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Abstract—Generative AI, in particular large transformer mod-
els, are increasingly driving HPC system design in science
and industry. We analyze performance characteristics of such
transformer models and discuss their sensitivity to the trans-
former type, parallelization strategy, and HPC system features
(accelerators and interconnects). We utilize a performance model
that allows us to explore this complex design space and highlight
its key components. We find that different transformer types
demand different parallelism and system characteristics at dif-
ferent training regimes. Large Language Models are performant
with 3D parallelism and amplify network needs only at pre-
training scales with reduced dependence on accelerator capacity
and bandwidth. On the other hand, long-sequence transformers,
representative of scientific foundation models, place a more
uniform dependence on network and capacity with necessary
4D parallelism. Our analysis emphasizes the need for closer
performance modeling of different transformer types keeping
system features in mind and demonstrates a path towards this.

Index Terms—performance modeling, transformers, paral-
lelism

I. INTRODUCTION

Transformers [1] have enabled state-of-the-art results across
several disciplines including natural language processing
(NLP) [2]–[6], computer vision (CV) [7]–[9] and scientific
machine learning (SciML) [10]–[12]. These models are ex-
pected to form the foundation for machine learning models
across various disciplines, owing to their impressive scaling
properties with data and model sizes [13]. Large-language
models (LLMs) are the most well-known foundation models
such as GPT models [14] with model sizes ranging to a trillion
parameters [15], [16] and are trained at large supercomputers
at significant cost. For instance, the 1 trillion parameter Mega-
tron GPT model was trained on 450 billion tokens, using 3072
Nvidia A100 GPUs, and requires 84 days [15]. Today, this cost

is amplified by the need to train such models across multi-
disciplinary domains in science—there is substantial effort to
develop multiple foundation models for applications such as
weather and climate modeling [11], [12], earthquake modeling
[17], fluid dynamics simulations [18], protein structure predic-
tions [19], [20], material sciences [21], and more. Each do-
main introduces its own design considerations for transformer
models, as well as unique input data scales (resolutions) and
training methodologies. This strongly motivates the need to
theoretically analyze and understand the costs and bottlenecks
associated with training different transformer types at scale
and their relationship with the underlying system hardware.
Our goal is to systematically present a framework for modeling
the transformer performance and utilize this to explore optimal
training strategies of the transformer at different system scales,
transformer model regimes, and underlying system (hardware
and network) characteristics.

Building this analytical performance model is challenging
because the design space is extremely large—one must model
system configurations like device (GPUs) memory capacity
and bandwidth, compute speeds, and (multi-bandwidth) net-
work configurations, along with various parallelization strate-
gies that grow exponentially with model and system size.
The latter is especially complex because large transformers
typically demand multiple forms of parallelism simultane-
ously, with each introducing its own set of trade-offs. Data
parallelism is effective but insufficient for large models (and
input resolutions) and not memory-efficient, tensor parallelism
[15], [22] reduces memory utilization at the cost of increased
communication, and pipeline parallelism [15] can reduce
communication costs at the expense of idle (bubble) times.
Overextending any one strategy can introduce substantial costs



and they must be carefully balanced. We present and utilize
an analytic parameterized performance model that searches
the combinatorial design space and discovers this balance as a
function of the deep learning model and system configuration.
While our performance model is applicable to any accelerator
system with tiers of network performance, we present detailed
performance analysis for commonly used system architectures
with current and near-future NVIDIA GPU hardware with
high-bandwidth memory (HBM) on device, a fast interconnect
domain (compute node) with NVLink interconnect between
GPUs (facilitated through NVSwitch [23]), a slow interconnect
domain (inter-node) InfiniBand (or SlingShot/ethernet) for
GPUs, and communication collectives through NCCL [24].
Our contributions are as follows:

1. Framework for building an AI performance model. We
systematically outline the strategy to model the various
components of the transformer architecture. We model
the different operations (activation-weights, activation-
activation matrix multiplies, vector operations) and high-
light how parallelization strategies and other optimizations
change the nature of these operations (arithmetic intensities,
memory usage, communication times and other inefficien-
cies, see §III). Defining a configuration as the paralleliza-
tion strategy along with other possible optimizations, the
framework identifies an optimal configuration through a
brute-force search of all possible configurations and selects
the one with minimum training time, making this explo-
ration orders of magnitude faster than experimentation.

2. Assessment of varying needs of SciML and NLP mod-
els. We assess two different transformer versions: GPT3-
1T (1 trillion parameter GPT3 model) representing an
LLM foundation model and VIT, a long-sequence vision
transformer that represents transformers in science, where
long sequences are necessary to process high-resolution
inputs, designed to capture crucial fine-scaled physical
features [12], [25], [26]. We then conduct the below anal-
yses for both models independently, aiming to distinguish
their training needs at different scales and across different
systems.

3. Identifying optimal parallelism and training bottle-
necks. We include data parallelism, tensor parallelism
(1D), and pipeline parallelism that are part of standard LLM
training in our framework and demonstrate their individual
trade-offs in training times (see Fig. 1, 2). We further
include two different 2D versions of tensor parallelism
(with additional sequence parallelism or SUMMA [27]
matrix multiplies) to demonstrate their impact on training
the different model classes (see Fig. 3, 4b). We show
that while 1D tensor parallelism is performant for GPT3-
1T (see Fig. 5a), 2D tensor parallelism is necessary for
VIT and depicts different training bottlenecks than the
1D version (see Fig. 4b). For both models, 2D tensor
parallelism is optimal.

4. Performance impact of a fast network domain and
GPU generations. We analyze the impact of the size of

NVSwitch (NVS) that provides high bandwidth between
all GPUs in that domain (node), with cross-domain (inter-
node) slower InfiniBand (IB). We show that placement of
GPUs from different parallelization groups within NVS do-
main introduces different optimal configurations identified
at different NVS sizes (see discussions around Fig. 2, 3).
Further, we show that, depending on the type of model,
NVS size effects show up at different scales, lending to
different requirements for pre-training and fine-tuning jobs.
GPT3-1T only requires large NVS domain sizes at large
training scale, needed for pre-training. However, a moderate
scale fine-tuning may not require this. We also notice that
HBM capacity is less important at scale for this model
(see Fig. 5). The VIT however shows contrasting results
with a more uniform dependence on NVS domain sizes
and HBM capacity, owing to its massive sequence lengths
(see Fig. 5b). Both models show good performance with
alternate low bandwidth/high capacity memory, which may
help alleviate the dependence on NVS through increased
capacity. We also show the performance improvements with
different GPU generations (A100, H200, B200) for each
model which can be attributed to increased tensor core and
network bandwidth performance.

II. RELATED WORK

We focus on analytical modeling and do not consider lower-
level hardware simulation studies aimed at precise modeling
of GPUs or the network since they are very costly for a full
design space search. Our parallelization strategies are modeled
based on tensor parallelism (1D [22], multi-dimensional [28]–
[30]), pipeline parallelism [15] and ZeRO [31]. An early
performance model exploring the design space is [15] for
training a version of GPT3-1T. They do not conduct an
automatic exploration of the design space but instead develop
heuristic takeaways by focusing on a subset of the design space
through analytical formulae. One of the first attempts at an
automatic exploration and selection of parallelism strategies
was by [32], where given a cluster mesh, the package compiles
the computation graph into a distributed sharded graph, but is
not network topology aware. In [33], they developed an open-
source package that integrates an auto-parallelism feature that
searches over the design space. Such auto-parallel approaches
provide the user with a ready distributed training solution at
the cost of hiding the rationale behind the specific strategy
adopted. Calculon [34] was the first approach in building an in-
depth, analytical performance model of both the LLM and the
system for a high level and a unified exploration of the design
space of hardware and software. Through the performance
model, the authors identified new configurations that show
better efficiencies for LLMs. However, their model is restricted
to LLMs and analysis fixed to a system type. They only include
1D tensor parallelism (performant for LLMs), do not consider
the effects of NVS domains on IB bandwidths and optimal
strategies regarding placement of GPUs on the NVS domain,
and do not include details on the diverse components of
the underlying performance model, making it challenging to



expand upon. We build on the Calculon approach and expose
the different performance modeling components along with
several modifications that include NVS domain size effects,
GPU placement, 2D tensor parallelism variants (necessary
for other model types) and conduct an extended analysis on
different model types, GPU, and network characteristics.

III. METHODS

Denoting b as batch size, l as sequence length, e as embed-
ding dimension, f as the hidden dimension (typically f = 4e)
and h as the number of attention heads, the transformer [1]
processes input tensor X ∈ Rb×l×e and predicts an output
tensor of the same dimensions. We define eh = e/h as the
head dimension. In NLP, the input represents a sequence of
embedded tokens and in CV (and science) it represents a
sequence of embedded image patches (or pixels). The trans-
former consists of repeated blocks that contain self-attention
(S/A) and a multi-layer perceptron (MLP) defined as:

X̃ = LN(X), Y = S/A(X̃)

Ỹ = LN(Y), O = MLP(Ỹ),

where LN is LayerNorm and the above blocks repeated
depth d times. In S/A, the input tensor X̃ is first pro-
jected to Q,K,V ∈ Rb×h×l×eh through learnable weights
WQ,WK,WV ∈ Re×e, followed by the Logit-Attend (L/A)
operation and a final projection with learnable weights Wp

∈ Re×e:

A = SM(QKT ) ∈ Rb×h×l×l, S =AV ∈ Rb×l×e

Y = SWp ∈ Rb×l×e.

SM denotes Softmax. We note that the first two operations
(L/A) involve only activation maps, and do not introduce
weights. After a subsequent LN, Ỹ is passed to the MLP de-
fined as:

O = GeLU(YW1 + b1)W2 + b2 ∈ Rb×l×e,

with learnable weights W1 ∈ Re×f , W2 ∈ Rf×e, learnable
bias b1 ∈ Rf , b2 ∈ Re, and output tensor O. Dropout
layers are additionally present but we omit them here for
brevity. For large data (b) and/or model dimensions (l, e, h),
parallelizing the transformer is necessary. Assuming a grid of
n = nd × nt × np GPUs, this amounts to finding an optimal
allocation of these GPUs to partition the above dimensions. At
the highest level, b is partitioned across nd GPUs (data paral-
lelism, but may be subsumed into tensor parallelism), (l, e, h)
are partitioned across nt GPUs (tensor parallelism) and d
(depth) is partitioned across np GPUs (pipeline parallelism).
The tensor parallel GPU group nt can be further split through
a multi-dimensional array of GPUs (nt = n1 × n2 × · · · )
for better performance. Each of these parallel strategies come
with their own set of performance benefits and bottlenecks
with several non-trivial factors at play that depend closely on
the underlying system. In order to expose these trade-offs,
identify an optimal parallelization strategy constrained by the
system, and understand the effects of different system and

model types on training times, we start with an analytical and
parameterized performance model.

A. Parameterized Performance Model

Given n GPUs, the transformer model architecture, a global
batch size b, and system characteristics (hardware, network),
we compute the minimum theoretical time it takes to complete
a forward and backward pass of the model to get an optimal
training time estimate. We do this in three stages:
(S1) We systematically count the total FLOPs (floating point

operations), amount of memory accessed from HBM and
communication volume for every major operation in the
transformer, as well as the amount of memory con-
sumed in HBM to hold intermediate activation maps and
weights—these depend on the parallelization strategy.

(S2) Given the above counts, we then compute the theoretical
time it takes to complete a forward and backward pass
for each layer—this depends on the underlying system
characteristics. The total iteration time for the transformer
is the sum of all individual layer times.

(S3) Finally, we search over all possible parallelization config-
urations, given n and b, to identify the optimal one with
minimum training time with the only constraint that the
model fits on the HBM capacity.

Below, we describe the key components of these stages.
We start by counting the FLOPs and memory accesses for
the matrix multiply primitive, given the shapes of the input
and output tensors. Next, we outline how these computations
change across different parallelization strategies, which gen-
erally amount to distributed matrix multiplies. In particular,
we describe every operation of the transformer along with
its input and output tensor shapes, showing how they are
partitioned under various parallelization strategies. We also
count the communication volume in bytes, highlighting how it
depends on the partitioning of tensors and the communication
collectives used, which we explain in depth. We then briefly
discuss the role of additional components, such as pipelining—
primarily a scheduling challenge rather than distributed matrix
multiplication—and optimizer partitioning, as these have a
particular impact on memory consumption. Once we have
determined the counts for FLOPs, memory accesses, and
communication volume, we demonstrate how to convert these
into compute and communication times using an analytical
runtime model. Finally, we describe our solver, which explores
all possible configurations (i.e., all possible ways to use n
GPUs for partitioning the tensors in the model) to minimize
the overall iteration time.

(S1) Counting FLOPs and bytes. Most transformer oper-
ations heavily rely on matrix multiplication C = AB where
C ∈ Rm×n,A ∈ Rm×k,B ∈ Rk×n. The total FLOPs in this
operation is λf = (2k − 1)mn. The memory accessed from
HBM is λm = 2(mk + kn + mn) bytes (corresponding to
each tensor), assuming FP16 precision (we consider mixed
precision training in our model). Similar expressions can be
derived for LN, SM, GELU, and Dropout, which are simpler



than matrix multiplication. We also count communication
volume in bytes based on the underlying collective operation.

(S1) Fused Operations. The S/A layer is unique to the trans-
former because it involves large activation-activation compu-
tations (i.e., without learnable weights) that are also batched
(many-to-many operations) [35]—this makes the operation
fundamentally memory-bound. Further, large intermediate acti-
vation maps (typically stored for backward pass) in Rb×h×l×l

puts significant memory pressure on the HBM. We assume
the FLASHATTENTION [36] formulation that fuses L/A and
re-computes intermediate activation maps in the backward pass
(expending more FLOPs). This can bring S/A into a compute-
bound regime. For fused L/A, where the attention matrix (A),
SM and attend operation for S are fused, the amount of bytes
counted only depend on the inputs to the fused operation and
no intermediates (increasing the arithmetic intensity).

(S1) Tensor Parallel. The standard form of tensor parallelism
(TP) is 1D TP [22]. Here, a 1D array of nt GPUs are used

Operation Partitioned Tensor Shapes Type Vol
1D TP over nt GPUs

SA
X̃ = LN(X) X̃ : (b, l, e), X : (b, l

nt
, e), AG ble

Q = X̃WQ Q : (b, h
nt

, l, eh), WQ : (e, e
nt

), - 0
A = QKT A : (b, h

nt
, l, l), K : (b, h

nt
, l, eh) - 0

S = AV S : (b, h
nt

, l, eh), V : (b, h
nt

, l, eh) - 0
Y = SWp Y : (b, l

nt
, e), Wp : ( e

nt
, e) RS ble

MLP
Ỹ = LN(Y) Ỹ : (b, l, e), Y : (b, l

nt
, e), AG ble

Z = ỸW1 Z : (b, l, f/nt), W1 : (e, f
nt

) - 0
X = ZW2 X : (b, l

nt
, e), W2 : ( f

nt
, e) RS ble

TABLE I: 1D TP: Tensor shapes, communication collective
and volume (Vol: total bytes transferred per GPU) for different
operations. AG is AllGather and RS is ReduceScatter. K,V
follow Q. Communication volume does not scale with nt.

to partition the weight matrices (in row-parallel or column-
parallel fashion) as well as the sequence length l. We show
the different transformer operations with partitioned tensors
using 1D TP and the associated communication collectives
and volume in Tab. I. The only communication collectives are
AllGather AG and ReduceScatter RS with communication
volume ble. Note that while the volume is fixed w.r.t nt, it
depends on b which is closely connected to data (and pipeline)
parallelism. In Tab. I, we see that some tensors (X̃, Ỹ) are
replicated across the nt GPUs in 1D TP. For large l and e, this
might place extensive memory pressure and S/A still retains
O(l2) time complexity.

We could instead also use a 2D grid of GPUs nt = n1×n2

to partition each tensor, also known as context parallelism [37]
or 2D tensor parallelism. We show the operations with 2D TP
in Tab. II. Here, l is further partitioned in the orthogonal n2

GPU group, reducing memory pressure, and incurs two addi-
tional AG for the tensors K,V. Further, all communication
volumes scale by number of GPUs in their group, lending
better scalability. We note that all weight tensors are shared

(redundant memory) in the n2 group. We can further im-

Operation Partitioned Tensor Shapes Type Vol
2D TP over n1 × n2 grid of GPUs

SA
X̃ = LN(X) X̃ : (b, l

n2
, e), X : (b, l

n1n2
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n2
e
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, l
n2
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), - 0
A = QKT A : (b, h
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, l
n2

, l), K : (b, h
n1

, l, eh) AG bl e
n1

S = AV S : (b, h
n1

, l
n2

, eh), V : (b, h
n1

, l, eh) AG bl e
n1

Y = SWp Y : (b, l
n1n2

, e), Wp : ( e
n1

, e) RS b l
n2

e

MLP
Ỹ = LN(Y) Ỹ : (b, l

n2
, e), Y : (b, l

n1n2
, e), AG b l

n2
e

Z = ỸW1 Z : (b, l
n2

, f
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n1

) - 0

X = ZW2 X : (b, l
n1n2

, e), W2 : ( f
n1

, e) RS b l
n2

e

TABLE II: 2D TP: Tensor shapes, communication collective
and volume (vol: total bytes transferred per GPU) for different
operations. K,V follow Q. Communication volume scales
with one GPU dimension.

prove memory pressure by using the SUMMA [27] algorithm
for all activation-weight operations (no shared weights). For
details on SUMMA, see Appendix §A. The communication
collectives change to two Broadcasts B per matrix multiply
with communication volume scaling with both n1 and n2 (see
Tab. A2). Though the scaling of communication volume and
memory is better than 2D TP, the actual volume is higher
due to both activation maps and weights being transferred
(see V1, V2, V3 in Tab. A2). Hence, depending on the relative
sizes of l, e, f , a large amount of GPUs may be needed for
reasonable communication volumes. However, SUMMA also
introduces more communication overlaps that may reduce with
more partitioning (see Appendix §A discussion on overlaps).

(S1) Pipeline Parallel. The model can be partitioned in the
depth d dimension using np pipeline parallel (PP) orthogonal
GPUs. We assume the 1F1B non-interleaved pipeline schedule
here. Here, a batch b is split into m microbatches of mi-
crobatch size bm = b/m to reduce idle time in GPUs [15].
Communication is point-to-point P2P of volume mbmle/nt

(activation maps for m microbatches). We do not assume over-
lapping this communication with compute (in §IV, we show
this communication time is small and, hence, a reasonable
assumption)

(S1) Data Parallel and Optimizer. We can use nd orthogonal
data parallel (DP) GPUs to partition bm to bm/nd for all
devices. For large weight matrices, it is also common to
distribute the optimizer states amongst nd GPUs. Assuming
FP16 computations, this amounts to 12/nd bytes of memory
per parameter, assuming Adam optimizer [31]. The forward
pass is embarrassingly parallel and the backward pass incurs
a RS and AG of the weight gradients and weights, respec-
tively. We assume that gradient accumulation occurs over m
microbatches (no communication) and the RS is overlapped
with the backward pass of the last microbatch and AG is
overlapped with the forward pass of the first microbatch after
the pipeline flush. Note that, in 2D TP, the weight gradients
need an additional reduction across n2 GPUs and we assume



it to be scheduled simultaneously with the DP RS and AG
(see Appendix §A). At the end, we have n = n1×n2×np×nd

grid of GPUs for full 4D parallelism.

(S2) Memory Used on HBM. Assuming mixed precision
training, in addition to the weights and gradients (2 bytes
per parameter for each) and optimizer states (12/nd bytes
per parameter), every operation stores intermediate activation
maps (needed for backward pass, see Appendix §A) for m
microbatches. With FLASHATTENTION, the intermediate A
are not stored but recomputed. The 1F1B pipeline schedule
further reduces memory by storing np microbatches (rather
than m) since the schedule decreases the total number of in-
flight microbatches for backward pass [15].

(S2) Computation Time. We use the simple roofline model
[38] to convert FLOPs and memory accesses into computation
time. Assuming the matrix multiply primitive (with similar ex-
pressions for non-matrix multiply operations) with λf FLOPs
and λm memory accesses as well as hardware peak FLOP rate
λfh and peak hardware memory bandwidth from HBM as
λmh, roofline performance dictates peak performance time for
the operation as max(λf/λfh, λm/λmh). We assume tensor
core hardware FLOPs (in GPUs) for the matrix operations
and vector hardware FLOPs for the others. We can add
communication time based on V bytes of communication
volume tcomm to this time to get the final estimate of the
operation time. Depending on the operation, tcomm may be
overlapped with compute or exposed.

(S2) Communication Time. We assume two networks–one
fast network through NVSwitch (NVS) for GPUs within a
node with (αf , βf ) as the network latency and bandwidth
and one slow network through InfiniBand (IB) across nodes
with latency and bandwidth of (αs, βs). We assume RS,AG
happen using the ring algorithm. While the IB bandwidth βs

is typically much smaller, NCCL can employ multiple rings,
proportional to number of NICs (network-interface cards)
per node nNIC, to simultaneously complete the collectives
[39]—this effectively increases the IB bandwidth to nNICβs.
Assuming nNVS GPUs per node (or per NVS domain) and a
total of n GPUs for the communication collective, we model
the time tcomm for an AG of a total of V bytes of volume per
GPU as:

tlatency = αs

(
n

nNVS
− 1

)
+ αf

(
n− n

nNVS

)
,

tcomm = tlatency +
(n− 1)

n
max (

V

nNICβs
,
V

βf
).

Here, we have followed the theoretical time expressions for
a single network given by NCCL performance models [40].
Typically, nNIC is equal (or proportional) to the NVS domain
size nNVS. Hence, the effective bandwidth of communication
max (nNICβs, βf ) is eventually constrained by βf for large
NVS domains. Similar expressions can be derived for the other
collectives. We empirically verify that these expressions model
the communication time reasonably in a dual network system
through NCCL tests (see Appendix §B).

(S2) Pipeline Bubble Time. Additional idle time is incurred
in pipeline bubbles and is modeled as tbubble = (np−1)(tf+tb)
with tf and tb as the time it takes to complete forward and
backward pass of one microbatch, respectively [15].

(S3) Optimal Configuration. Given n GPUs and a global
batch size b, we identify an optimal configuration through
combinatorial optimization—searching through all possible
configurations and choosing a feasible configuration with min-
imum time, where feasibility is defined as having the ability
to fit in HBM. The configurations include the following:

1) Parallelization and microbatch size configurations:
These are contained in (bm, n1, n2, np, nd). To get all
possible configuration, we simply decompose n = n1 ×
n2 × np × nd by sweeping through all possible factors.
We discard factors that do not divide the tensor they are
partitioning evenly. For example, if n2 GPUs are used
to partition the sequence length l as l/n2, then n2 must
divide l. Similarly, nd (data parallelism) must divide the
global batch size, the microbatch size bm must divide the
local batch size, and np (pipeline parallelism) must divide
the model depth.

2) GPU assignment configurations: These are specified by
(nNVS1, nNVS2, nNVSp, nNVSd), where nNVSi is the number
of GPUs in the NVS domain for the i-th GPU group. For
example, n1 = 32 with nNVS1 = 4 indicates that groups
of 4 GPUs are on the NVS domain (or equivalently
4 GPUs per node are used across 8 nodes). Searching
over these configurations can be quite important with
larger NVS domains as we can balance DP/TP/PP com-
munications by re-distributing GPUs to take advantage
of the faster domain. To get all possible configurations,
similar to the parallelization, we decompose nNVS =
nNVS1 ×nNVS2 ×nNVSp ×nNVSd into all possible factors.
We ensure nNVSi divides ni and discard factors that do
not.

3) Additional SUMMA configurations: For 2D TP
SUMMA, we additionally include the number of blocked
matrix multiplies nb (see §A for details on the SUMMA
algorithm and effect of the nb parameter) as a con-
figuration to search. The possible values for nb is a
function of the tensor dimensions and affects the exposed
communication time for this strategy.

B. Models and Systems Studied
We study two classes of large models—GPT3-1T, an LLM

foundation model, and long-sequence Vision Transformer
VIT, a neural operator backbone for SciML foundation mod-
els. GPT3-1T has (l, e, h, d) = (2048, 25600, 160, 128) and
VIT has (l, e, h, d) = (64800, 12288, 64, 48). The first model
is representative of foundation LLM pre-training with small
sequence length l. The FLOP ratio of MLP to S/A is roughly
2x. The VIT with large l is representative of foundation
models in science where the large l arises from the necessity
to process the entire spatial grid of a physical variable at a
high resolution to ensure physical continuity and capture fine-
scale phenomena [25], [26], [41]. We base our hyperparameter



choice on existing models [12], [42]. For example, training on
a popular weather forecasting dataset ERA5 [43], the input
resolution is a 720 × 1440 spatial grid giving rise to a 1M
sequence length. We assume patch size 4 (realistic spatial
downsampling based on [25], [26]) to drop l to 64800. At this
scale, the VIT has a FLOP ratio of MLP to S/A as roughly
0.5x, leading to large S/A operations, illustrating another
extreme of foundation model pre-training. We note that long-
context window LLMs may also represent this extreme, but
they are typically only fine-tuned at this scale. We assume
that GPT3-1T is pre-trained on 1T tokens as planned for pre-
training of LLMs for science [44], [45] and VIT is trained
on 40 years of hourly data from ERA5 for 80 epochs [25].
In all experiments, we assume a global batch size of 4096
samples. For systems, we consider three generations of GPUs
(A100, H200, B200) to project trends as well as different
NVS domain sizes for each generation. We list the hardware
(and network) characteristics of each system in Tab. A3. We
also assume that the NVLink and IB bandwidth increase
proportionally across generations.

IV. RESULTS

Our analysis centers on three questions:

(Q1) What is the rationale behind an optimal configuration in
the design space?

(Q2) What are the optimal configurations and primary perfor-
mance bottlenecks when training at scale and how do they
change for different models?

(Q3) What is the effect of the GPU generation and NVS do-
main size on overall performance?

To provide a detailed view of optimal configurations and
their resulting performance, we use plots similar to those
in Fig. 1. We first briefly explain the formatting of these
plots for clarity. In the PARALLELIZATION CONFIGURATION
plots (upper panels), the y axis shows the parallelization
configuration and the memory consumption on HBM—we
show the number of GPUs assigned to data parallel (nd DP),
tensor parallel (nt TP or n1, n2 for 2D TP), pipeline parallel
(np PP) and the number of microbatches as vertical bars, and
we show the total memory consumption in GB as a black dot.
On the x axis, we either enumerate different configurations
(example, Config. A, B, C, and so on) or enumerate number
of GPUs used to train the model (when analyzing scaling
performance as in Fig. 4). Hence, the upper panels allow us
to compare the details of the parallelization configurations and
memory consumption for different settings.

In the TIME plots (bottom panels), we show the same
configurations as above, but with the vertical bars now dis-
playing a time breakdown of each training step (in units of
percentage of total iteration time). This allows one to visually
compare across configurations and see how much time each
configuration spends in a given stage (e.g. in pipeline bubbles,
TP/DP/PP communication, compute, memory accesses). We
also show the total time per iteration (black dots) to indicate
which configuration is fastest. The lower panels allow us to
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Fig. 1: On 16384 B200 with NVS domain size nNVS = 8,
microbatch size 1 for GPT3-1T with 1D TP: (top) Config-
urations (Config.) chosen with PP fixed to np = 64 and
the others varying. Example, Config. D is (m,nt, nd, np) =
(128, 8, 32, 64) and so on. (bottom) Time for each configu-
ration broken down by the time spent on compute, memory
accesses, various communications (DP, TP, PP) and PP bub-
bles. In config. D (TP nt = 8), we observe a local minimum
in time per iteration.

inspect the bottlenecks in training and provide a sense of
training efficiency.

(Q1) Rationale behind optimal configurations. It is chal-
lenging to visualize the entire design space to understand the
rationale behind an optimal configuration. We make it easier
to reason about design choices by fixing certain configurations
and varying others. In subsequent analysis ((Q2), (Q3)), we
identify the optimal configuration by running the search (S3)
over the entire design space.

For this analysis, we start with fixed total GPUs n and global
batch size b. Then, we vary any two parallelization parameters
and keep the rest fixed. Since n = n1 × n2 × nd × np, as one
configuration parameter increases, the other must decrease.
Once we have chosen our parallelization configuration, we
search over all possible GPU assignment configurations for
each parallelization configuration to get the optimal assign-
ment to the NVS domain. This ensures that, for any par-
allelization configuration, the assignment to NVS domain is
optimal. We use the GPT3-1T transformer for this analysis.
We make several observations.

(i) A simple observation is the apparent convex behavior of
training time in the design space, especially w.r.t TP (tensor
parallelism). In Fig. 1, assuming a fixed system (B200 and
nNVS = 8) and 1D TP, we fix PP np = 64 and vary both
TP and DP (with the total GPUs fixed at n = 16384 and
microbatch size 1), to get training time as a function of
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(a) nNVS = 8
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(b) nNVS = 64

Fig. 2: Following Fig, 1, we change the following: we fix TP
nt = 8 and vary PP and DP on two different NVS domain
sizes. (top) We observe a local minimum at PP np = 64.
(bottom) For larger NVS, we observe that the local minimum
shifts to low PP np = 2, with NVS used to hide DP costs.

varying TP/DP. We can immediately see the convexity of time
that arises due to dominant costs from increased TP and DP.
Note that as DP decreases, since global batch size b and
microbatch size bm are fixed, the number of microbatches
(m) automatically increases. We see that greater TP drops the
HBM usage but exhibits high communication costs (due to
more microbatches). With large DP, number of microbatches
reduces leading to large pipeline bubbles. The DP and PP
communications are sufficiently small and hidden here. Hence,
there is a local minimum around nt = 8, nd = 32,m = 128
with about 40G HBM utilization.

(ii) The dual-bandwidth domain introduces subtle non-
convexities in the training time within the design space. We
show this by fixing TP at nt = 8 (for 1D TP), and varying PP
and DP in Fig. 2. As DP increases, the DP communications
follow a non-convex pattern, increasing to a peak transition
point and then declining. This is due to the dual bandwidth
domain where the chosen nNVSd (number of DP GPUs on
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(b) nNVS = 64

Fig. 3: For GPT3-1T with 2D TP SUMMA, we fix TP
(nt, np) = (32, 1) and vary n1, n2 to get the the first five
configurations and then switch to (nt, np) = (8, 128) and
repeat the same for the rest. We show two NVS domain sizes.
With larger NVS, large DP (low PP) is preferred.

NVS) starts to increase at the transition point—both TP and
DP begin to utilize the fast bandwidth, decreasing the DP
communication time. With maximum DP, all 8 NVS GPUs
are utilized for DP. The local minimum is still the same.

(iii) Larger NVS domains can exploit the above by favoring
alternate parallelization strategies. To show this, we repeat the
the above experiment for nNVS = 64 in Fig. 2b. We observe
that the optimal configuration shifts to heavily decreased PP
with the entire NVS domain used for DP and TP. Hence,
the larger NVS domain has favored increased data parallelism
with minimal pipelining, at the cost of increased HBM utiliza-
tion. Note that while np = 1 is fastest, it is infeasible on a
B200 GPU due to high HBM capacity required.

(iv) Higher dimensional 2D TP versions can show similar
behaviors with the design-space being more complex due
to additional TP dimensions. We sweep over two sets of
configurations in Fig. 3 to show this in 2D TP SUMMA. We
focus on the two extremes we observed in the 1D case (high
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(a) GPT3-1T with 1D TP
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(b) VIT with 2D TP

Fig. 4: On B200 with nNVS = 8: (top) Optimal parallelization strategy and HBM memory consumed vs number of GPUs
(bottom) Time vs number of GPUs broken down by the time. For both models, most time is spent in compute. For GPT3-1T (left),
1D TP is sufficient to get good performance. PP bubbles start to dominate at scale, followed by TP and DP communication.
HBM memory used also drops at scale. For VIT (right), 2D-TP is necessary for fitting the model on HBM and most of it is
utilized, even at scale. TP communications are the main bottleneck followed by PP bubbles.

PP and high DP). We first set high DP by fixing np = 1,
one microbatch m = 1, and choosing a large enough TP
nt = 32. We note that the microbatch size is now 8 and
the memory efficiency of 2D TP SUMMA enables us to fit
the model on HBM; 1D TP would need far greater TP for
this microbatch size and np = 1 due to shared activation
memory, leading to unmanageable communication costs. We
then only vary the relative TP allocation into n1 and n2. Next,
we switch to low DP by setting np = 128 and repeat with
nt = 8. We retain large m here to manage the pipeline bubbles
(since np > 1). We observe that in both high and low DP
configurations the fastest configuration involves only 1D TP
with n2 = 1. This is because adding the second dimension
increases the communication volume significantly in SUMMA
(as noted in §III) and, while more GPUs can decrease this
(since SUMMA communication volumes scale with number
of GPUs), the slow IB bandwidth creates bottlenecks. In
Fig. 3a, (n1, n2, np) = (8, 1, 128) is fastest. Increasing the
NVS domain size to 64, in Fig. 3b, favors high DP (similar
to 1D TP) with (n1, n2, np) = (8, 4, 1) being fastest. The
fast bandwidth helps manage and balance the large TP costs
from both dimensions with effectively no PP. Note that,
here, the DP communications are effectively hidden behind
the increased compute of a large microbatch size. 2D TP is
also similar but shows higher memory pressure from shared
weights and activations (see Fig. A2 for details).

(Q2) Optimal parallelization strategy as a function of
transformer type. We show the optimal parallelization strat-
egy from the performance model as a function of number of

GPUs n in Fig. 4 on B200 with nNVS = 8. To get the optimal
configuration (note that this includes the parallelization config-
urations as well as assignment of GPUs to NVS domains), we
run our search (S3) for each n, independently. In these plots,
we also note the difference that the x axis now enumerates
an increasing number of GPUs on which the models are
parallelized, and for each scale (n) we show the optimal con-
figuration and time breakdown in the same format as previous
figures. These plots show the strong scaling behavior of the
transformer and highlights how parallelization configurations
and training time bottlenecks change with the use of more
GPUs for training. We make the following observations.

(i) The optimal parallelization configurations for GPT3-1T are
re-balanced as n changes due to different bottlenecks arising
at different scales. We show this in Fig. 4a assuming a
B200 system with nNVS = 8. At small GPU scales (128, 256),
the performance model opted to use increased TP to fit the
model, leading to large TP communication. At larger scales,
TP reduces and then increases monotonically. PP increases to
the maximum value (depth d) until 4096 GPUs. At this point,
DP has increased to the point that the number of microbatches
(which reduce with more DP) are not large enough to hide
the pipeline bubbles, seen in the increasing pipeline bubble
fractions, and PP starts to reduce. Smaller PP exposes more TP
communication and hence the optimal configuration carefully
re-balances each of these at different scales to manage the bot-
tlenecks. Finally, DP and TP communications are insignificant
at small scale, but at large scale they slowly get exposed.



(ii) Each GPU scale shows a different optimal assignment of
GPUs onto the NVS domain for GPT3-1T. For example, at
2048 GPUs, the performance model opted (nNVS1, nNVSp) =
(4, 2) (note that NVS size is nNVS = 8), at 1024 GPUs we see
(nNVS1, nNVSd, nNVSp) = (2, 2, 2) and the full NVS domain
is used for TP at 8192 GPUs and beyond. Hence, the fast
bandwidth is exploited differently across various n for each
parallelization strategy, to better hide their respective dominat-
ing costs.

(iii) HBM capacity utilization is high only at small-to-
moderate GPU scales and drops at larger scale for GPT3-1T.
We also note that memory access time is insignificant at all
scales for this transformer with compute being the dominant
cost, followed by pipeline bubbles, TP communication and
small DP/PP communications at large scale. 2D TP versions
show similar behavior with re-balanced configurations, HBM
utilization, and dominant bottlenecks at different scales (see
Fig. A3 as an example).

(iv) In VIT, sequence length l = 64K renders 1D TP
infeasible on all GPUs due to extremely large activation map
memory, with 2D TP necessary and dominating the optimal
configurations. We show the VIT 2D TP in Fig. 4b. Due
to large l, large TP is necessary with n1 = 4 and n2 = 4
as the most common strategy at scale. PP is low and TP
communications are the only bottlenecks. While PP helps
reduce weights memory, it increases activation memory as
noted in §III as the 1F1B schedule stores np microbatches
of activation maps. Only TP helps in this model setting at
the cost of high communication time—the full NVS domain
is used only for TP. HBM capacity is also highly utilized.
2D TP SUMMA exhibits similar behaviors with a smaller
throughput (due to increased communication) but is more
memory efficient.

(Q3) Overall Performance, GPU Generation, and NVS
Domain Size. We show the training time vs number of GPUs
for the two models for different GPU generations (A100,
H200, B200) as well as different NVS domain sizes (4, 8,
and 64) in Fig. 5. We make the following observations:

(i) The GPT3-1T model benefits significantly with higher
GPU generation. We show this in Fig. 5a, where the training
times are O(30) days on 16K A100 GPUs and it drastically
drops to O(3-5) days on the B200 GPU, owing to increased
tensor core performance and network bandwidths. We also
show this in Figs. A5 and A6 where we sweep over different
hardware characteristics and highlight the reduced sensitivity
to capacity/HBM bandwidth and also show that configurations
with small memory bandwidth and high capacity can also
show good performance, highlighting the value of alternate
memory technologies. Pre-training this model would require
> 10K GPUs to keep training reasonable at O(days), even
for the B200, emphasizing the importance of understanding
performance bottlenecks at scale.

(ii) The NVS domain effects are only seen at large scale
(and increasing with scale) for the GPT3-1T model, where
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Fig. 5: Training time in days vs number of GPUs (n) for
different GPUs (A100, H200, B200). We also assume differ-
ent NVS domain sizes for each generation—NVS4 indicates
nNVS = 4 and so on (top) Training time on 1T tokens for
GPT3-1T using 1D TP. We see a consistent improvement
across GPU generations. Further, smaller number of future
GPUs are capable of training GPT3-1T due to larger HBM.
NVS effects are seen at the smallest scale (due to increased
TP) and at the largest scales. (bottom) Training time on
40 years of ERA5 with a VIT using 2D TP. While GPU
generations provide similar advantages, NVS domain size
effects are seen throughout due to increased TP necessary for
this model.

the larger domains increase the scalability of the model. As
noted in Q1, this is because larger NVS domain allows large
DP (at the cost of higher memory usage) by hiding the DP
communication costs which, in turn, decreases pipeline bub-
bles (that dominate the bottlenecks at scale) thereby improving
scalability. Hence, with large NVS as well, TP remains small
with the NVS domain utilized for DP to scale better (see Fig.
A3). At the small scale, the NVS domain again plays a role
due to heavy parallelism to fit the model on available GPUs. At
moderate scale, the effects are milder—fine-tuning jobs at this
scale may not see a lot of benefit from larger NVS domains.
Similarly, the NVS domain helps more for the A100 GPUs



due to its limited capacity, leading to increased TP.

(iii) While 1D TP is performant for GPT3-1T, both 2D TP
versions can help further reduce training time (see Fig. A4
for relative speedups). We observe that 2D TP SUMMA can
particularly help in the resource constrained regime—smaller
number of GPUs, small capacity (as in A100), and small
NVS domain size. The speedups reduce as the GPU generation
increases. Similar to 1D, as the NVS domain becomes larger,
the 2D TP versions can also utilize it in favor of increased DP
(see Fig. A3), increasing the scalability of the model.

(iv) The VIT also sees significant improvements with GPU
generation. However, the 2D versions of TP are the only viable
strategies, with 2D TP being optimal. Both HBM capacity
as well as NVS domain size effects show more uniform
importance across scales (also see Fig. A5b). This is due to
the increased pressure placed on TP to fit long sequences.
For this model, since nt = 16 is necessary any NVS domain
size less than this will show performance drops. Hence, larger
NVS domains add consistent value until nt GPUs are within
the same domain, after which there are diminishing returns.
We show that the VIT also shows alternate large capac-
ity/low memory bandwidth configurations (alternate memory
to HBM) as viable options in Fig. A6b.

Empirical Validation. We verify that the performance model
produces reasonable outputs for the different model types
and parallelization strategies at scale. We consider moderate
scale tests on 512 GPUs with global batch size 1024 on
the Perlmutter [46] supercomputer at NERSC. Perlmutter has
4 A100 GPUs per node (all-to-all connected via NVLink).
We validate the performance model with a 175B parameter
GPT3 and a 32K VIT model using MEGATRON-LM [37].
We validate the optimal configuration from the performance
model as well as few sub-optimal configurations. For GPT3,
we observe that the optimal configuration (nt, np, nd, bm) =
(4, 16, 8, 1) shows a 11% error in iteration time. We test
4 other sub-optimal configurations (with different relative
TP/PP/DP) and they show 4–15% errors. For the VIT, a near-
optimal configuration (n1, n2, np, nd, bm) = (2, 4, 4, 16, 1)
(the optimal configuration overflowed HBM due to extra
scaffolding memory in PyTorch; we picked the next configu-
ration), the error is about 2%. For sub-optimal configurations,
with different TP/PP/DP, the error ranges from 11–26%. We
observe performance trends between observed and predicted
iteration times are consistent (larger observed times seen with
larger predicted times) and the low errors are encouraging.

V. SUMMARY AND DISCUSSION

We have described the core components of an analytical
performance model and its sensitivity to the transformer
architecture, system features, and parallelization strategy. We
observe the following high-level characteristics: (i) Placement
of GPU groups within NVS domain can significantly affect
the performance, motivating software codebases to be flexible
in not just the parallel configuration, but also the GPUs used

for the configuration1; (ii) GPT3-1T class models can benefit
greatly with larger NVS domains in pre-training scales (>
10K GPUs), where O(days) improvements can be significant;
(iii) Smaller (and moderate) scales of fine-tuning demand more
from HBM and less from NVS (O(hours) improvements),
suggesting different system design choices based on the train-
ing regime of large models. SUMMA variants of TP can
particularly help at small scales and in resource-constrained
regimes (small capacity, small NVS); (iv) VIT class models
demonstrate a contrasting extreme with more dependence on
NVS, HBM, and higher-dimensional parallelism (with 2D
TP variants). SUMMA variants can reduce some memory
pressure, but heavy dependence on expensive system features
may motivate algorithmic advances for reduced sequence
length training; (v) Both models benefit most from FP16 tensor
core performance and network bandwidths, but other memory
technologies (lower bandwidths/more capacity like LPDDR)
can be viable alternatives which may help alleviate the heavy
dependence on the NVS for VIT class models.

Limitations. While several components are modeled in the
performance model, there are some optimizations we do not
consider. We do not consider interleaved pipeline schedules
[15] that can drop bubble time further. There are more lower-
level opportunities for TP communications to be overlapped
with compute to drop communication time. Weights (and
gradients) can also be partitioned using DP at the cost of higher
communication introducing another trade-off. We also do not
explore offloading to the CPU (in addition to HBM) which
may be very useful for large sequences.

Outlook. Overall, this work emphasizes the need to closely
explore the complex interplay between architecture type be-
yond LLMs, parallelization strategies beyond 3D to 4D (and
higher) versions, and the HPC system (interconnects and
accelerator features), and demonstrates a path towards a tightly
coupled modeling of all these elements. We focus our future
work in including more optimizations, detailed analyses of 2D
TP versions, and other architecture types such as linear (or
windowed) attention versions of the VIT, spectral transformer
models, convolutional models, graph neural networks, amongst
other scientific AI foundation models.
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APPENDIX

A. Methods: Additional Details

We outline the abbreviations used in this paper in Tab. A1.

Abbreviation Description
NVS NVSwitch
IB InfiniBand
HBM High-bandwidth memory
S/A Self-attention layer
MLP Multi-layer Perceptron layer
LN LayerNorm layer
L/A Logit-Attend layer
SM Softmax layer
DP Data parallelism
TP Tensor parallelism
2D TP 2D tensor parallelism
2D TP SUMMA 2D tensor parallelism with SUMMA matrix-multiply
PP Pipeline parallelism

TABLE A1: Abbreviations used in this paper.

We now outline some additional details regarding the perfor-
mance model.

(S1) Backward pass. Assuming the matrix multiply, C =
AB where C ∈ Rm×n,A ∈ Rm×k,B ∈ Rk×n, the backward
pass computes the gradient tensors of the loss function L:

∂L
∂A

=
∂L
∂C

BT ,
∂L
∂B

= AT ∂L
∂C

Note that A,B are intermediate maps stored for the backward
pass in HBM. B may be weights (in MLPs) or activation maps
(in L/A). Similar FLOPs, bytes and communication volumes
can be derived for the backward pass (typically incurring twice
the cost of the forward pass).

(S1) 2D TP SUMMA. Scalable Universal Matrix Multi-
plication (SUMMA) [27] is an efficient distributed matrix
multiply algorithm that uses a 2D grid of processors (GPUs)
n1 × n2. While many implementations of SUMMA [33]

Algorithm 1 C = AB using SUMMA

1: Input: Aij , Bij

2: Output: Cij

3: C = 0
4: for κ = 0 → nb − 1 do
5: for i = 0, ..., n1 − 1 Broadcast Aκ

i to ith process row
6: for j = 0, ..., n2 − 1 Broadcast Bκ

j to jth process col
7: Cij = Cij +Aκ

i B
κ
j

8: end for
9: return Cij

assume square matrices and process grids, SUMMA does not
impose these restrictions and we outline the general algorithm
here. Each matrix is evenly partitioned into n1×n2 sub-blocks
and mapped onto their respective GPUs. In the rectangular
version of SUMMA [47], we assume that k is further divided



into nb “panels”, each of size kb. Denoting the panels as
Aκ = A0:m−1,k′:k′′ ,Bκ = Bk′:k′′,0:n−1 with k′ = κkb and
k′′ = (κ+ 1)kb − 1, SUMMA recasts the matrix multiply as:

C =

nb−1∑
κ

AκBκ.

Assuming the matrices are distributed as Aij ,Bij ,Cij , with
i = 0, 1, ..., n1 − 1, j = 0, 1, ..., n2 − 1, and Aκ

i denotes panel
at the ith row and Bκ

j denotes panel at the jth column, we
show the SUMMA pseudo-code in Algorithm 1. The pseudo-
code of C = ATB and C = ABT are similar but have a
Broadcast and Reduce collective, instead of two Broadcasts
(see [27] for more details).

Operation Partitioned Tensor Shapes Type Vol
2D TP with SUMMA over n1 × n2 grid of GPUs
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TABLE A2: 2D TP SUMMA: Tensor shapes, communication
collective and volume (vol: total bytes transferred per GPU)
for different operations. AG is AllGather, RS is ReduceScat-
ter, B is Broadcast, and AR is AllReduce. K,V follow Q.
Communication volume scales with one GPU dimension and
there are no shared weights. For the SUMMA multiplies,
V1 = ble/n2 + e2/n1, V2 = V3 = ble/n2 + ef/n1.

(S2) Communication in TP. We show the full SUMMA
communicaton and tensor shapes in Tab. A2. Note that
V1, V2, V3 all communicate the weights as well as the ac-
tivation maps, increasing the absolute volume but showing
better scaling with n1, n2. For the forward pass, in 1D TP,
the communications outlined in Tab. I are assumed to be non-
overlapped since partial sums are assumed to be computed
before the communication can take place and the subsequent
layers need to wait for the synced activation map. 2D TP is
similar with the l partitions being embarrassingly parallel. In
SUMMA, we assume some overlap of the TP communications.
There is a prologue time tprologue to perform two broadcasts
before the first κ iteration and the rest of the broadcasts
(for subsequent κ iterations) can be scheduled asynchronously
(and hence overlapped) to the computation of Cij . Hence,
the communication time tcomm = tprologue + nbtexposed, with
texposed as the exposed time between two broadcasts and the
compute. Hence, the nb parameter can influence tcomm as larger
values will reduce tprologue (smaller panels communicated) but
at the same time reduce the matrix multiply efficiency (smaller
matrices, may become memory bound with small inner di-
mensions), exposing communication more. Hence, the 2D TP
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Fig. A1: Time for AG as a function of communication volume
on 32 A100 GPUs. We compare empirical numbers on Perl-
mutter through NCCL tests [40] to our theoretical formulae
for different fast domain (NVLink) sizes. For NVL 2, 2 GPUs
per node are used and for NVL 4, 4 GPUs per node are used.
We see that more GPUs per node effectively increases the
SlingShot bandwidth, leading to smaller times.

Description A100 H200 B200
Tensor core FP16 (TFLOPs/s) 312 990 2500
Vector FP16 (TFLOPs/s) 78 134 339
Flops Latency (s) 2e-5 2e-5 2e-5
HBM Bandwidth (GB/s) 1555 4800 8000
HBM Capacity (GB) 80 141 192
NVS 1-directional Bandwidth (GB/s) 300 450 900
NVS Latency (s) 2.5e-6 2.5e-6 2.5e-6
IB Bandwidth (GB/s) 25 50 100
IB Latency (s) 5e-6 5e-6 5e-6

TABLE A3: GPU and network parameters for various GPU
generations.

configuration also searches over nb. In the backward pass, 1D
TP incurs similar AG and RS in a conjugate fashion to the
forward pass communications due to the transposed matrix
multiplies. In 2D TP, the weight gradients incur an additional
reduction across n2 due to the partitioned l dimension. We
assume this TP communication to be overlapped and scheduled
with the DP communications—the weight gradient RS and
the weights AG happen across the combined nd × n2 GPU
group. For SUMMA, the transposed matrix multiples incur a
Broadcast and Reduce instead of two Broadcasts.

(S2) Validating communication time of collectives. We
validate our time to communication formulae for the different
communication collectives on the Perlmutter [46] supercom-
puter at NERSC. Perlmutter has 4 A100 GPUs per node
connected via 4 third generation NVLinks between each pair
of GPUs (with all GPUs interconnected) and 4 NICs per
node for the SlingShot communications (similar to IB). While
there is no NVSwitch on Perlmutter, we can derive equivalent
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Fig. A2: (a) For GPT3-1T with 2D TP, we fix TP nt = 32, np = 1 and vary n1, n2 to get the the first five configurations
and then switch to np = 128 and repeat the same with nt = 8 for the last four configurations. We use a B200 GPU with
NVS domain size nNVS = 64, global batch size 4096 on 16384 GPUs and also show time for each configuration broken down
by the components. We see similar behavior as 2D TP SUMMA but the memory consumed is very high and hence the large
PP configurations are chosen. (b) For VIT with 2D TP, we first fix nt = 16 and vary n1, n2, then switch to np = 16 and
repeat the same. The memory used is sensitive to the parallelization regime.

expressions for NVLink based on number of NVLinks per
GPU used in the collective. For example, if only 2 GPUs
per node were used, only 4 NVLinks are used for the fast
bandwidth. If all 4 GPUs are used in a node, then 12 NVLinks
are used. In Fig. A1, we show that our theoretical time
formulae agree well with the empirical results. We also see
the effect of the increased SlingShot bandwidth if more GPUs
are used per node (in the fast domain). We observe some
non-linear latency effects at small volumes and do not model
these in our performance model. We also verify the above
agreement over a range of GPUs (and nodes), and also for
other collectives.

(S2) Hardware configurations. We summarize the hard-
ware parameters used in our model. The specifications for
the A100 GPU can be found in [48], and the H200 and
B200 GPUS can be found respectively in [49] and [50].
Each GPU generation is coupled to its respective NVLink
generation. Similarly, the IB interconnects improve with each
generation, from ConnectX-6 [51], to ConnectX-7 [52], and
the most recent ConnectX-8 [53]. We assume network latency
values from the previous validation experiments and also
assume they do not greatly improve with newer generations. In
our experiments on Perlmutter, we observe typical bandwidth
efficiencies of 70% for the networks and include this as
an efficiency parameter as well. For FLOPs, we assume a
simple model based on [54]: tflops = tsf + λf/λfh, where
the FLOPs latency tsf can be inferred from [54] and models
the inefficiency in matrix multiplies of small matrices to the

first order.

Software environment setup for validation. We validate our
performance model in IV with the open source MEGATRON-
LM codebase [37]. We use NVIDIA PyTorch NGC container
V24.05 and build MEGATRON-LM in the container. The
GPT3-175B and custom VIT models are built on top of
TRANSFORMERENGINE and FLASHATTENTION-2. For opti-
mized collective operations, NCCL v2.19.4 and its associated
plugin for Perlmutter is used. Iteration times are captured using
the built-in logging utility in MEGATRON-LM. We use the
CodeParrot [55] dataset for empirical validation experiments.
This dataset is pre-processed by existing tools provided in
Megatron-LM. The following optimizations are enabled during
training: distributed optimizer, overlapping gradient reduction,
overlapping parameter all-gather in the distributed optimizer,
half precision (FP16) along with Flash Attention. To test differ-
ent strategies that require mapping different ranks on different
devices on and across nodes, we tweak the model parallel
initialization to accept different mapping orders in the form of
strings, for example, tp-cp-dp-pp, cp-tp-pp-dp, etc.

B. Additional Results

2D TP rationale. In Fig. A2, we show that 2D TP works
similarly to 2D TP SUMMA in GPT3-1T with low PP/high
DP and low DP/high PP configurations as possible candidates.
However, unlike 2D TP SUMMA, the low PP/high DP config-
urations take up a lot of memory since 2D TP has lot of shared
weights and activation maps compared to SUMMA. Also, the
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(a) GPT3-1T 1D TP on nNVS = 64
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(b) GPT3-1T 2D TP SUMMA on nNVS = 64

Fig. A3: On B200 GPU with global batch size 4096: (top) Optimal parallelization strategy and HBM memory consumed
vs number of GPUs (bottom) Time vs number of GPUs broken down by different components. (a) GPT3-1T with 1D TP on
larger NVS domain shows reduced PP at scale (b) GPT3-1T with 2D TP SUMMA shows mostly 1D TP except at scale due
to the large NVS domain.
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(b) Speedup for 2D TP w.r.t 1D TP

Fig. A4: We show the relative speedup in training time of the two 2D TP strategies with respect to 1D TP. The speedups are
colored according to GPU generations and marked according to NVS domain size. We observe that both versions provide good
speedups of about 10% with SUMMA particularly helpful at resource constrained regimes (small scale, capacity, NVS domain
size). 2D TP is more performant at the large scales. Higher GPU generations and NVS sizes decrease speedup in general.

DP communication times are shown to be high, but in 2D TP,
this includes the weight gradients reduction across n2 that is
scheduled with the DP reductions—we do not disentangle this
TP communication in our estimates. For the VIT, we show the
2D TP possibilies in Fig. A2b. We still observe the high and
low PP configurations contending with each other (with high
TP necessary for this model), with the low PP configurations
being favored here. We also see that the memory usage is
sensitive to the choice of n1, n2 with np. For small PP, the
weights memory dominates at low n1 and activation memory
dominates at low n2. With high PP, the activation memory

dominates and hence with more n2, the memory comes down.

Parallelization and model type. For GPT3-1T, we show
1D TP on a large NVS domain in Fig. A3a. We see that
small PP (and large DP) is favored at scale due to the large
fast bandwidth domain. With 2D TP SUMMA, we see that,
for GPT3-1T, the model effectively chooses 1D TP at most
scales. Due to the large NVS domain, it chooses 2D partition-
ing at scale. For the VIT, the 2D TP SUMMA is very similar
to 2D TP, with the latter showing better performance (training
times) and the former showing better memory utilization.
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(b) VIT with 2D TP

Fig. A5: Training times for GPT3-1T and VIT using 8192 GPUs as a function of FLOP rate (compute speed) and
HBM memory capacity and bandwidth. NVS domain is 8 with fixed NVS and IB bandwidths at the B200 generation
and the global batch size is 4096. FLOP rates are the primary factor for speed-ups with bandwidth/capacity having different
roles for the different models.
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Fig. A6: Training time for GPT3-1T and VIT as function of HBM memory capacity and bandwidth. NVS domain is 8 with
fixed NVS and IB bandwidths at the B200 generation (along with the FLOP rates) and the global batch size is 4096. Both
models show lower bandwidth/higher capacity configurations can contend in performance by trading-off lesser parallelism
inefficiencies for higher memory access times.

Speedups with higher-dimensional TP. We show that both
2D TP versions for GPT3-1T can reduce training time. In
Fig. A4, we show the speedup of the two 2D TP versions
with respect to 1D TP for different GPU generations and
NVS domain sizes. While the speedups are generally clustered
for most systems, we observe speedups of approximately 5–
10% across various GPU scales. 2D TP SUMMA is more
helpful at very small scales, small capacities (A100), and
smaller NVS. 2D TP shows similar speedups that are higher
at the larger scale.

GPU memory bandwidth, capacity, and FLOP rate effects.

In Fig. A5, we plot the training times for GPT3-1T and
VIT as function of GPU compute vs HBM memory and
bandwidth. To understand the impact of the GPU parame-
ters alone, we maintain the same network architecture while
scaling up the memory capacity and bandwidth on one axis,
and the tensor core and vector FLOP rates on the other. We
show both memory capacity and bandwidth on the x-axis and
only the tensor core FLOPs/s on the y-axis without loss of
generality. Also, we display in the plots three generations of
GPUs (A100, H200, B200). As observed in §IV, GPT3-
1T is less sensitive to HBM capacity and bandwidth at large
scales, with tensor core FLOPs/s being the primary factor for



performance boosts. For VIT, due to the large TP necessary
for the long sequence model (see discussion in §IV around
performance senstitivty to the model type), the capacity and
bandwidth play a bigger role.

In Fig. A6, we use the B200 generation compute and
network speeds and vary separately the HBM memory and
bandwidth. We once again see the weak dependence on capac-
ity and bandwidth for the GPT3-1T model—only very small
bandwidths increase memory-bound operation times. How-
ever, we observe that large capacities and small bandwidths,
representative of different memory technologies like LPDDR
[56], show good performance, comparable to the B200. We
see high-bandwidth/low-capacity configurations comparable to
the low-bandwidth/high-capacity configurations, where lesser
parallelism (and hence communication/bubbles) is traded off
for larger memory access times. The VIT once again shows
more sensitivity to the capacity and bandwidth with multiple
inflection points, with smaller capacities showing poorer per-
formance. However, again the high capacity, low bandwidth
regions show good performance compared to the B200, high-
lighting alternate memory technologies may benefit training
these models at certain scales. With more capacity, this can
also help reduce the dependence of the VIT on NVS as lesser
TP is required to fit the model.


