝐴+
1 , 𝐴

+
2 }).
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Figure 4. Time required for communication during one 3D
stencil loop on 8 KNL nodes vs. subdomain size. YASK in-
cludes time taken for Packing, which our approach avoids
entirely (Section 2). Sending each region independently re-
quires 98 messages (Basic), while our optimized layout
(Layout) requires only 42 messages which speeds up com-
munication for smaller subdomains.

This notation system is also used in the library implemen-
tation. Figure 3 shows the notation and corresponding code
of an optimized 2D layout.

3.2 Layout Optimization
We can improve communication performance by sending
consecutive surface regions in the same message. We note
that ghost zone regions are disjoint and owned by one pro-
cess, and so do not overlap when receiving data from another
process. In contrast, surface regions do overlap when being
sent to other processes. For example, if the surface regions
are stored according to the numbering in Figure 2(L), re-
gions 1-3 are contiguous in memory and can be sent with
exactly one message to neighbor 𝑁 ({𝐴−

2 }). Using this lay-
out requires 12 messages for ghost zone exchange with 8
neighbors.

By permuting the surface regions and leveraging the rela-
tive ordering of the regions, we can reduce the total number
of messages. For example, Figure 3 permuted the 2D regions
in Figure 2, so that its regions 3-5 can be sent with one
message to neighbor 𝑁 {𝐴+

1 }). Thus, only 9 messages are
required for 8 neighbors.
The possible layouts result from permuting the surface

regions. These layouts can be compared using the resulting
number of messages required for ghost zone exchange. Using
this criterion, we can find a 3D layout that only uses 42
messages to communicate with 26 neighbors through Layout
optimization. This can be comparedwith the Basic approach,
which sends each region individually. This Basic approach
does not consider the relative order of the regions and needs
no layout optimization. As a result, Basic needs 98 messages
instead. The timing results in Figure 4 show that Layout is
up to 2.3× faster than Basic.

Table 1. Impact of the number of dimensions on the num-
ber of messages. Layout optimization is more effective for
dimensions lower than 5.

Dimensions 1 2 3 4 5
Number of neighbors (Eq. 2) 2 8 26 80 242
Layout (Eq. 1) 2 9 42 209 1042
Basic (Eq. 3) 2 16 98 544 2882

3.3 Asymptotic Analysis
We have derived a lower bound on the number of messages
required with Layout optimization to send values from a 𝐷-
dimensional domain’s surface to all its neighbors, including
diagonals, as shown in Eq. 1.

5𝐷

3
+ (−1)𝐷

6
+ 1
2

(𝐷 ≥ 1) (1)

For brevity, the detailed proof is provided as supplemental
material to this paper.

Packing creates one message for each neighbor requiring
data from this subdomain. The total number of messages is
shown in Eq. 2, which equals the number of neighbors.

3𝐷 − 1 (2)

An upper bound on the number of messages with fine-
grained data blocking is with the Basic approach. As long as
each region is stored contiguously in memory, this approach
will result in the number of messages shown in Eq. 3.

5𝐷 − 3𝐷 (3)

Table 1 compares these three alternatives for different
numbers of dimensions. When comparing against Basic,
asymptotically, layout optimization could at most reduce
messages by 2/3. If we consider the number of neighbors,
Eq. 1 also implies that the number of messages grows ex-
ponentially with respect to the number of neighbors. This
growth rate makes layout optimization most effective when
dimension is less than 5.
Eq. 1 also proves that the 3D layout from the previous

section that results in 42 messages is an optimal layout when
optimizing for the number of messages. Using this optimal
3D layout, we are able to trade the expensive Packing op-
eration with 16 extra messages. This optimal 3D layout is
provided as a constant, surface3d, in our library, and de-
scribed analogously to surface2d in Figure 3.

4 Memory Mapping for Communication
We can reduce the number of messages for ghost zone ex-
change and send just a single message to each neighbor
through the use of virtual memory mapping, which we will
call as MemMap. Virtual memory mapping provides an extra
layer of indirection from virtual to physical address. This
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Figure 5. Using memory mapping (MemMap) we can avoid both Packing and sending extra messages. Whereas sending the
1, 4, 6 surface regions in Figure 2 would nominally require 3 messages, memory mapping exploits virtual memory and requires
only one message.

level of indirection is in addition to layout optimization,
which only modifies the logical organization of the data
within the virtual address space. Additional virtual mem-
ory manipulation results in little added overhead as virtual
addresses are resolved implicitly through a combination of
hardware units and kernel mechanisms.

To clarify, files in Linux can represent a chunk of physical
memory. Virtual memory mapping to these files creates a
link from virtual memory to physical memory. These files,
once opened, are referred to by file descriptors in a program.
Using these file descriptors, the mmap function allows manual
mappings of segments of files into an application’s virtual
memory space. Consecutive mappings can map to differ-
ent file segments, while the same file segments can also be
mappedmultiple times to differentmemory regions. Thus the
underlying data can appear to be reordered when following
different pointers, allowing us to create different orderings of
the data for different communication and computation needs.
As seen in Fig 2(L), this enables some regions of the surface
to be sent to multiple neighbors while having only one copy
during computation. To ensure the use of main memory,
these files are created through memfd_create or shm_open.
To create corresponding views, the mmap function option
MAP_SHARED is used to carry all changes in the mapped vir-
tual memory regions to the underlying files, thus making all
changes visible across different threads and processes.
For each neighbor that needs data from a given subdo-

main, we create a view of that data in which regions are
mapped consecutively. Figure 5 shows how regions 1, 4, and
6 are mapped to a view of data that is sent to the left neigh-
bor in Fig 2(R). These views can be reused throughout the
application until the communication pattern changes. Most
significantly, these views do not incur on-node data move-
ment. This is because when MPI is called with these pointers,
the virtual memory system will automatically feed the cor-
rect set of regions as if they were contiguous in memory.
Therefore, MemMap achieves pack-free communication and
also minimizes the number of messages.
There are two potential concerns when using memory

mapping. First, all parts have to be aligned to page bound-
aries, regardless of size. When a surface region is smaller

than a page, it needs to be padded to occupy the whole page.
For example, a 43 surface region of doubles might waste 7

8
of a 4KiB1 page. This also wastes network bandwidth each
time the surface region is transmitted. However, while the
baseline amount of network bandwidth is a function of sub-
domain size, the amount of waste is not. Another limitation
is the maximum number of mapped regions one process can
have, with a default value of 65530 that typically requires
super user privileges to change. To alleviate this problem,
the number of mappings can be minimized using the layout
optimizations in Section 3.

5 Data Movement for NVIDIA GPUs
On-node data movement for NVIDIA GPUs not only con-
sists of Packing, but also data movement between CPU and
GPU for MPI communication. Managing this CPU-GPU data
movement is crucial for achieving good scaling performance.
Layout optimization separates on-node data into interior,
surface, and ghost zones. This avoids Packing and allows
the ghost zone and surface data to be moved independently
from the interior subdomain data, which enables indepen-
dent setup of MPI calls. This allows both Layout and MemMap
to use new technologies like CUDA-Aware MPI (CA) [1] with
GPUDirect and Unified Memory (UM) with System Allocator.
As a result, we are able to also avoid staging data on the CPU,
which can add significant communication latency.

Also, with CUDA-Aware MPI and GPUDirect, communi-
cation can use remote direct memory access (RDMA) to a
device memory region created by cudaMalloc and avoid
staging any data through the CPU. Layout can be used with
these MPI implementations to entirely avoid temporary stag-
ing of data, although currently device memory allocated
through cudaMalloc does not support MemMap2.
On supported systems, Unified Memory with System Al-

locator allows memory mapping for GPU applications by

1Unit symbol under International Electrotechnical Commission: 1 Kibibyte
(KiB) = 1024 Bytes
2CUDA release 10.2 onward provides cuMemMap which may permit memory
mapping using device memory. However, currently this is not supported
on Summit.
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granting GPU access to the page tables and access map-
pings created by the CPU. We can then setup memory using
MemMap as discussed in Section 4. A page fault mechanism
is used on the GPU when data from a page is not already
on the GPU. Similarly, the CPU is able to use page faults to
automatically move data from the GPU. While a page fault
handler is processing in the background, other non-blocked
threads can proceed with other operations. Even when MPI
data must be staged through the CPU, the page fault mech-
anisms allow much better overlapping of CPU-GPU data
movement with computation and network operations. For
Power9 systems (Summit), Unified Memory with System Al-
locator is accessed with Address Translation Service (ATS);
for x86 systems, this may be supported with Heterogeneous
Memory Management (HMM) in the future.

6 Library Implementation
We have implemented Layout optimization and MemMap by
extending our prior work, the Brick library [27, 28], to sup-
port multiple nodes and ghost zone exchange. The brick
library provides a data layout that implements fine-grained
data blocking, where each data block is called a brick. Bricks
are stored consecutively based on an index in BrickStorage,
and the logical order of bricks is implemented using an ad-
jacency list. This logical ordering is stored in BrickInfo.
The library implements an interface that combines the stor-
age and logical layout data into Brick. Each brick is an 𝑛-
dimensional array of fixed size that can be accessed by its
index using square brackets. Accesses outside of the current
brick will be automatically translated to access the appro-
priate neighboring brick. Stencil computations can then be
expressed as computing on all elements within each brick
from bricks specified using a list of brick indices. The brick
library API interfaces to create Brick and compute a 7-point
stencil are shown in Figure 6.
The Brick library includes a code generator to optimize

for stencil applications. The code generator produces sten-
cil code that is highly optimized for vectorization within a
brick, and achieves significant data reuse using associative
reordering. It employs vector align operations to realize ac-
cessing vectors across brick boundaries. The code generation
strategy allows breaking down of complex stencils into sim-
pler ones and enables reuse across stencil iterations. This
code generation can target both CPUs using various vector
instruction sets and NVIDIA GPUs with CUDA.
The Brick library realizes the use of an individual brick

as both a unit of data and a unit of parallel work; the imple-
mentation makes it convenient to operate a subset of bricks
that execute on a thread or node. In [27], code produced by
the Brick library for three different architectures demon-
strated significant performance improvements for complex
high-order and multi-stencil computations as compared to a

1 Br ick <Dim<8 , 8 , 8 > ,Dim<4>> a (& bIn fo , bS to rage , 0 ) ;
2 Br ick <Dim<8 , 8 , 8 > ,Dim<4>> b(& bIn fo , bS to rage , 5 1 2 ) ;

(a) Defining Brick to access storage.
1 f o r ( au to b r i c k I n d e x : l i s t o f B r i c k I n d i c e s )
2 f o r ( i n t k = 0 ; k < 8 ; ++k )
3 f o r ( i n t j = 0 ; j < 8 ; ++ j )
4 f o r ( i n t i = 0 ; i < 8 ; ++ i )
5 a [ b r i c k I n d e x ] [ k ] [ j ] [ i ] =
6 c0 ∗ b [ b r i c k I n d e x ] [ k ] [ j ] [ i ]
7 + c1 ∗ b [ b r i c k I n d e x ] [ k−1] [ j ] [ i ]
8 + c2 ∗ b [ b r i c k I n d e x ] [ k +1 ] [ j ] [ i ]
9 + c3 ∗ b [ b r i c k I n d e x ] [ k ] [ j −1] [ i ]
10 + c4 ∗ b [ b r i c k I n d e x ] [ k ] [ j +1 ] [ i ]
11 + c5 ∗ b [ b r i c k I n d e x ] [ k ] [ j ] [ i −1]
12 + c6 ∗ b [ b r i c k I n d e x ] [ k ] [ j ] [ i + 1 ] ;

(b) Brick has one extra index dimension to denote which brick it
is currently accessing. The library automatically resolves indices to
the correct memory location in the current brick or another brick.

Figure 6. Basic Brick interface to compute a 7-point stencil.
Brick computation is layout-agnostic as long as proper brick
indices is supplied.

//	Decomposition	of	5123 domain	with	8-wide	ghost	zone
BrickDecomp<3,	BDIM>	bDecomp({512,	512,	512},	8);
//	Use	optimized	decomposition	for	3D
bDecomp.initialize(surface3d);
//	Get	metadata	for	computation
BrickInfo<3>	bInfo	=	bDecomp.getBrickInfo();
//	Populate	MPI	neighbor	information
populate(cart,	bDecomp,	0,	1,	coo);

Layout MemMap

BrickStorage bStorage	=
bInfo.allocate(bSize);

BrickStorage bStorage	=
bInfo.mmap_alloc(bSize);
ExchangeView	ev	=
bDecomp.exchangeView(bStorage);

Compute [27]

bDecomp.exchange(bStorage); ev.exchange();

Time Step

Figure 7. Communication interface in the Brick library.

highly-optimized tiled version using the same code gener-
ation strategy. This difference as compared to tiling results
from a significant reduction in the cost of vertical data move-
ment through thememory hierarchy. Vertical datamovement
is reduced because a 3D brick is stored in a single contiguous
address stream, while a 3D tile may touch multiple cache
lines and possibly multiple pages.

Thework in this paper extends the definition of BrickInfo
and allocation of BrickStorage to incorporate a layout se-
lection and introduces new APIs for the MPI communication.
For applications already using the library, the computation
specification is unmodified, same as Figure 6. Figure 7 shows
the new library function calls that enable Layout and MemMap
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optimizations. The communication methods apply generally
to any specified data layout (invoking functions on the left
hand side of the figure) or can use memory mapping (func-
tions on the right hand side) to create views of the data for
communication. For the 3D experiments in this paper, we
specify an optimized surface3d layout, analogous to the 2D
optimized version in Figure 3. For NVIDIA GPUs, we pro-
vided interfaces for Layout (using either CUDA-Aware MPI
or Unified Memory) and MemMap (using Unified Memory).
The brick library also enables interleaving values from

multiple fields in one BrickStorage, allowingmultiple fields
to be organized as an array-of-structure-of-array, in Figure 6a.
Interleaving multiple fields this way enables communicating
them all at once in a single BrickStorage exchange.

7 Experiments
To demonstrate the performance of our proposedmethod, we
have performed scaling experiments on two supercomputers:
Theta with Intel Xeon Phi Knight Landing, indicated with
(K#), and Summit with Power9 plus NVIDIA Volta V100, (V#).
Details for these platforms are discussed in Section 2.
We use two double-precision stencils as proxies for two

different extremes of Arithmetic Intensity (AI) [22]. One is a
star-shaped 7-point stencil that has an AI of 8/16 (flop/byte).
The other is a 53 cube-shaped 125-point stencil, which has
10 constant coefficients (due to symmetries) and an AI of
139/16 (flop/byte). Unless otherwise noted, all experiments
use 8 × 8 × 8 data blocking (“83” bricks) and all ghost zones
have a width of 8 using ghost cell expansion [7].

We evaluate four different implementations:
• YASK is an optimized stencil framework for CPUs [25].
It has a built-in autotuner and supports overlapping
communication and computation.

• MPI_Types fromMPI supports Packing internallywithin
MPI, avoiding explicitly Packing by the application pro-
grammer and incorporating optimizations not avail-
able to the application programmer [8, 12].

• Layout optimization, described in Section 3, uses in-
direction to eliminate data movement from Packing.

• MemMap, described in Section 4, uses virtual memory
mapping to eliminate redundant messages. In these
experiments, Layout optimization is used to reduce
the number of mappings. However, MemMap does not
depend on using an optimized layout.

Time spent in the main stencil loop (timestep) is decom-
posed into communication and computation. Computation,
Comp, includes the time taken to apply the stencil for all
points owned by a specific MPI rank, as well as any redun-
dant computation necessary for communication avoiding.
Communication, Comm, includes the time taken to (a) copy
data into MPI buffers, (b) call MPI, and (c) wait for commu-
nication to finish. Both of our proposed methods Layout
and MemMap avoid (a). The time reported is the per-timestep

512 256 128 64 32 16
0.0156
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1
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subdomain dimension
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Layout
YASK

YASK-OL
MPI_Types

Figure 8. (K1) 7-point stencil scaling on 8 KNL nodes. Note
that a 2× reduction in subdomain size corresponds with an
8× decrease in total subdomain points.Layout is competi-
tive with MemMap, and both attain the best performance by
minimizing on-node data movement. Overlapping communi-
cation with computation with YASK (YASK-OL) makes little
difference for smaller subdomains (red lines).

average across all nodes, repeated for a sufficient number of
timesteps so that the results have minimal variation across
multiple runs.
The empirically minimum time required for communica-

tion can be obtained by only measuring the time taken to
communicate message-sized buffers. This time is represented
by Network in the experiments.
For experiments K1 and V1, we used 8 nodes and 1 MPI

rank per node to form a periodic 3D cube, 23. With this
configuration, the minimum 8 nodes is required to have each
MPI rank neighboring another MPI rank on another node,
in all directions. This reduces the network variability and
allows us to examine on-node effects, since the ranks form a
cubical grid with an even decomposition of the domain with
reduced variability in computation.

7.1 Theta with Intel KNL
(K1) 8-node/rank scaling. In this first experiment (K1), we
analyze performance by reducing the overall problem do-
main size while using 8 nodes with 1 rank per node. Figure 8
shows the performance scaling relative to the size of the sub-
domain on each node. Figure 9 shows the communication
time spent per-timestep in milliseconds for different imple-
mentations, with Comp is shown just for reference. Layout
achieves competitive performance while MemMap achieves
nearly the same performance as Network without any Pack-
ing; it essentially eliminates on-node data movement with
no discernible added cost. In contrast, overheads of YASK
and MPI_Types are significantly higher for any subdomain
size; MemMap is up to 14.4× faster than YASK and 460× faster
than MPI_Types.

For subdomain dimension 𝑆 , per timestep, the amount of
computation should scale proportional to 𝑆3, while the vol-
ume of data communicated scales with 𝑆2, as would commu-
nication time for a fixed bandwidth. The surface-to-volume
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Figure 9. (K1) Communication time. Layout and MemMap are
able to achieve competitive communication performance al-
most achieving the minimum Network communication time.
For comparison, Comp shows computation per timestep in
MemMap, which is much less than communication time for
small subdomains.
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Figure 10. (K1) Compute time. Different layouts result in
no significant difference. No-Layout refers to fine-grained
data blocking with no layout optimization, which uses lexi-
cographical ordering for the data blocks.

ratio of 𝑆2 : 𝑆3 = 1 : 𝑆 suggests that for smaller subdomains,
increased time is spent on communication relative to com-
putation. However, for subdomains smaller than 643 we also
noticed that the communication time is constrained more by
communication startup time than network bandwidth (trend
to flat time for small subdomains in Figure 9).

Figure 10 shows there is no discernible difference in com-
pute time for different orderings of fine-grained data blocks.
This also shows that optimizing the layout for communica-
tion does not hurt computation performance. This is because
fine-grained data blocking is inherently much better at re-
ducing pressure on cache, TLB, and prefetchers [27]. The
difference in performance against YASK arises from differ-
ent choices of parallelization strategy. YASK uses autotuned
two-level OpenMP parallelism that is inefficient for small
subdomains. Our method uses a one-level OpenMP paral-
lel schedule that is not optimized for the cache hierarchy,
which is why we are slightly slower than YASK on larger
subdomains.
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Figure 11. (K2) Strong scaling performance on a 10243 do-
main. Strong scaling performance at 1024 nodes is 9.3× (7-
point) and 13.4× (125-point) better than YASK. Theoretic
scaling for computation (Comp) scales with volume, while
communication (Comm) scales with surface size (dashed lines),
with our 125-point MemMap results in between.
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Figure 12. (K2) Per timestep communication (Comm) vs com-
putation (Comp) time decomposition for Strong scaling of
7-point stencil on a 10243 domain. Communication time
reduction contributes majorly to the significant speedup
observed in Figure 11.

(K2) Strong scaling. Figure 11 shows log-log scale strong
scaling performance for a 10243 domain with both 7- and
125-point stencils, using between 8 and 1024 nodes. For the
7-point stencil, we attain 2166GStencil/s, while the 125-point
stencil achieves 934GStencil/s on 1024 nodes.With a baseline
of 8 nodes, the approach shows good strong scaling, and is
compute-bound for smaller number of nodes but scales with
communication cost at larger numbers of nodes. In contrast,
YASK’s throughput is significantly worse at smaller number
of nodes and does not scale well at larger numbers of nodes.

Figure 12 separates the average time spent in each timestep
into communication and computation. We see that optimiz-
ing on-node data movement results in significant perfor-
mance improvement at larger node counts.

7.2 Summit with NVIDIA Volta GPU
Address translation service (ATS) is supported on Summit,
which enables memory mapping through Unified Memory
(UM). Spectrum-MPI version 10.3.1.2 is also CUDA-Aware
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Figure 13. (V1) 7-point stencil scaling on 8 NVIDIA V100
GPU nodes. Layout and MemMap achieves much better per-
formance than MPI_Types.
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Figure 14. (V1) Communication time. Layout optimization
with CUDA-Aware MPI, LayoutCA, achieves the best perfor-
mance, close to the minimum NetworkCA communication
time. Different methods have similar compute time; For ref-
erence, Comp represents time taken to compute in MemMapUM.

(CA), which allows direct communication between device
pointers.

(V1) 8-node/rank scaling. Figure 13 is a log-log plot that
shows the results of experiment (V1) on 8 Summit nodes. As
with previous experiments, each node is has only one MPI
rank which uses just one of the 6 GPUs, resulting in a total of
8 MPI ranks.While MPI_Types can be used directly on CUDA
pointers with CUDA-Aware MPI, MPI_TypesCA, and on host-
allocated pointers with Unified Memory, MPI_TypesUM, only
the latter is shown. In our experiments MPI_TypesCA is more
than 50× slower than MPI_TypesUM.
The main difference in scaling can be attributed to the

per-timestep communication time, shown in Figure 14. The
layout-based optimization directly uses memory regions al-
located with cudaMalloc for CUDA-Aware MPI, which pro-
vides the best performance (indicated with LayoutCA). In this
case, GPUDirect RDMA can be used by the MPI implemen-
tation to bypass host memory for MPI communication.
Figure 15 shows that LayoutCA and MemMapUM result in

very similar per-timestep computation time. LayoutUM and
MPI_TypesUM exhibit worse computation performance be-
cause the communicated regions are not aligned to page
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Figure 15. (V1) Compute time. LayoutCA and MemMapUM

achieves the best computation performance.

Table 2. (V1) Network transfer from padding and achieved
bandwidth.

Subdomain 512 256 128 64 32 16
Increased network transfer from padding %
Layout 0 0 0 0 0 0

MemMap 2.4 9.3 35.0 176.9 652.0 883.9
Achieved Bandwidth GB/s

LayoutCA 16.0 21.0 18.6 15.2 9.1 4.7
LayoutUM 17.7 16.4 12.0 11.0 4.4 3.2

MemMapUM 17.1 17.6 15.4 16.9 17.3 17.7

boundaries. We can modify the LayoutUM implementation
by padding each communication region to page boundaries,
which will result in performance similar to MemMapUM. How-
ever, this modification then results in significantly worse
communication performance due to padding that as a whole
slower than LayoutUM.
LayoutCA and LayoutUM perform better than MemMapUM due

to MemMap wasting bandwidth from aligning surface and
ghost zone regions to page boundaries. In contrast to 4KiB
pages on Theta, Summit uses a larger 64KiB page size. One
data block, which is the minimum unit that needs to be
transferred on each of the 8 corners of the cube, is 83 doubles
and yet only 1/16 of a page. Table 2 shows the resulting
wasted memory over the Layout optimization, along with
the achieved bandwidth for each approach. When compar-
ing the achieved bandwidth, MemMapUM is shown not to de-
grade MPI performance. Also note that layout optimization
using unified memory, LayoutUM, achieves the worst band-
width performance with smaller subdomains. This is likely
due to smaller messages being less efficient to communicate
when using unified memory. However, after considering the
padding needed for memory mapping, LayoutUM is still more
efficient than MemMapUM by communicating far less data.

(V2) Strong scaling. Figure 16 shows strong scaling per-
formance of 20483 domain on 8 to 1024 Summit nodes. We
used 6 MPI ranks per node where each rank uses 1 V100
GPU, allowing us to scale from 48 to 6144 MPI ranks. Using
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Figure 16. (V2) Strong scaling on a 20483 domain, LayoutCA
and MemMapUM, achieved performance of up to 5.8× and 4.1×
at 1024 nodes compared to MPI_TypesUM. Theoretic scaling
for computation (Comp) scales with volume, while commu-
nication (Comm) scales with surface size (dashed lines), with
our 125-point MemMap results in between.
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Figure 17. (V2) Per timestep communication (Comm) vs com-
putation (Comp) time decomposition for strong scaling of
7-point stencil on a 20483 domain. The application time is
dominated by communication even at 8 nodes. Optimizing
communication is critical to achieve high performance on
Summit and is the source of our significant speedup.

approximately one quarter of Summit, we achieved 18.3 TS-
tencil/s with the 7-point stencil and 8.1 TStencil/s with the
125-point stencil on a 20483 domain. This performance is sig-
nificantly better than MPI_TypesUM, and LayoutCA also does
not yet appear to be at the strong scaling limit.
Figure 17 decomposes the average time spent in each

timestep into communication and computation, and shows
that communication is the bottleneck at all scales.

7.3 Impact of Page Size on MemMap

As discussed in Section 4, using MemMap requires alignment
of the surface and ghost regions to page boundaries, which
may require padding. This padding results in reduced com-
munication performance for larger page sizes, whereas page
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Figure 18. Estimated pagesize scaling effect on communica-
tion time with 8 KNL nodes. Even with very large (64KiB)
pages, MemMap still outperforms both YASK and MPI_Types.

size does not impact Layout. We can estimate the perfor-
mance impact of different page size on communication by
introducing superfluous padding that corresponds to larger
page sizes in our 8 node/rank experiments (K1), shown in
Figure 18. The page sizes are selected from the base page size
options in Linux 5.7, where x86 support includes 4KiB, 64bit;
for Power, 4KiB, 64KiB; and 64bit ARM can use 4KiB, 16KiB,
or 64KiB. Note that for NVIDIA GPUs, when using Unified
Memory with System Allocator, the page size is determined
by the host page size, which is 64KiB on the 64bit Power9
CPU as configured on Summit. Figure 18 shows that the
performance impact of larger page sizes is not significant,
and continues to outperform YASK and MPI_Types.
Seeing that, even for 64KiB pages, MemMap still signifi-

cantly outperforms YASK, we believe there are two reasons
why page size should not be a significant factor. First, prior
work [27] has shown that smaller pages does not limit the
computation performance with fine-grained data blocking.
Using fine-grained data blocking can reduce key page-related
metrics such as TLB misses by up to 49×. Second, larger page
sizes like 2MiB (on x86) can be achieved through hugetlbfs
with Linux. This mechanism is available on x86, ARM, and
Power architectures. With this mechanism, multiple page
sizes can coexist in the same program or even within the
same data structure. Smaller base page sizes, such as 4KiB
page on x86, are always available.

8 Related Work
For stencil applications, the impact of MPI communication
has been investigated extensively, but in general the impact
of memory layout optimization to eliminate on-node data
movement has not. There are a few investigations of fine-
grained data blocking, such as Briquettes [11], folded vectors
in YASK [25], and bricks [27, 28], but none take advantage of
reordering memory to improve communication performance.
Many MPI benchmarks with stencil loops exist, but these
mostly consider latency-bandwidth tradeoffs in inter-node
communication, while the cost of on-node data movement
is not explicitly addressed (see for example: COMB, SMB,
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Cost Type Array Layout MemMap
Strided Packing High - -
Extra Msgs - Low* -

Manual CPU-GPU High - -
Large Page - - Low**

Table 3. Compare standard communication practices using
arrays with methods in this paper (Layout and MemMap).
* Section 3.3. ** Section 7.3.

Intel MPI, CUDA-Aware MPI, and summary in [9]). Several
stencil frameworks offer ways to express distribution and
parallelization of stencil computations; see S3D-Legion [18]
and distributed Halide [6], among many others. Communi-
cation avoiding techniques, such as the ghost cell expansion
method [7] for stencils and [5, 15] for sparse matrix solvers,
explore redundant computations to enable fewer, larger mes-
sages. Communication-computation overlap [18, 25] and
techniques like time skewing [23] can be used to hide laten-
cies in the network and increase parallelism.
This paper exchanges all neighbors at once, often de-

scribed as Put [16]. Another approach is Shift [7, 16] which
exchanges ghost zones along each dimension consecutively,
excluding corner neighbors. Shift avoids latency-dominated
small messages through increased synchronization, and is
straightforward to implement using memory mapping.
Memory mapping is a common technique in other do-

mains, such as file I/O [20] and distributed shared memory
systems [10]. We believe we are the first to combine it with
indirection of the application data to optimize the data layout
and eliminate on-node data movement during MPI commu-
nication.
Implementations of MPI also exist that improve the han-

dling of strided memory access in MPI_Types. Falcon [8]
optimizes data type translation for intra-node communica-
tion. MPI can also use low-level networking features, like
User-Mode Memory Registration [12] in Infiniband, to avoid
packing and unpacking. In comparison, these attempts only
alleviate the memory access problem, while we have elimi-
nated the problem altogether with layout optimization inside
the application.

9 Conclusion and Future work
We have illustrated that optimizing on-node data movement
can greatly improve communication performance for stencil
applications. Instead of just attempting to hide this over-
head, we have demonstrated ways to eliminate on-node data
movement on two different architectures. Table 3 compares
the methods in this paper, Layout and MemMap, with stan-
dard practices using lexicographical ordered arrays. Both of
our methods eliminate the high cost of Packing and manual
CPU-GPU data movement, by trading these costs with few
extra messages (Layout) or with increased network transfer
from padding (MemMap). We provided detailed analysis of

our methods using experiments and demonstrated signifi-
cantly improved communication performance — up to 14.4×
compared to YASK.

Overall, this work suggests other opportunities to reduce
data movement in current and future systems. For example,
using a fine-grained data layout has previously been shown
to dramatically reduce vertical data movement through the
memory hierarchy [27, 28]; in this paper, it plays a central
role in optimizing horizontal data movement across nodes
for structured domains. We propose that novel data layouts
with indirection can play an important role in achieving
performance portability in the face of growing architectural
diversity.
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A Artifact Appendix
A.1 Abstract
The artifact associated with this paper includes the brick
library enhanced with the ghost zone exchange methods
described in this paper using layout optimization. The arti-
fact package also contains relevant code and job scripts to
obtain the experiment section results. A README.md file is
included to describe each experiment’s compile instructions
and parameters.

A.2 Artifact check-list (meta-information)
• Algorithm: Distributed stencil computation.
• Compilation: C++ compiler with C++11 and OpenMP sup-
port. CMake 3.13 or higher. MPI. Python 3.6 or higher. Op-
tional CUDA Toolkit for GPU experiments.

• Run-time environment: Distributed.
• Hardware: Optional NVIDIA GPU.
• Metrics: Per-timestep timings and overall stencil through-
put.

• Howmuchdisk space required (approximately)?: 10MiB
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• How much time is needed to prepare workflow (ap-
proximately)?: 5 minutes.

• Publicly available?: Yes
• Code licenses (if publicly available)?:MIT License
• Archived?: https://doi.org/10.5281/zenodo.4380975

A.3 Description
A.3.1 How to access. The artifact package is available on
Github, https://github.com/CtopCsUtahEdu/bricklib/tree/
artifact. Clone the repository and check out the artifact
branch will give local access to the code and documentation.

The package is also archived on Zenodo, https://doi.org/10.
5281/zenodo.4380975. One can access the code from Zenodo
by download the zip file and extract it.

A.3.2 Hardware dependencies. Any CPU with a paged
memory management unit can run the CPU experiments.
NVIDIA GPU is needed for GPU experiments. When uti-

lizing unified-memory with host allocator, corresponding
to MemMapUM and TypeUM, Power9 host processor with graph-
ics driver supporting Address Translation Service (ATS) is
required.
Distributed environment is required for scaling experi-

ments.

A.3.3 Software dependencies.
• A C++11 compatible compiler
• CMake (>= 3.13)
• MPI
• OpenMP
• Python (>= 3.6)
• (Optional) CUDA Toolkit (>= 9)

A.4 Installation
The code can be compiled using CMake. After extracting
the code to <srcdir>, the following script illustrates a quick
way to build the source files.

1 cd < s r c d i r >
2 # Prepa r e
3 mkdir b u i l d && cd b u i l d
4 # Con f i gu re
5 cmake . . −DCMAKE_BUILD_TYPE=Re l e a s e
6 # Bu i l d
7 make

A.5 Experiment workflow
See the README.md file in the artifact package for detailed
information and instructions.

A.6 Evaluation and expected results
After building the artifact, <srcdir>/build/weak directory
will contain executables for running the experiments. Each
executable takes command-line options to change the do-
main size and the number of timing iterations. These options
are shown by running it with option "-h". Running one

such executable using the appropriate experiment parame-
ters will return the following five performance metrics in the
format of [minimum, average, maximum] (𝜎: standard
derivative).

• calc Time spent (in seconds per timestep) for computation
• pack Time spent (in seconds per timestep) doing packing
and unpacking (not used for MPI_Types)

• call Time spent (in seconds per timestep) doing MPI calls
(MPI_Isend/MPI_Irecv)

• wait Time spent (in seconds per timestep) in MPI_Waitall
• perf Overall throughput based on the average of per itera-
tion time

All experiments in this paper require at least 8 nodes for
MPI communication. We have supplied example job scripts
in the scripts directory of the artifact to illustrate how
we ran these experiments on the Theta and the Summit
supercomputers.
For all experiments, the communication performance of

brick using the optimizations in the paper is expected to
outperform that of MPI_Types.
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