
The Performance and Energy Efficiency Potential of FPGAs in Scientific Computing

Tan Nguyen, Samuel Williams
Computational Research Division

Lawrence Berkeley National Laboratory
{TanNguyen, SWWilliams}@lbl.gov

Marco Siracusa
DEIB

Politecnico di Milano
marco.siracusa@mail.polimi.it

Colin MacLean, Douglas Doerfler, Nicholas J. Wright
National Energy Research Scientific Computing

Lawrence Berkeley National Laboratory
{ColinMacLean, DWDoerf, NJWright}@lbl.gov

Abstract—Hardware specialization is a promising direction
for the future of digital computing. Reconfigurable technologies
enable hardware specialization with modest non-recurring
engineering cost. In this paper, we use FPGAs to evaluate the
benefits of building specialized hardware for numerical kernels
found in scientific applications. In order to properly evaluate
performance, we not only compare Intel Arria 10 and Xilinx
U280 performance against Intel Xeon, Intel Xeon Phi, and
NVIDIA V100 GPUs, but we also extend the Empirical Roofline
Toolkit (ERT) to FPGAs in order to assess our results in terms
of the Roofline Model. Although FPGA performance is known
to be far less than that of a GPU, we also benchmark the energy
efficiency of each platform for the scientific kernels comparing
to microbenchmark and technological limits. Results show that
while FPGAs struggle to compete in absolute terms with GPUs
on memory- and compute-intensive kernels, they require far
less power and can deliver nearly the same energy efficiency.

Keywords-Hardware Reconfigurability, FPGAs for HPC,
Empirical Roofline Toolkit

I. INTRODUCTION

The last decade has seen a paradigm shift in HPC cen-
ters as year-over-year CPU performance slowed and power
emerged as a major constraint. In order to meet the ever in-
creasing demands for higher workload performance and ca-
pability in a power- and cost-constrained environment, HPC
centers have the incentive to explore alternative technologies.
Fifteen years ago researchers began experimenting with
GPUs, hypothesizing that the high throughput performance
and low cost demands of gaming would synergize with the
needs of HPC. Although GPUs certainly had their deficien-
cies, five years of evolution, innovation, and adaptation made
them viable and another ten years of performance scaling
made them generally superior to multicore and manycore
CPU offerings in many cases. As a result, today many of
the top HPC centers in the world have embraced GPUs or
some other form of accelerated computing.

Although GPUs can satisfy the throughput computing re-
quirements of many applications, they have their limitations.
In order to tap into the full potential of a GPU, programmers
must rewrite their applications in a hybrid programming
model using different models for distributed memory com-
munication, on-node shared memory computation (multi-
core), and accelerated (GPU) computation. GPUs, being
highly parallel architectures, require massive, coarse-grained
parallel operations to attain superior performance. Although

they have embraced double-precision arithmetic (essential
for numerical simulations) and 16-bit precision (essential
for machine learning), they have limited support for narrow
integer data types (int4, int8) that might be needed in the
fields of bioinformatics or graph analytics. Perhaps more
limiting in the distributed memory environment, the small-
message communication performance of a GPU can often
suffer compared to a latency-optimized CPU. This can result
in the raw compute potential being underutilized.

As GPUs transition from principally a graphics processor
into a hyperscalar data center processor optimized for deep
learning, their power constraints have been unbridled (en-
abling higher energy efficiency on AI codes) while demand
has led to a substantially high price. These trends imperil the
suitability for GPUs in the HPC environment where energy
efficiency is not predicated on AI performance, and there is
price sensitivity.

At the National Energy Research Scientific Computing
Center (NERSC) [1], one can find many large-scale appli-
cations in various science domains, including chemistry, nu-
clear physics, astrophysics, climate, and life science. Many
of these codes have been heavily-optimized for multicore
CPUs and GPUs. Nevertheless, there is a sizable fraction
of the NERSC workload for which CPUs are not currently
used [2]. Thus, even if a GPU were to provide infinite
speedup for NERSC’s GPU-accelerated applications, the net
benefit to overall center performance (throughput) is limited
to a factor of 2-3×.

Unlike the traditional Von Neumann instruction proces-
sor architectures (including both CPUs and GPUs) where
programs, stored in memory, are sequences of instructions,
Field-Programmable Gate Arrays (FPGA) represent a dis-
tinct class of reconfigurable spatial architectures in which the
entirety of the program is realized as a sequential logic cir-
cuit in hardware. Thus, instead of instructions being fetched,
decoded, and executed on time-multiplexed functional units,
operations can be executed in a pipelined manner on a FPGA
by sending them through the circuit. There is no instruction
decode, register files, or caches. Rather, FPGAs are built
from an array of reconfigurable logic blocks called LUTs
(Look Up Tables) that the compiler configures and inter-
connects to form a sequential logic circuit. Newer FPGA
architectures have instantiated hardened functional units for
arithmetic, integrated registers and block RAM (BRAM) for

local storage, included integrated ARM cores and NICs, and
use the latest HBM memory technology. Ultimately, FPGAs
allow users to create a custom architecture optimized for
each computational kernel in their program (for example
using FIFOs instead of caches or 3-element SIMD units).

In this paper, we explore the potential for FPGAs in the
HPC environment along the axes of performance, energy
efficiency, and programmability. To that end, we evaluate
both Intel’s Arria 10 GX1150 and Xilinx’s Alveo U280. We
commence with a study of the peak performance and effi-
ciency as a function of data reuse using the well-established
Roofline Model [3] to frame the conversation. We then
proceed by examining three HPC kernels (SGEMM, SpMV,
and Smith-Waterman) spanning a range of compute intensity,
parallelism, synchronization requirements, and underlying
data type. In order to provide context, we compare against
both the energy efficiency of underlying memory technolo-
gies (an ideal architecture imposes as little energy overhead
as possible) as well as existing CPU and GPU architectures
— Intel Xeon (Haswell), Intel Xeon Phi (Knights Landing),
and NVIDIA V100 (Volta) GPU. This highlights the value
of DDR and MCDRAM/HBM memory technologies as well
as multicore, manycore, and GPU architectures.

II. RELATED WORK

Over the last decade, several publications investigated the
benefits of using FPGA devices in specific domains such as
Machine Learning [4–6], Linear Algebra [7, 8] and Image
Processing [9, 10]. However, the resulting considerations are
not general enough to provide a thorough FPGA characteri-
zation. In this direction, other works [11–15] analyzed FPGA
performance by accelerating common benchmark suites and
comparing the obtained results with other architectures.
In particular, Cong et al. [15] proposed an FPGA-GPU
comparison on the Rodina [16] benchmarks and provided
a performance breakdown based on an analytical model. By
means of this method, the authors identified the low FPGA
memory bandwidth as the main limiting factor in several
benchmarks. However, the authors used the analytical model
to estimate the performance benefit of running the kernels
on higher-bandwidth FPGA boards such as the Xilinx Alveo
U280 now available on the market. In fact, this board
provides an aggregate bandwidth an order of magnitude
higher than previous DDR-based FPGA boards, tightening
the gap between FPGA and GPU bandwidth availability. The
projected results justify the effort several authors recently
spent in benchmarking [17] and microbenchmarking [18]
this device. However, despite the appealing results achieved
by the authors, these analyses have not been directly com-
pared against other accelerators.

The proposed work, instead, considers DDR-based and
newer HBM-based FPGA boards for a performance and
power efficiency comparison with other accelerators such
as multi-core CPUs and GPUs. This comparison is done

through a selection of kernels that stress several FPGA
components under different loads. In this way, we enable
an easier and parametric performance breakdown better
highlighting architectural limitations. As in Cong et al. [15],
we discuss our considerations through a performance model
(i.e. Roofline). Although the literature already proposes
some FPGA Roofline model formulations [19, 20], these
works mainly focus on FPGA optimization. As such, the
authors do not discuss any architectural characterization
nor cross-architectural comparison by means of this model.
Moreover, these works do not take into account energy-
efficiency [21, 22], a fundamental aspect for FPGA devices.

III. EXPERIMENTAL SETUP

A. Evaluated Architectures

In this paper, we evaluate the performance and energy
potential of two FPGAs — the Intel Arria 10 GX 1150 [23]
and the Xilinx Alveo U280 [24]. The relevant features of the
two architectures are summarized in Table I. Both FPGAs
integrate over one million LUTs and thousands of hardened
multipliers, however their theoretical peak performance is
lower than a GPU owing to their greatly reduced nominal
frequency. Many HPC applications have a low arithmetic
intensity (FLOP:Byte ratio) which places high demands on
the memory subsystem. Both FPGAs include 50-66MiB of
BRAM (far more than the typical CPU or GPU cache ca-
pacity) allowing for software-defined architectures to exploit
spatial and temporal locality. This is complemented by am-
ple register space. However, the Arria 10 only includes two
channels of DDR memory limiting its memory bandwidth to
34GB/s. This is far less than a typical CPU and roughly 25×
lower than the typical GPU. Conversely, the U280 includes
both DDR and HBM memory, the latter providing a little
better than half the bandwidth of a modern GPU. In this
paper, we will benchmark these architectures to determine
their attainable memory bandwidth and compute potential.

In order to provide context and comparisons to contem-
porary architectures, we also run experiments on CPU and
GPU systems at NERSC [25]. Whereas the CPUs are DDR-
based and the GPUs-HBM based, we also run on NERSC’s
Knights Landing (KNL) system in order to explore CPU
cores with MCDRAM (HBM-like) memory technology.

The V100 (Volta) is NVIDIA’s flagship GPU. It includes
5,120 single-precision FMAs running at 1.5GHz and more
than 800GB/s of HBM memory bandwidth. Although this
provides exceptional peak performance, it is predicated on
users expressing massive data parallelism and comes with
more than a 200W power requirement. Memory latency is
hidden via massive multithreading. As such, performance
and energy efficiency is highly application-dependent.

NERSC’s Cori system includes two partitions. The first
uses conventional CPUs in the form of dual-socket Intel
Xeon E5-2698 v3 (Haswell) nodes. Each node includes 32
cores running at a nominal 2.3GHz supporting AVX2 (total

2

Resource Intel Arria 10 GX1150 Xilinx Alveo U280 Intel Haswell (2P×16c) Intel Knights Landing (68c) NVIDIA V100
Peak Frequency 0.45GHz 0.45GHz 2.3GHz 1.4GHz 1.53GHz

Logic Blocks 1150K Logic Elements 1,304K LUTs - - -
32b FPUs 1,518 DSPs 9,024 slices 512 2,176 5,120

Theoretical Peak 1.37 TF/s - 2.35 TF/s 5.2 TF/s 15.7 TF/s
SRAM 66MiB BRAM 53MiB BRAM 80MiB L3$ 1MiB L2$/2 cores 6 MiB L2

256KiB L2$/core 32KiB L1$/core 96KiB L1$/SM
Registers 213KB 326KB 5KiB/core 4KiB/core 256KiB/SM

DDR Pin Bandwidth 34GB/s 38GB/s 136GB/s - -
HBM Pin Bandwidth - 460GB/s - 460GB/s 900GB/s

Table I: Hardware specifications of studied processor architectures

of 512 FMAs). Collectively, the node’s 8 DDR-3 channels
provide a theoretical pin bandwidth of 136GB/s.

For throughput-intensive applications, the Intel Xeon Phi
7250 (Knights Landing) provides the bulk of Cori’s per-
formance. Each manycore processor includes 68 cores each
with two AVX-512 vector units (2176 32b FMAs) running at
1.4GHz. Each of the single socket nodes instantiates 16GiB
of MCDRAM memory providing more than 460GB/s of
memory bandwidth. Like the V100 GPU, and to a lesser
extent the Haswell CPU, attaining peak performance on the
KNL processor is predicated on massive data parallelism.
However, unlike the GPUs, both KNL and Haswell exploit
hardware stream prefetchers to hide memory latency.

B. Programming Models

As this paper is focused on the potential performance and
energy efficiency gains FPGAs might provide over CPUs
or GPUs, we are willing to sacrifice some degree of pro-
ductivity and portability in order to maximize performance.
Although writing codes in RTL might maximize FPGA
performance, such low-level programming is anathema to
the large, long-lived HPC codes found at NERSC. Rather,
programming in a high-level language and enduring pro-
gramming model is prized. To that end, most FPGA code
is written in OpenCL (Arria 10 spatial locality benchmark
used DPC++) as OpenMP on FPGAs was judged to be too
immature. Although OpenCL can be used for CPUs and
GPUs, OpenCL software stacks have fallen behind compared
to contemporary OpenMP and CUDA compilers. Thus, we
use OpenMP for Haswell and KNL and CUDA for the V100.
There is an exception with the matrix multiply kernel where
we use MPI to scale to all the 32 cores of two Haswell
processors. This choice comes from the underlying SUMMA
algorithm [26] which can hide communication cost well, but
was presented with only an MPI implementation.

C. Performance and Power Instrumentation

Arria 10 and Alveo U280 power measurements were
conducted using the FPGA’s self-reported statistics accessed
through the Intel Open Programmable Acceleration Engine
(OPAE) and Xilinx Board Utility, respectively. To measure
performance of our benchmarks, we averaged multiple trials.
The number of trials was dependent upon the amount of

data read each trial, with longer reads using fewer trials.
In a few cases where we report the maximum performance
among trials, we explicitly mention this methodology in the
performance discussion.

IV. FPGA MICROBENCHMARKS

Although CPUs and GPUs can often sustain a high
fraction of compute or bandwidth, there have been instances
where sustained performance falls well below peak perfor-
mance. As theoretical (marketing) numbers cannot always
be trusted, it falls on the user to benchmark their systems to
provide realistic guidance as to architecture performance.
In this paper, we characterize FPGAs along two axes:
performance as a function of temporal locality (arithmetic
intensity) and bandwidth as a function of spatial locality.
The former allows us to assess how well the FPGA software
stack can identify and exploit reuse in a pipeline as well
as an instruction processor can exploit reuse through a
hardware cache. The latter informs us of how well the
FPGA software stack can utilize the memory subsystem
under different memory access patterns.

A. Temporal Locality (Roofline)

The Roofline model visualizes bottlenecks by plotting
architectural performance bounds and applications charac-
teristics in a performance-data locality 2D plane [3]. The
performance (upper) bound is defined as a curve in the
plane wherein the arithmetic intensity (FLOPs per Byte)
is the data locality x-axis. Such visualizations allow us to
understand how well an architecture responds to increases
in data locality. Ideally, there is a linear relationship up to
the maximum performance of the machine. For brevity, we
will only present results obtained on the Arria 10.

In this work, we port the Empirical Roofline Tool
(ERT) [27, 28] to OpenCL and enable user-selection of
data type (float, int32, int8, etc...). ERT is premised
around evaluating an arbitrary degree polynomial for each
element of a vector. As one increases the degree of the
polynomial, one increases arithmetic intensity (more FLOPs
per byte). As one varies the vector size, one varies the cache
working set and quantifies bandwidth tapering within the
cache hierarchy. As one varies the data type, one varies the
natural quanta for memory access.

3

(a) Single element DRAM transfers

(b) Optimal DRAM transfers

Figure 1: Arria 10 ERT Roofline plot for float, double,
int8, int32, and int64 (dotted lines). Prior to tuning
(a), Roofline bandwidth depends on data type. Conversely,
after tuning (b), Roofline bandwidth on the Arria 10 mimics
the traditional Roofline. ERT polynomials create straight
lines on an FPGA architecture as pipeline synthesis adds
proportional compute and data movement as polynomial
degree increases. FPGAs are instead limited by available
resources to synthesize such data flow pipelines, with
resource-limited Roofline ceilings shown in solid colors.
Optimal unrolling fills a 512-bit wide DRAM transfer.

As FPGAs do not have a hardware cache hierarchy, we
do not observe any benefit for reduced vector sizes unless
data is explicitly placed in BRAM. Moreover, whereas
CPU cache hierarchies regiment DRAM and SRAM data
movement in quanta of cache lines, FPGAs provide natural
width access to DRAM up to the hardware controller limit
while BRAM controllers are synthesized for purpose with
many configuration options. Although a wide transaction to
DRAM may be initiated, without a cache, only the data
needed within a given clock cycle is returned (neighboring
intra-line data is discarded). Ultimately, exploitation of spa-
tial locality is a fine balance between synthesized frequency,
data parallelism, compile-time knowledge of memory access
pattern, and the compiler’s ability to synthesize a burst-
coalesced load store unit. Thus, it is imperative one bench-
mark the system in order to quantify attainable bandwidth.

Figure 1(a) highlights that unlike CPUs and GPUs, FPGA

bandwidth without tuning can vary from 0.6 (int8) to
5GB/s (double/int64) — far less than the theoretical
memory bandwidth of 34GB/s. This is shown to be a
pipeline bottleneck by dividing measured bandwidth by the
kernel clock frequency of roughly 312MHz. The approxi-
mately 2 bytes for int8 and approximately 16 bytes for
double and int64 is exactly the amount of data read
and written each clock cycle. Unlike instruction processors
where hardware is dedicated for either bandwidth or com-
pute, resources on FPGAs are fungible. As a result, we
define a set of compiler-derrived theoretical Roofline ceilings
based on available FPGA resources and arithmetic intensity.

Two major approaches to optimization can improve band-
width. First, unlike CPUs and GPUs which run at a relatively
constant frequency, FPGA frequency is highly dependent
on the compiler. We attained a 34% increase in bandwidth
through the addition of the __fpga_reg() intrinsic in
order to exploit reuse within the polynomial. Second, one
can increase data parallelism (replicate pipelines) via the
#pragma unroll directive. Figure 1(b) shows that after
tuning, bandwidth is a consistent 30GB/s regardless of data
type. However, unlike CPUs and GPUs where one sees
performance saturate at the peak performance of the archi-
tecture, we see no saturation in FPGA performance. Rather,
the tool set exhausts resources (abrupt end of trendlines)
prior to saturating performance. This is because increasing
the number of ERT operations increases the data pathway
proportionally to the compute resources used. A kernel
which passes data multiple times through the same pipeline
before leaving the kernel may face pipeline width bottle-
necks or data ingest/write bottlenecks depending upon the
data flow. An ERT polynomial calculated by multiple passes
through a smaller polynomial would see the Roofline plateau
at the point of the smaller polynomial. Future work will
investigate transformations that exploit graph similarity to
maximize performance while reducing hardware utilization.

Figure 2 shows the benefit of manually unrolling to in-
crease data parallelism and performance. Overall, unrolling
by 32 improves bandwidth for intensities less than 16 by
about 16× to about 30GB/s. However, for high intensity,
unrolling can result in unsynthesizable code that fails to run.
In this regime, one must reduce unrolling to successfully
compile and saturate performance at about 930GFLOP/s.

We will use Roofline data throughout the paper to as-
sess the results of our kernel benchmarking. For a given
architecture, we may introspect its Roofline based on a
kernel’s arithmetic intensity. This informs us of how well
the implementation of a kernel can make use of a target
machine while the Roofline relative to pin bandwidth and
the number of FMAs tells us how well an architecture can
exploit the underlying technology.

Although the Arria 10’s sustained bandwidth and peak
performance is less than that of a CPU or GPU, it often
requires far less power. Figure 3 plots the relationship

4

Figure 2: Arria 10 float32 ERT Rooflines as a function of
unrolling (data parallelism). Synthesizable ERT polynomial
degree is limited by available DSPs. Resource-constraint
Roofline is shown in black; theoretical limits in grey.

Figure 3: Arria 10 ERT energy efficiency trendlines for
increasing arithmetic intensity (polynomial degree) for
float, double, int8, int32, and int64 data types.
FPGAs exhibit a high idle power consumption relative to
peak, requiring well-performing kernels for high efficiency.

between ERT performance and power as a function of data
type (colored trendlines) and arithmetic intensity (points
within a trendline). As one can see, regardless of data
type, the Arria 10 consumes about 24W at low performance
(but maximum bandwidth) and increases to a maximum
of around 32W at maximum performance. As arithmetic
intensity increases, performance increases rapidly, but power
increases slowly. The result is that energy efficiency trends
toward the operational energy efficiency asymptotes (diago-
nals). However, unlike a CPU or GPU, the FPGA clearly
incentivizes energy efficient computation for float and
int8 data types while providing 8-16× lower energy ef-
ficiency for the double and int64 data types. Moreover,
the near vertical trendline implies the Arria 10 FPGA is
incapable of power-proportional performance.

Spa$al&Locality&(B)&

M
em

or
y&
Ba

nd
w
id
th
&(G

B/
s)
&

0.5&

1&

2&

4&

8&

16&

32&

64&

128&

256&

512&

1024&

V100&GPU's&HBM& U280&FPGA's&HBM&

Haswell&CPU's&DDR& Arria10&FPGA's&DDR&

Figure 4: Realized Memory bandwidth vs. spatial locality
on different architectures. FPGAs exhibit poor performance
at low spatial locality relative to other architectures.

B. Spatial Locality

Whereas ERT attains maximum DRAM memory band-
width with vectors approaching gigabytes in size, many
applications do not exhibit such high spatial locality. Rather,
many applications may access a few consecutive elements
before jumping to another location in memory. Such memory
access patterns can wreak havoc on stream prefetchers and
demand superior approaches to latency hiding. To that end,
we created a series of Stanza Triad-like [29] benchmarks
for GPUs and FPGAs in order to understand how memory
bandwidth scales with spatial locality.

Figure 4 shows sustained memory bandwidth when ac-
cessing data under varying degrees of spatial locality (the
left proxies random1 64B access while the right proxies
the STREAM benchmark). As expected, all architectures
approach their ERT or STREAM bandwidths with high
spatial locality. However, we observe very different prop-
erties for CPUs (stream prefetchers), GPUs (multithread-
ing), and FPGAs (pipelining). CPU bandwidth degrades
precipitously under 512B while GPU bandwidth only sees
moderate degradation under 256B. Conversely, the DDR-
based Arria 10 sees markedly reduced bandwidth under
32KiB while the HBM-based Xilinx U280 requires at least
64KiB of spatial locality to saturate bandwidth. In fact, for
less than 2KiB of spatial locality, the DDR-based Haswell
provides superior bandwidth. Clearly, depending on the lack
of spatial locality in an application, the differences among
architectures can be greatly exaggerated.

The parallel diagonal lines for Haswell, U280, and Ar-
ria 10 imply the bandwidth for all three architectures is
well proxied by a simple α-β model of sequential access
bandwidth time (time per byte) and “startup penalty” time
(time for first byte). Asymptotically this approaches a band-

1Random access doesn’t require a true random generator. Instead, it can
be implemented with a dynamic order so that the memory controller and
cache system cannot assume the address of future segments

5

Figure 5: Arria 10 Memory Access Efficiency: Memory
transfers with load-store unit (LSU) widths of quanta bytes.
Spatial locality bytes of consecutive memory access. The
two DRAM controllers are used in parallel to read and write
from two separate memory buffers. Efficient DRAM access
requires high spatial locality and coalesced data transfers.

width of locality/α for low spatial locality and 1/β for high
spatial locality. Sharp transitions imply overlap (time being
a maximum of these two terms) while a smooth transition
implies serialization (a sum of these two terms). As this
benchmark was run in parallel, bandwidth is combined and
the startup penalty times (roughly 64B divided by bandwidth
at 64B) should be scaled up by the number of workers.

Whereas CPUs and GPUs quantize DRAM access into
32B, 64B, or 128B transactions, FPGAs leave it to the pro-
grammer to orthogonalize memory access quanta and data
type. Figure 5 shows how small memory access quanta can
severely limit bandwidth. Although programmers accessing
data structures containing 4B data might be motivated to use
a 4B memory quanta, it is clear that doing so will degrade
bandwidth by an order of magnitude. Rather, FPGAs should
access memory using a 64B quanta (a reflection of the
underlying DRAM technology), extract the relevant words,
and cache/buffer the 64B quanta for subsequent reuse.

V. HPC KERNELS

Now that we have distinguished the true performance
and energy efficiency potential of the FPGAs from the
theoretical performance and power limits, we may assess
HPC kernel performance and efficiency in context. To
that end, we examine three HPC kernels: dense matrix-
matrix multiplication, sparse matrix-vector multiplication
(SpMV), and Banded Smith-Waterman (BSW) [30, 31].
These kernels exhibit highly varied arithmetic intensity,
degrees of parallelism, and requirements for fine-grained
synchronization. We restrict ourselves to single precision for
matrix multiplication (SGEMM) and SpMV to ensure the

lack of hardened double precision functional units does not
unduly skew our assessments of FPGA potential. Similar to
many other Genomics codes, BSW employs 16-bit integer
variables for computing alignment scores. In all cases, we
presume data is resident on the FPGA accelerator thus
obviating any PCIe data movement.

A. Dense Matrix-Matrix Multiplication

In the popular mindset, dense matrix-matrix multiplica-
tion (GEMM) represents the quintessential HPC numerical
method. Although its performance is key to many appli-
cations in astrophysics, quantum chemistry, and machine
learning, it is but one of a myriad of numerical kernels used
in scientific computing. Nevertheless, GEMM performance
and efficiency is a barometer for an architecture’s potential.
Here, we implement a single-precision SGEMM on the
Arria 10 and U280 and compare performance and efficiency
to that obtained on GPUs and CPUs.

All architectures make use of floating-point functional
units (FPUs), either hardened or synthesized, to perform
multiply and add operations in SGEMM. However, the
data movement is fundamentally different between load/store
architectures (i.e. CPUs and GPUs) and FPGAs. On FPGAs,
FPUs are arranged in a 2D mesh of FPUs called a systolic
array [32, 33]. Data move only between neighboring FPUs
with a short distance, enabling the design to scale to many
FPUs with modest frequency degradation. On CPUs and
GPUs where the data paths and clock frequency are almost
fixed, on-chip data reuse has a high impact on performance.
We perform explicit register and cache (shared memory)
blocking optimizations for GPU. On CPU, we rely on the
Intel MKL library for single-core matrix multiplication. To
perform SGEMM on 32 cores of a Cori-Haswell node, we
use MPI to implement the SUMMA algorithm [26] which
can hide communication overhead among processes.

Figure 6 plots SGEMM performance on CPUs, GPUs,
and FPGAs as a function of hardware resources (number of
FPUs). We ran with large matrix sizes (up to 32K×32K
on CPU and GPU and 13K×13K on FPGAs). We vary
hardware utilization on CPUs by controlling the number
of MPI processes (thus the number of cores), on GPUs by
controlling the number of thread blocks (thus number of
SMs), and on FPGAs by synthesizing multiple designs that
gradually increase the number of DSP blocks. The trend
lines terminate when hardware is exhausted (CPUs/GPUs)
or when synthesis fails (FPGAs). Straight lines in this
figure denote perfect scaling. Most architectures scale very
well with some loss in performance on HSW beyond 16
cores and on the U280 when using the full chip. Using
this formalism allows us to define isocurves of “effective
frequency” that denote the average frequency FPUs are
clocked at (GFLOP/s

2∗#FPUs). Generally speaking, the architectures
trend towards a frequency isocurve slightly lower than their
nominal frequencies (nominal V100 frequency is 1.5GHz but

6

1(

2(

4(

8(

16(

32(

64(

128(

256(

512(

1024(

2048(

4096(

8192(

16384(

1(2(4(8(16(32(64(128(256(512(1024(2048(4096(8192(

Arria10(FPGA(

U280(FPGA(

2(Haswell(CPUs(

"V100(GPU"(

GF/s(

#FPUs(

Figure 6: SGEMM performance scales linearly with hard-
ware resources (FPUs). Effective frequency remains close
to nominal frequency indicating a high percent of peak.

GF/s(

Power((WaN)(

1(

2(

4(

8(

16(

32(

64(

128(

256(

512(

1024(

2048(

4096(

8192(

16384(

1(2(4(8(16(32(64(128(256(512(

Arria10(FPGA(

U280(FPGA(

2(Haswell(CPUs(

V100(GPU(

Figure 7: Although FPGA power is low and SGEMM energy
efficiency approaching the 32 GFLOP/J ERT limit, GPUs
still provide 2× higher energy efficiency.

effective frequency is 1.0GHz) indicating a high fraction of
peak. However, the U280 clearly shows a substantial loss in
frequency when using the full chip. This FPGA consists of
3 super logic regions and designs that span boundaries of
these regions need to operate at a low clock frequency.

Volta’s 15× speedup over FPGAs can be attributed
to 5× more FPUs and 3× higher frequency. However,
V100 requires far more power to do so. Figure 7 plots
SGEMM performance as a function of power for increas-
ing hardware resource utilization (concurrency). Although
a power-proportional architecture would be bounded along
an isocurve, we see all architectures show only modest
increases in power for immense increases in concurrency
and performance. Whereas the GPUs and CPUs require
comparable power, the FPGAs see only moderate increases
in power requiring less than one-seventh the power of a
GPU. As before, we may draw isocurves of constant energy
efficiency. The GPU’s energy efficiency ultimately exceeds
32 GFLOP/J (approximately 31pJ/FLOP) while the Arria 10
and U280 FPGAs attain 16 and 8 GFLOP/J respectively.

We use ERT to evaluate the Arria 10 SGEMM designs
shown in Figs. 6 and 7. Figure 8 plots SGEMM performance
as a function of hardware resource represented by AI. The
results shown in Figure 8 indicate that all SGEMM designs
are very close to ERT performance limits given the same
amount of hardware usage.

B. Sparse Matrix-Vector Multiplication (SpMV)
SpMV is an increasingly ubiquitous numerical kernel due

to its broad applicability in many scientific, engineering, and
graph analytical domains. Unlike SGEMM, SpMV has low

1/4 1 4 16 64 256
AI

1/2

2

8

32

128

512

GF
/s

UF=1
UF=2
UF=4
UF=8
UF=16
UF=32

SGEMM: 64FPUs
SGEMM: 128FPUs
SGEMM: 256FPUs
SGEMM: 512FPUs
SGEMM: 768FPUs
SGEMM: 1352FPUs

Figure 8: ERT trend lines establish performance upper bound
as data traffic varies. Data points on these trend lines that
have the same performance indicate the same hardware
usage. SGEMM performance on Arria 10 is represented by
large symbols, which are very close to the Roofline limit.

arithmetic intensity (making it memory-bandwidth bound),
can suffer from irregular loop lengths (making it hard to par-
allelize), and requires indirect memory access (necessitating
exploitation of word-level temporal locality).

Rather than trying to understand all three aspects in
conjunction, we build our FPGA SpMV up from two simpler
kernels. First, we build a dot product kernel (dotP) that
computes the sum of pairwise multiplications of two large

7

dense vectors (a core component of SpMV). Next, we
split this computation into many smaller randomly sized
dot products (multiDot) thus mimicking the intra-row dot
products within SpMV. We exploit both coarse and fine
grained parallelisms in all three kernels. For coarse-grained
parallelism (partial sums of a dot product and independent
rows in multiDot and SpMV), we use workers which are
threads on CPUs, thread blocks on GPUs, and circuits on
FPGAs. The fine-grained reduction sums in all three kernels
are computed in a SIMD manner.

Ba
nd

w
id
th
((G

B/
s)
(

Ba
nd

w
id
th
(U
El
iza

Eo
n(
(%

)(

Workers(

Workers(

1(

4(

16(

64(

256(

1024(

1(2(4(8(16(32(64(128(256(512(1024(2048(4096(8192(

Arria10(FPGA(
U280(FPGA(
KNL(CPU(
V100(GPU(

1(
2(
4(
8(

16(
32(
64(
128(
256(

1(2(4(8(16(32(64(128(256(512(1024(2048(4096(8192(

Arria10(FPGA(U280(FPGA(KNL(CPU(V100(GPU(

Ba
nd

w
id
th
((G

B/
s)
(

Ba
nd

w
id
th
(U
El
iza

Eo
n(
(%

)(

Workers(

Workers(

1(

4(

16(

64(

256(

1024(

1(2(4(8(16(32(64(128(256(512(1024(2048(4096(8192(

Arria10(FPGA(
U280(FPGA(
KNL(CPU(
V100(GPU(

1(
2(
4(
8(

16(
32(
64(
128(
256(

1(2(4(8(16(32(64(128(256(512(1024(2048(4096(8192(

Arria10(FPGA(U280(FPGA(KNL(CPU(V100(GPU(

Figure 9: Bandwidth (top) and utilization (bottom) for a
dot product as a function of the number of workers (con-
currency). Observe superior GPU performance, but high
utilization with low concurrency on the Arria 10.

Dot Product: The Arria 10 attains high bandwidth utiliza-
tion needing only a single worker. Using multiple workers
degrades performance due to uncoalesced memory access.
On U280, one must synthesize FPUs which ultimately pull
data from memory at a slower rate compared to that on
Arria 10. To rectify this, we map two inputs to the same
memory bank and 32 workers to saturate the 32 HBM
banks. Although this implementation sustains 350GB/s (75%
of ERT shown in Fig. 4), it is comparable to the band-
width of the MCDRAM-based KNL. On a GPU, with
128 workers our implementation yields almost 900GB/s.
Figure 9 compares dot product bandwidth and utilization
as a function of the number of workers on FPGAs, KNL,
and V100. The Arria 10 stands in stark contrast to the other
architectures attaining high bandwidth utilization with few
workers. Nevertheless, the KNL, V100, and U280 deliver
far superior bandwidth.
multiDot: Executing multiple dot products concurrently
challenges an architecture’s ability to cope with a lack
of spatial locality and high loop startup costs. Relative to
Figure 9, Figure 10 shows that all architectures suffer in
both bandwidth and utilization relative to the high spatial
locality dot product with the FPGAs suffering more heavily
on short vector lengths. Here we report the maximum

Ba
nd

w
id
th
((G

B/
s)
(

Ba
nd

w
id
th
(U
El
iza

Eo
n(
(%

)(

Range(of(randomized(dot(product(size(

Range(of(randomized(dot(product(size(

1(

2(

4(

8(

16(

32(

64(

128(

256(

1,8(1,16(8,32(8,64(64,128(64,256(256,512(256,1024(1024,1024(

Arria10,8M(NNZ(Arria10,32M(NNZ(U280,8M(NNZ(U280,32M(NNZ(
KNL(CPU,8M(NNZ(KNL(CPU,32M(NNZ(V100(GPU,8M(NNZ(V100(GPU,32M(NNZ(

1(
2(
4(
8(

16(
32(
64(
128(
256(
512(
1024(
2048(
4096(

1,8(1,16(8,32(8,64(64,128(64,256(256,512(256,1024(1024,1024(

Arria10,8M(NNZ(Arria10,32M(NNZ(U280,8M(NNZ(U280,32M(NNZ(

KNL(CPU,8M(NNZ(KNL(CPU,32M(NNZ(V100(GPU,8M(NNZ(V100(GPU,32M(NNZ(

Ba
nd

w
id
th
((G

B/
s)
(

Ba
nd

w
id
th
(U
El
iza

Eo
n(
(%

)(

Range(of(randomized(dot(product(size(

Range(of(randomized(dot(product(size(

1(

2(

4(

8(

16(

32(

64(

128(

256(

1,8(1,16(8,32(8,64(64,128(64,256(256,512(256,1024(1024,1024(

Arria10,8M(NNZ(Arria10,32M(NNZ(U280,8M(NNZ(U280,32M(NNZ(
KNL(CPU,8M(NNZ(KNL(CPU,32M(NNZ(V100(GPU,8M(NNZ(V100(GPU,32M(NNZ(

1(
2(
4(
8(

16(
32(
64(
128(
256(
512(
1024(
2048(
4096(

1,8(1,16(8,32(8,64(64,128(64,256(256,512(256,1024(1024,1024(

Arria10,8M(NNZ(Arria10,32M(NNZ(U280,8M(NNZ(U280,32M(NNZ(

KNL(CPU,8M(NNZ(KNL(CPU,32M(NNZ(V100(GPU,8M(NNZ(V100(GPU,32M(NNZ(

Figure 10: Memory bandwidth and utilization for multiple
concurrent dot products of varying sizes. Observe the imense
drop in bandwidth on the U280 relative to a dot product.

performance among all experiments, thus the result can be
even lower, especially in the extremely low spatial locality
cases. Increasing concurrency from 8M nonzeros to 32M
nonzeros does not address this deficiency. Interestingly, the
U280 is particularly sensitive to a lack of spatial locality
with even 1024 element dot products too small to saturate
an HBM bank. Such observations are well explained by the
ERT spatial locality data in Section IV-B.
SpMV: As FPGAs lack a cache, we need to architect a
solution to mitigate the random access associated with the
source vector whilst preserving temporal in spatial locality.
To that end, in our SpMV implementation, we create a
replica of the vector in a worker-private BRAM. As BRAM
capacity is fixed, this imposes a limit on the number of
workers and only four HBM banks on the U280.

Figure 11 shows SpMV realized bandwidth measured by
(8N + 8NNZ)/runtime, where N is number of rows and

Ba
nd

w
id
th
((G

B/
s)
(

Ba
nd

w
id
th
(U
El
iza

Eo
n(
(%

)(

1(
2(
4(
8(
16(
32(
64(

128(
256(
512(
1024(
2048(

TSC_OPF_1047(nd12k(C8_mat11(parern1(mouse_gene(human_gene1(

Arria10(FPGA(U280(FPGA(KNL(CPU(V100(GPU(

1(

2(

4(

8(

16(

32(

64(

128(

TSC_OPF_1047(nd12k(C8_mat11(parern1(mouse_gene(human_gene1(

Arria10(FPGA(U280(FPGA(KNL(CPU(V100(GPU(

Ba
nd

w
id
th
((G

B/
s)
(

Ba
nd

w
id
th
(U
El
iza

Eo
n(
(%

)(

1(
2(
4(
8(
16(
32(
64(

128(
256(
512(
1024(
2048(

TSC_OPF_1047(nd12k(C8_mat11(parern1(mouse_gene(human_gene1(

Arria10(FPGA(U280(FPGA(KNL(CPU(V100(GPU(

1(

2(

4(

8(

16(

32(

64(

128(

TSC_OPF_1047(nd12k(C8_mat11(parern1(mouse_gene(human_gene1(

Arria10(FPGA(U280(FPGA(KNL(CPU(V100(GPU(

Figure 11: SpMV bandwidth and utilization for different
matrices. NNZ/row increases from 250(left) to 1,107(right).

8

columns and NNZ is number of nonzeros, and utilization
(% of ERT) for each architecture for a variety of matrices.
Observe that SpMV bandwidth is well-correlated with multi-
Dot bandwidth with KNL, V100, and Arria 10 sustaining 32-
60% of ERT bandwidth and the U280 delivering about 2-4%.
Clearly, the lack of even a last-level cache has necessitated
hefty design requirements while the inability of the compiler
to synthesize a design resilient against low spatial locality
can dramatically limit SpMV performance.

1(

2(

4(

8(

16(

32(

64(

128(

256(

512(

1024(

2048(

4096(

1(2(4(8(16(32(64(128(256(512(1024(2048(4096(

Arria10,SPMV(U280,SPMV(

KNL,SPMV(V100,SPMV(

Arria10,DotP(U280,DotP(

KNL,DotP(V100,DotP(

Power((War)(

Bandwidth((GB/s)(

North(West((
is(good(

U280’s%HBM%%
Peak%Bandwidth%

Arria10’s%DDR4%
Peak%Bandwidth%

Figure 12: Dot product (closed symbol) and SpMV (open
symbol per matrix) bandwidth and power. Observe isocurves
of constant energy efficiency as well as HBM (orange) and
DDR (red) technology’s limits on energy efficiency.

Figure 12 plots dot product (closed symbol) and SpMV
(open symbols for different matrices) bandwidth as a func-
tion of power. We also show isocurves of constant energy
efficiency to highlight the energy efficiency of each architec-
ture. The ultimate limits on HBM (orange) and DDR (red)
energy efficiency [34, 35] and bandwidth are also marked.

For the streaming dot product, the U280 FPGA is 1.2×
and 4× more energy efficient than the V100 GPU and the
KNL CPU whilst attaining near peak bandwidth. Moreover,
as HBM provides a lower limit of 7pJ/bit or 17.8GB/s/J, we
can see the U280 delivers energy efficiency within about 2×
of the technological limit. Conversely, the Arria 10 delivers
far less bandwidth for comparable power and is thus nearly
an order of magnitude less energy efficient.

When it comes to SpMV (open symbols), we generally
see bandwidth and energy efficiency similar to that of the dot
product. However, due to its poor SpMV performance, the
U280 delivers the lowest energy efficiency allowing the GPU

to claim the top spot. Broadly speaking, the GPU is about
twice as energy efficient as KNL (due mostly to bandwidth)
and KNL twice as efficient as the Arria 10 (more bandwidth
but more power). As GPU SpMV energy efficiency is about
one third of the HBM technology limit, we surmise that
GPU efficiency for bandwidth-limited codes can grow by
no more than 3× without first improving HBM efficiency.

C. Banded Smith-Waterman (BSW)

Metagenomic analysis is an important area of bioinformat-
ics within DOE requiring HPC resources. merAligner [36]
is a parallel sequence aligner based on the seed-and-extend
algorithm. Although it builds a number of distributed data
structures, it uses the Batched Smith-Waterman (BSW)
algorithm to execute multiple local alignments [30, 31].

In this paper, we modify Muaaz Awan’s Batched Smith-
Waterman code [30] to map the application parallelisms
on the Arria 10 and U280 FPGAs. At the high level, the
local alignment simultaneously performs many alignment
operations, one for each pair of the input query-target se-
quences. Implementations on hardware architectures differ in
the way we implement the alignment operation and how we
fit many concurrent alignment operations on the hardware.
Specifically, the CPU implementation SIMDizes the com-
putations on the same anti-diagonal of the Smith-Waterman
score table, where there is no data dependency. Independent
alignment operations are mapped to different processor cores
using OpenMP. On GPUs, operations on an antidiagonal are
executed by threads in a block while multiple thread blocks
perform different alignments. On FPGAs, each alignment
is represented as a deep pipelined dataflow graph that is
replicated to perform multiple alignments concurrently.

Figure 13 shows BSW strong-scaling performance as we
increase hardware resources (CPU cores, GPU SMs, FPGA
LUTs). Thanks to a communication avoiding optimization
that reduces the demands on memory bandwidth, all imple-
mentations scale to the entire chip. As a result, CPU and
GPU performance scale linearly with increased hardware
with only slight degradation when using the second Haswell
CPU. Unlike an instruction processor, FPGA’s synthesis
tools reserve 10-25% of the LUTs. Another 25-30% is
needed for routing. This means that our FPGA designs are
fairly area efficient, since with only half of the available
LUTs we can synthesize many alignment circuits (e.g. 72
circuit replications on Arria 10 compared to 80 SMs on
V100). Owing to their high frequency and concurrency, the
GPUs and CPUs still provide the highest throughput.

Figure 14 plots BSW time-to-solution as a function of
power as one increases concurrency. Unlike prior HPC
kernels, most architectures see only slight increases in power
within a socket with the Arria 10 consuming about 30W.
However, whereas GPU throughput increases by roughly
80×, its power increases by about 4×. As a result, the

9

Batched(Smith(Waterman/(Performance(Time((s)(

%Hardware(Resource(

1(

2(

4(

8(

16(

32(

64(

128(

256(

512(

1024(

1%(2%(3%(6%(13%(25%(50%(100%(

Arria10(FPGA(

U280(FPGA(

2(Haswell(CPUs(

V100(GPU(

Time(s)((

Figure 13: BSW Strong scaling performance as a function of
hardware resources (FPGA LUTs, CPU Cores, GPU SMs)

Time(s)((

1(

2(

4(

8(

16(

32(

64(

128(

256(

512(

1024(

1(2(4(8(16(32(64(128(256(512(1024(

Arria10(FPGA(
U280(FPGA(
2(Haswell(CPUs(
V100(GPU(

Batched(Smith(Waterman(/(Energy(

Power((WaN)(

Time((s)(

2(CPU(
Sockets(

Figure 14: BSW performance, power, and energy efficiency
as a function of hardware resources (each dot)

Arria 10 ultimately requires 10% and 40% less energy-to-
solution than a GPU or single socket CPU.

VI. CONCLUSIONS AND FUTURE WORK

Recent years have seen FPGAs integrate hardened FPUs
and HBM in order to maximize performance and energy effi-
ciency. In this paper, we first extended the empirical Roofline
Toolkit to benchmark FPGA performance and bandwidth.
We show that FPGAs can exploit this raw bandwidth and
compute potential, but performance can be extremely brittle.
Subsequently, we evaluated FPGA performance and effi-
ciency on HPC kernels. We show that although single-
precision FPGA performance and bandwidth still falls far
below GPUs for compute and memory-intensive tasks, the
energy efficiency of FPGAs with hardened DSPs is now
within a factor of two for SGEMM and SpMV, and in the
case of genomics, can exceed that of GPUs by 10%.

Against conventional wisdom, we do not believe FPGA
architects should prioritize the integration of hardened
64b functional units. The Arria 10 already includes hard-
ened 32b FPUs, yet GPU performance and efficiency on
arithmetically-intensive computations was superior. One ex-
pects this to hold in double-precision as well. Although 64b
functionality is essential, FPGA vendors should strive for a
machine balance of at least one 64b FLOP per byte.

Ultimately, vendors should prioritize productivity making
it easier for programmers to maximize memory bandwidth,
minimize data movement, and automatically balance pipelin-
ing, unrolling, and data parallelism whilst dramatically re-
ducing compilation time. Our FPGA implementations re-
quired orders of magnitude more software development time
than the equivalent (and often superior) CPU and GPU

implementations. Programmers had to manually tune imple-
mentations to balance hardware utilization against memory
bandwidth and create crude scratch pads to make up for
the lack of caching paradigms that have been included in
CPUs and GPUs for decades. FPGA software should either
automatically synthesize structures to exploit spatial and
temporal locality or FPGA architects should include memory
interfaces and last-level memory-side caches that obviate the
need for programmers to micromanage channel parallelism,
and detect and exploit spatial and temporal locality.

FPGAs will likely to continue to shine in the areas GPUs
and CPUs are poorly optimized for — memory-intensive
streaming computations with patterns of spatial and temporal
locality known at compile time, pipelined computations
devoid of massive fine-grained data parallelism, operations
on short integer and user-defined data types, and possibly
latency-sensitive, network-intensive computations.

ACKNOWLEDGEMENTS

This research was supported by the Advanced Scientific
Computing Research Program in the U.S. Department of
Energy, Office of Science, under Award Number DE-AC02-
05CH11231, and used resources of the National Energy
Research Scientific Computing Center (NERSC) which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. We
thank Muaaz Awan for access to his Smith-Waterman code
and Farzad Fatollahi-Fard for administration of our testbed.

10

REFERENCES

[1] NERSC, “National Energy Research Scientific
Computing Center,” Accessed September 8th, 2020.
[Online]. Available: https://www.nersc.gov

[2] ——, “NERSC-10 Workload Analysis,” Ac-
cessed September 8th, 2020. [Online]. Avail-
able: https://portal.nersc.gov/project/m888/nersc10/
workload/N10 Workload Analysis.latest.pdf

[3] S. Williams, A. Waterman, and D. Patterson, “Roofline:
An insightful visual performance model for multicore
architectures.” [Online]. Available: https://doi.org/10.
1145/1498765.1498785

[4] B. Van Essen, C. Macaraeg, M. Gokhale, and
R. Prenger, “Accelerating a random forest classifier:
Multi-core, gp-gpu, or fpga?” in 2012 IEEE 20th Inter-
national Symposium on Field-Programmable Custom
Computing Machines, 2012, pp. 232–239.

[5] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra,
G. Venkatesh, and D. Marr, “Accelerating binarized
neural networks: Comparison of fpga, cpu, gpu, and
asic,” in 2016 International Conference on Field-
Programmable Technology (FPT), 2016, pp. 77–84.

[6] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr,
R. Huang, J. Ong Gee Hock, Y. T. Liew,
K. Srivatsan, D. Moss, S. Subhaschandra, and
G. Boudoukh, “Can fpgas beat gpus in accelerating
next-generation deep neural networks?” in Proceedings
of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’17.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 5–14. [Online]. Available:
https://doi.org/10.1145/3020078.3021740

[7] Y. Zhang, Y. H. Shalabi, R. Jain, K. K. Nagar, and
J. D. Bakos, “Fpga vs. gpu for sparse matrix vector
multiply,” in 2009 International Conference on Field-
Programmable Technology, 2009, pp. 255–262.

[8] S. Kestur, J. D. Davis, and O. Williams, “Blas compar-
ison on fpga, cpu and gpu,” in 2010 IEEE Computer
Society Annual Symposium on VLSI, 2010, pp. 288–
293.

[9] S. Asano, T. Maruyama, and Y. Yamaguchi, “Perfor-
mance comparison of fpga, gpu and cpu in image
processing,” in 2009 International Conference on Field
Programmable Logic and Applications, 2009, pp. 126–
131.

[10] M. Birk, M. Zapf, M. Balzer, N. Ruiter, and J. Becker,
“A comprehensive comparison of gpu- and fpga-based
acceleration of reflection image reconstruction for 3d
ultrasound computer tomography,” J. Real-Time Image
Process., vol. 9, no. 1, p. 159–170, Mar. 2014. [Online].
Available: https://doi.org/10.1007/s11554-012-0267-4

[11] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and
J. Lach, “Accelerating compute-intensive applications

with gpus and fpgas,” in 2008 Symposium on Applica-
tion Specific Processors, 2008, pp. 101–107.

[12] M. Véstias and H. Neto, “Trends of cpu, gpu and fpga
for high-performance computing,” in 2014 24th Inter-
national Conference on Field Programmable Logic and
Applications (FPL), 2014, pp. 1–6.

[13] K. Krommydas, W. Feng, M. Owaida, C. D.
Antonopoulos, and N. Bellas, “On the characterization
of opencl dwarfs on fixed and reconfigurable plat-
forms,” in 2014 IEEE 25th International Conference on
Application-Specific Systems, Architectures and Pro-
cessors, 2014, pp. 153–160.

[14] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda,
and S. Matsuoka, “Evaluating and optimizing opencl
kernels for high performance computing with fpgas,”
in SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, 2016, pp. 409–420.

[15] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang,
“Understanding performance differences of fpgas and
gpus,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing
Machines (FCCM), 2018, pp. 93–96.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W.
Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:
A benchmark suite for heterogeneous computing,”
in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC),
ser. IISWC ’09. USA: IEEE Computer Society, 2009,
p. 44–54. [Online]. Available: https://doi.org/10.1109/
IISWC.2009.5306797

[17] M. Meyer, T. Kenter, and C. Plessl, “Evaluating FPGA
accelerator performance with a parameterized opencl
adaptation of the HPCChallenge benchmark suite,”
arXiv preprint arXiv:2004.11059, 2020.

[18] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai:
Benchmarking high bandwidth memory on fpgas,”
in 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), 2020, pp. 111–119.

[19] M. Siracusa, M. Rabozzi, E. Del Sozzo, L. Di Tucci,
S. Williams, and M. D. Santambrogio, “A cad-based
methodology to optimize hls code via the roofline
model,” in 2020 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2020.

[20] J. Cardoso, B. da Silva, A. Braeken, E. H. D’Hollander,
and A. Touhafi, “Performance modeling for fpgas:
Extending the roofline model with high-level synthesis
tools,” International Journal of Reconfigurable
Computing, vol. 2013, p. 428078, 2013. [Online].
Available: https://doi.org/10.1155/2013/428078

[21] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc,
“A roofline model of energy,” in 2013 IEEE 27th
International Symposium on Parallel and Distributed

11

https://www.nersc.gov
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1007/s11554-012-0267-4
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1155/2013/428078

Processing, 2013, pp. 661–672.
[22] A. Ilic, F. Pratas, and L. Sousa, “Beyond the roofline:

Cache-aware power and energy-efficiency modeling
for multi-cores,” IEEE Transactions on Computers,
vol. 66, no. 1, pp. 52–58, 2017.

[23] “Intel Arria 10 Device Overview,” accessed:
2020-09-12. [Online]. Available: https:
//www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/arria-10/a10 overview.pdf

[24] “Alveo U280 Data Center Accelerator Card,” accessed:
2020-09-12. [Online]. Available: https://www.xilinx.
com/products/boards-and-kits/alveo/u280.html

[25] NERSC, “Cori Supercomputer,” Accessed September
8th, 2020. [Online]. Available: https://www.nersc.gov/
systems/cori/

[26] R. A. van de Geijn and J. Watts, “Summa: Scalable
universal matrix multiplication algorithm,” USA, Tech.
Rep., 1995.

[27] “Empirical Roofline Toolkit (ERT),” accessed:
2020-08-01. [Online]. Available: https://bitbucket.org/
berkeleylab/cs-roofline-toolkit/src/master/

[28] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi,
A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler,
L. Oliker, J. Deslippe, and S. Williams, “An Empirical
Roofline Methodology for Quantitatively Assessing
Performance Portability,” in P3HPC Workshop at SC,
2018.

[29] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and
K. Yelick, “Impact of modern memory subsystems
on cache optimizations for stencil computations,” in
Workshop on Memory System Performance (MSP),
2005.

[30] K. A. Yelick, L. Oliker, and M. G. Awan,
“Gpu accelerated smith-waterman for performing
batch alignments (gpu-bsw) v1.0,” [Computer
Software] https://doi.org/10.11578/dc.20191223.1, nov
2019. [Online]. Available: https://doi.org/10.11578/dc.
20191223.1

[31] M. Farrar, “Striped Smith–Waterman speeds database
searches six times over other SIMD implementations,”
Bioinformatics, vol. 23, no. 2, pp. 156–161, 11
2006. [Online]. Available: https://doi.org/10.1093/
bioinformatics/btl582

[32] S. Y. Kung, VLSI Array Processors. USA: Prentice-
Hall, Inc., 1987.

[33] J. de Fine Licht, G. Kwasniewski, and
T. Hoefler, “Flexible communication avoiding
matrix multiplication on fpga with high-level
synthesis.” CoRR, vol. abs/1912.06526, 2019.
[Online]. Available: http://dblp.uni-trier.de/db/journals/
corr/corr1912.html#abs-1912-06526

[34] “Virtex UltraScale+ HBM FPGA: A Revolutionary
Increase in Memory Performance.” [Online]. Avail-
able: https://www.xilinx.com/support/documentation/

white papers/wp485-hbm.pdf
[35] K. Bergman, G. Hendry, P. Hargrove, J. Shalf, B. Jacob,

K. Hemmert, A. Rodrigues, and D. Resnick, “Let there
be light!: The future of memory systems is photonics
and 3d stacking,” 01 2011.

[36] E. Georganas, A. Buluç, J. Chapman, L. Oliker,
D. Rokhsar, and K. A. Yelick, “meraligner: A fully
parallel sequence aligner,” in 2015 IEEE International
Parallel and Distributed Processing Symposium,
IPDPS 2015, Hyderabad, India, May 25-29, 2015.
IEEE Computer Society, 2015, pp. 561–570. [Online].
Available: https://doi.org/10.1109/IPDPS.2015.96

12

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.nersc.gov/systems/cori/
https://www.nersc.gov/systems/cori/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://bitbucket.org/berkeleylab/cs-roofline-toolkit/src/master/
https://doi.org/10.11578/dc.20191223.1
https://doi.org/10.11578/dc.20191223.1
https://doi.org/10.11578/dc.20191223.1
https://doi.org/10.1093/bioinformatics/btl582
https://doi.org/10.1093/bioinformatics/btl582
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-06526
http://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-06526
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://doi.org/10.1109/IPDPS.2015.96

	introduction
	Related Work
	Experimental Setup
	Evaluated Architectures
	Programming Models
	Performance and Power Instrumentation

	FPGA Microbenchmarks
	Temporal Locality (Roofline)
	Spatial Locality

	HPC Kernels
	Dense Matrix-Matrix Multiplication
	Sparse Matrix-Vector Multiplication (SpMV)
	Banded Smith-Waterman (BSW)

	Conclusions and Future work

