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Abstract—Nearest-neighbor communication is one of the most
important communication patterns appearing in many scientific
applications. In this paper, we discuss the results of applying
UPC++, a library-based partitioned global address space (PGAS)
programming extension to C++, to an adaptive mesh framework
(BoxLib), and a full scientific application GTC-P, whose commu-
nications are dominated by the nearest-neighbor communication.
The results on a Cray XC40 system show that compared with the
highly-tuned MPI two-sided implementations, UPC++ improves
the communication performance up to 60% and 90% for BoxLib
and GTC-P, respectively. We also implement the nearest-neighbor
communication using MPI one-sided messages. The performance
comparison demonstrates that the MPI one-sided implementation
can also improve the communication performance over the two-
sided version but not so significantly as UPC++ does.

Index Terms—Concurrent Programming; Performance mea-
sures

I. INTRODUCTION

Nearest-neighbor communication appears in many contem-

porary applications and represents one of the most important

communication patterns [2], [33]. It is often implemented

using MPI two-sided messages. Also, for performance con-

cern, large messages are preferred. The communicated data

are packed at the source side and unpacked at the destination

side. There is at most one message between any two processes

for each communication phase.

Compared with two-sided communication, one-sided com-

munication separates data transfer from synchronization. This

separation enables multiple data transfers to use one syn-

chronization operation so that the synchronization cost can

be amortized well by such multiple data transfers. Another

difference is that the one-sided message initiator needs both

source and destination information to start the data transfer.

In this work, we study the performance of applying one-

sided communication on an adaptive mesh refinement frame-

work (BoxLib) [2], and a scientific application GTC-P [33],

[19], whose communication patterns are dominated by the

nearest-neighbor communication. Both applications exhibit

dynamic communication characteristics. In BoxLib, the mes-

sage size changes dynamically and the communication buffers

are also dynamically allocated and freed for each iteration in

response to adaptive mesh refinement. As such, each process

needs to dynamically collect the requisite communication

information before it can initiate the one-sided messaging. In

GTC-P, which is a particle-in-cell code, a process will com-

municate with its left and right neighbors when exchanging

particles. However, to save memory, it only maintains one

receiving buffer so that one process (such as the left neighbor)

will know the buffer address in advance and perform the one-

sided communication. As a result the other process (the right

neighbor) needs to know the buffer space used by the left

neighbor before it can transfer the data.

One-sided communication is supported by many PGAS

languages [35], [4], [7], [21], [6], [13]. In this work, we

use UPC++, a library-based PGAS programming extension

to C++ [35]. Unlike other PGAS languages that require new

compiler front-end support, UPC++ adopts a C++ template

meta-programming implementation strategy that reduces de-

velopment and maintenance costs while being C++ standard-

compliant. UPC++ is built on top of the GASNet commu-

nication API [11] and runs on diverse systems from laptops

to supercomputers. For comparison, we also implement the

communication using MPI one-sided interface. Since the offi-

cial release of the MPI one-sided interface, few practices have

been reported about its applications in real world scientific

applications [26], [24]. This situation lasts even after its major

update in 2012. Users are uncertain about whether they can

realize the performance benefit on current HPC platforms and

how.

Our approach is to focus on the communication because

our applications have a large code base and our effort can

be composed with other work for local optimizations. First,

we try to directly replace the two-sided communication op-
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erations with the corresponding one-sided constructs. The big

difference between two-sided and one-sided communications

is that one-sided communication separates the data transfer

and synchronization. Therefore, when applying one-sided mes-

saging, special attention should be paid to synchronization to

guarantee the correctness of the data.

Another advantage of separating the data transfer and

synchronization is that the message originator has the full

knowledge of both the source and destination information,

it can easily control when and how the data should be

transferred, making the maximum use of the network and

overlapping the communication with local computation. We

have applied this strategy to the GTC-P application and have

achieved significant performance gain.

II. RELATED WORK

The performance and potential of one-sided communication

have been studied by many researchers, although most of them

focus on FORTRAN Co-Arrays (CAF) [5], [21] and UPC [31].

In this study we focus on MPI one-sided communication

and UPC++. While the data transfer functions are similar,

the synchronization mechanisms are different. El-Ghazawi

and Cantonnet [10] discussed UPC performance and potential

advantages using NPB applications. Shan et al. [28] studied

the performance of MILC in UPC and IMPACT-T in CAF and

found that the one-sided versions significantly outperform the

two-sided versions at large-scale. Preissl et al. [25] studied the

performance of a communication skeleton extracted from the

GTS Gyrokinetic Fusion Application and showed better scal-

ability and performance by using CAF and OpenMP parallel

tasks to overlap computation and communication. Worley and

Levesque [34] also found that using CAF for latency-sensitive

communication for the Parallel Ocean Program can improve

its performance and scalability. There are numerous other

languages and libraries that support one-sided communication,

such as Chapel [6], SHMEM [1], and X10 [7], GPI-2 [13],

ARMCI [9].

Regarding MPI one-sided communication, more than ten

years ago, Mirin et al. [26] developed the finite-volume

dynamical core for the Community Atmosphere Model using

MPI one-sided communication coupled with threading. Gropp

et al. [14] studied the potential of MPI one-sided on several

small clusters using a synthetic Halo exchange. They found

that one-sided communication showed surprisingly good per-

formance on the SGI Altix and Sun Fire platforms but poor

performance on the IBM SMP machine. Potluri et al. [24]

found that using MPI-2.2 one-sided functions and overlapping

communication can improve the performance of a Seismic

Modeling application around 10% on an Infiniband cluster

platform. Maynard [20] showed the inferior performance of

MPI one-sided versus UPC and SHMEM for a distributed hash

table application on the Cray XE6 platform and related its

poor performance partially to the design of the MPI window

object. Recently, Gerstenberger et al. [12] described a scalable

implementation of the MPI-3 RMA interface on a Cray XE6

platform.

Our work differs from the above in the following ways:

first, our applications show different dynamic communication

characteristics instead of fixed communication patterns. Some

of them require reallocating the communication buffers for

every iteration. This may cause inconvenience for one-sided

communication and hurt its performance since the message

originator needs to know all source and destination informa-

tion. We studied different approaches to address this dynamic

issue. Secondly, we analyze the performance difference and

possible reasons between one-sided and two-sided communi-

cations in detail. Thirdly, instead of simply trying to overlap

communication and computation as two-sided communication,

we pipeline the one-sided communication with local compu-

tation and use the best message sizes.

III. ONE-SIDED COMMUNICATION

The potential advantage of separating data transfer and syn-

chronization is that the synchronization cost can be reduced if

there are a series of data transfer operations between two con-

secutive synchronization points. However, users have to handle

the synchronization explicitly to guarantee data consistency

and correctness. In two-sided communication, the synchro-

nization is implicit, it is combined with the data transfer. The

typical communication involves MPI Isend, MPI Irecv, and

MPI Wait operations. The matching between the sending and

receiving messages is controlled by the value of the message

envelope, including the source, tag, and communicator.

Another big difference is that one-sided data transfer func-

tions require the originator to know all communication pa-

rameters, both for the sending side and for the receiving side

while in two-sided communication, the sender only needs to

know the sending address and the receiver knows the receiving

address.

Next, we will describe the MPI and UPC++ one-sided data

transfer functions and synchronization mechanisms used in our

benchmarks.

A. MPI One-sided Communication

Before a process can initiate one-sided operations, it must

create an MPI Win object, which defines the memory exposed

to the subsequent one-sided functions, also called RMA oper-

ation. Creating the window is a collective operation among

all the processes of this window group. Windows can be

created with system-allocated buffers or user-allocated buffers.

In addition, applications may attach new memory buffers to a

dynamic window during execution.

To transfer the data, we use MPI Put function which

requires the following parameters:

MPI_Put(
origin_addr, origin_count,
origin_datatype,
target_rank, target_disp,
target_count, target_datatype, win)

origin_addr, origin_count and

origin_datatype specify the source information while
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target_rank, target_disp, target_count and

target_datatype specify the destination information.

MPI one-sided includes three synchronization approaches.

The first one is to call MPI Win fence before and after the

one-sided functions. MPI Win fence is a collective operation

and behaves like a barrier operation on the group of the

processes sharing the window object. All MPI one-sided

operations issued prior to the fence will complete before the

fence call returns.

The second approach is to use pairwise synchro-

nization (PSCW). This approach involves four functions,

MPI Win post, MPI Win start, MPI Win complete, and

MPI Win wait. This approach is potentially more efficient

compared with the first approach MPI Win fence as it min-

imizes the synchronization requirements, and only pairs of

communicating processes synchronize [23], [27]. Therefore

we deployed this approach in our MPI one-sided implementa-

tion. The post and wait are used to receive data while the start

and complete are used to send data. If they are used together,

a proper order must follow.

Figure 1 illustrates how to use PSCW to synchronize

between two processes P0 and P1, where MPI Win put was

used to do the data transfer. P1 calle MPI Win post to request

data from P0 and calls MPI Win wait to wait for the data

arrival. P0 calls MPI Win start to prepare to send data. When

P0 receives the synchronization signal post from P1, it calls

MPI Put to transfer the data from the memory of P0 to the

memory of P1. A series of put operations can be issued. Finally

P0 calls MPI Win complete to wait for all the put operations

to finish. When all transferred data have arrived at the memory

of P1, P0 will end the MPI Win complete call and send a

synchronization signal to P1 to end the MPI Win wait call.
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Fig. 1. The pairwise synchronization for MPI one-sided (PSCW). Dashed
lines represent synchronization (extracted from [23])

The third approach is to use a shared lock with

MPI Win lock and MPI Win unlock functions. This ap-

proach is similar to the UPC++ synchronization method via

shared variables. However, this approach requires us to con-

struct additional synchronization to maintain our program cor-

rectness, imposing additional programming challenges. There-

fore, we did not explore this option. Instead we focus on

the point-to-point synchronization primitives provided by the

programming model itself.

B. UPC++

Data transfer can be realized by calling the non-blocking

async_copy function to send data directly from src
and dst. Because UPC++ provides a global address space,

the source and destination buffers are represented by a

global_ptr<T> type, which points to one or more shared

objects of type T.

async_copy(global_ptr<T> src,
global_ptr<T> dst,
size_t count);

Both the src and dst buffers are required to be contiguous,

and count is the number of elements of type T. A call to

async_copy initiates the data transfer and returns, allowing

communication to be overlapped with computation or other

communication.

A similar but more powerful function implements the sig-

naling put [3] operation:

async_copy_and_signal(
global_ptr<T> src,
global_ptr<T> dst,
size_t count,
event *local_complete,
event *remote_complete,
event *signal_event);

The signal_event is the event to be signaled on the

dst rank after data transfer finishes, local_event is the

event on the sender when the local buffer can be reused, while

remote_event is the event on the sender when the data

transfer finishes. All of these event pointers can be set as

NULL to prevent the event from occurring.

Different from MPI, UPC++ supports remote task execution:

async(rank r, event *e)(func, args...)

which enables one process to schedule a function with param-

eters args... to be executed on process with rank r and

wait on event e to occur.

UPC++ supports three synchronization approaches: 1) up-

cxx::barrier() similar to MPI Barrier and MPI Win fence

operations; 2) shared variables in the global address space; 3)

point-to-point synchronization via async and async_wait.

Figure 2 illustrates how this works.

When P1 wants to get data from P0, it launches a remote

task on P0 to request data. At the same time, it passes

the receiving address and other information as remote task

parameters to P0. After the remote task has been executed

on P0, P0 can call async copy or async copy and signal to

transfer the data to P1 without its involvement. After all the

data has been transferred, both P0 and P1 will be signaled for

completion. P0 can actually initiates the data transfer before

the task execution. However, these operations will be queued

on P0 and can only be allowed to proceed after the remote

task has been executed.
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Fig. 2. The pairwise synchronization for UPC++. Dashed lines represent
synchronization.

We use the point-to-point synchronization to implement the

communication for both Boxlib and GTC-P.

IV. EXPERIMENT PLATFORM AND METHODOLOGY

Our performance evaluation was carried out on a Cray

XC40 platform called Cori [8], which is currently deployed

at NERSC. There are 1630 compute nodes total connected in

a Cray Aries Dragonfly topology. Each node has two 16-core

Intel Haswell processors running at 2.3GHz. Therefore there

are 32 cores per compute node. Each core can run either 1 or

2 user threads, although we use only 1 thread per core in this

study. The programming environment is PrgEnv-intel/5.2.82.

However, we use cray-mpich/7.2.5 instead of the default cray-

mpich/7.3.1 as we found that the former delivers much better

performance for MPI one-sided communication and similar

performance for MPI two-sided. We also link with the DMAPP

library and setting environment variables

MPICH_RMA_OVER_DMAPP=1
MPICH_RMA_USE_NETWORK_AMO=1

as suggested by the intro mpi man page. For UPC++, we use

its most current version which can be downloaded from its

bitbucket repository [32].

We selected two production codes for this study: BoxLib,

and GTC-P, which show different dynamic characteristics.

We use an incremental approach and focus only on the

communication parts as these benchmarks have a very large

code base and would require many years of development

effort for a complete rewrite. Ultimately, our enhancements

to the communication sections can be combined nicely with

other efforts to optimize on-node computation or algorithmic

changes.

In terms of a general methodology used throughout the

paper, we first try to replace the MPI two-sided constructs

with the corresponding one-sided constructs. Then we take

advantage of one-sided communication to seek further opti-

mization, through techniques such as message pipelining to

overlap message packing and data transfer, or even directly

sending the data to destination to avoid unpacking.

V. BOXLIB

BoxLib [2] is a software framework for building parallel

partial differential equation solvers. It uses the adaptive mesh

refinement (AMR) technique to focus more computational

resources on regions where high resolution is required. An

example of a three-level hierarchy of block structured AMR

grids is shown in Figure 3.

Fig. 3. An example of three-level BoxLib AMR grids, represented by black,
yellow, and blue rectangular boxes.

Each AMR level contains a union of boxes. A fine level

is strictly contained by a coarse level except that they can

both touch the computational domain boundaries. The boxes

typically have various sizes even at the same level. Each box

has a multi-dimensional array of numerical cells with level-

dependent uniform size. The numerical cell size at a fine AMR

level is usually a factor of 2 or 4 smaller than that at the next

coarse level. Boxes on the same level are non-overlapping, but

ghost cell exchanges are needed for computations that require

data from other boxes. Besides communication between boxes

on the same level, there is also communication between AMR

levels. Every few time steps, the grids are adaptively rebuilt in

response to the evolving system. Although the communication

pattern is complicated due to the complexity of the grids,

BoxLib can use the knowledge of meta-data to perform point-

to-point communication.

A. MPI Two-sided Implementation

Since the whole level grids are not static, but continually

evolve during a run, it becomes difficult to predict the message

size in advance. Therefore, the sending and receiving buffers

need to be dynamically allocated for every ghost exchange.

Also, given the discontiguous nature of the box data in

some directions, the ghost regions are packed at the source

and unpacked at the destination. Each process only needs

to send and receive one message for each of its neighbors.

Without packing and unpacking, there would be too many

small messages, leading to performance slowdown. This per-

formance concern also prevents us from pursuing the approach

to directly send data from source to destination. A detailed

performance analysis between fine-grained messages and bulk
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TABLE I
BOXLIB COMMUNICATION TIME BREAKDOWN AT 4096 CORES (IN SECONDS). NOTE, SEND TIME IS INCLUSIVE OF EXCHANGE TIME.

Packing Sending Waiting Local Unpacking Exchange Total

MPI(Two-sided) 0.77 0.20 14.29 0.48 1.57 N/A 19.00
MPI(One-sided, PSCW) 0.93 2.93 7.50 0.55 0.62 2.80 14.40
UPC++ 0.69 3.56 3.60 0.49 0.73 N/A 10.50

messages for similar communication pattern can be found in

[30], [29].

Once the communication buffers have been allocated, the

communication stage follows the following typical steps to

program in two-sided MPI communication:

1) Packing: Issue MPI_Irecv functions for all neighbors.

Pack the ghost data into the corresponding sending

buffers, with each buffer targeting one neighbor process.

2) Sending: Initiate MPI_Isend operations, with one mes-

sage for each neighboring process.

3) Receiving: Call MPI_Waitall to wait for incoming

data.

4) Unpacking: Unpack the received data into the corre-

sponding ghost zones of the local boxes.

The whole ghost exchange process is packaged into a function

called FillBoundary.

B. MPI One-sided Implementation

Dynamically reallocating the receiving buffer is not a prob-

lem using two-sided communication, since the sender does

not need to know where to put the data on the receiver side.

It’s the responsibility of the receiver itself. However, it causes

complications for one-sided messaging since the sender needs

to know both the source and destination information. To solve

this problem, an extra stage before actual data transfer is

needed to exchange the buffer address with neighbors first.

We use two-sided point-to-point communication to finish this

operation. Later we will show that it does affect the total

performance.

To convert into MPI one-sided communication, we need

to create one MPI Win object that is needed for all the

MPI one-sided functions. It is dynamically created using

MPI Win create dynamic and the communication buffers are

attached to it. To transfer the data, we replace the MPI Isend

and MPI Irecv pairs with MPI Put. The remaining problem

is synchronization. We select the potentially more efficient

MPI PSCW point-to-point synchronization. To use this syn-

chronization mechanism, we need to create the sending group

and receiving group, which are the parameters needed by

MPI Win post and MPI Win start.

C. UPC++ Implementation

In UPC++, dynamically allocating the communication buffer

is not an issue. The receiver will call the async function with

the newly allocated receive buffer address as its parameters to

activate the data transfer on the sender. Therefore, we can

avoid the extra stage needed by MPI one-sided. Data transfer

is carried out by the async_copy_and_signal function.

D. Performance

In our BoxLib benchmark, performance is measured for

a hierarchical grid generated from an AMR simulation of

merging white dwarfs [18]. It has total 25680 boxes and

around 840 million grid points at finest level with total five

levels. Figure 4 shows the strong scaling performance of

different approaches as a function of the number of processes.

Overall, MPI one-sided performs better than MPI two-sided,

especially at high concurrencies. UPC++ performs best.
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Fig. 4. The strong scaling performance of different programming models for
BoxLib.

To further understand the performance difference among

one-sided and two-sided communications, Table I lists the

major components of the communication time, including

“packing” the data from source into sending buffer, “un-

packing” the data from receiving buffer to its destination,

“sending” (time spent in the data transfer function), “waiting”

for communication finish, and “local” (time spent in local

computation). In addition, we also show the time used for

exchanging the receive buffer address under MPI one-sided

(exchange), which is included in the sending time.

For MPI two-sided, it is dominated by waiting time. This

is expected as MPI Isend and MPI Irecv does not take much

time. Its unpacking time is also surprisingly higher than both

one-sided communications. We are not currently clear about

the reason and is under further investigation. MPI one-sided

spent less time waiting but more time in sending. The higher

sending time is almost completely due to exchanging the

buffer address and load balance plays a big factor in the

exchange time. However, its shorter waiting time indicates

the efficiency of MPI one-sided communication, probably less

2121



protocol overhead as the rendezvous protocol is used for two-

sided communication [22]. UPC++ does not have the exchange

time but it do spend more time in sending because it tries to

move the data onto the network before it returns to better

overlap the computation and communication.

VI. GYROKINETIC TOROIDAL CODE (GTC-P)

The Princeton Gyrokinetic Toroidal Code (GTC-P) [33],

[19] simulates plasma turbulence in magnetic confinement

fusion devices called tokamaks. GTC-P follows the motion

of ions and electrons in toroidal geometry by solving a 5D

gyrophase-averaged Vlasov-Poisson equation using a particle-

in-cell (PIC) algorithm. During each PIC time-step, the charge

distribution of the particles is interpolated onto a grid, Pois-

son’s equation is solved on that grid, the electric field is

interpolated from the grid back to the particle positions, the

phase-space coordinates of the particles are updated using a

time-advance Runge-Kutta algorithm, and finally, the exiting

particles are shifted to their new destination according to

their new coordinates and the domain decomposition. Our

work focuses on the shift operations since it is the most

communication intensive part of this code. As pointed out

by researchers in [15], network performance has become

increasingly important to the overall GTC-P performance.
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Fig. 5. The 3D grid for GTC-P.

Figure 5 shows the 3D toroidal grid. The 3D domain

is partitioned in both the toroidal dimension (zeta) and the

radial dimension (psi). The number of subdomains in toroidal

direction is defined as mzetamax. A particle position in the

torus can be described with three coordinates: the position

in the toroidal direction, the position in the radial direction,

and the position in the poloidal direction within a toroidal

subdomain. Particles move much faster in the toroidal direction

than in the radial direction at every time step. Therefore, the

messages transferred within the toroidal communicator are of

much larger size than the messages exchanged within the radial

communicator. In addition, as particles will most likely move

one or a few steps in each time iteration, the dominant commu-

nication occurs between two nearest neighbors. Therefore, the

MPI Sendrecv function is iteratively used to exchange moved

particles with left and right nearest neighbors. The particle

shift is organized as follows:

1) Scan particle array looking for particles that have

moved out of local domain and compute the number

of msendleft and msendright.
2) Calling MPI Sendrecv function to exchange msendleft

and msendright with left and right neighbors to get

mrecvleft and mrecvright.
3) Pack the exiting particles into sendbuffer
4) Calling MPI Sendrecv to exchange exiting particles

with left and right neighbors and put them into

recvbuffer.

5) Unpacking the received data to the end of the particle

arrays

In the next round, the process will scan those newly received

particles and repeat the above five steps. This process may

repeat up to mzetamax/2 times or until no particles are moved.

A. MPI One-sided Implementations

P0 P1 

�										��������	

����	
���	

P2 

�

	 �

	

Fig. 6. The illustration of GTC-P buffer problem. Before P2 can fill the buffer
for P1, it has to get msendleft from P0 first.

We first focus on step 4 by replacing the MPI Sendrecv

functions with MPI Put. The recvbuffer is preallocated. So

we can create a MPI Win object for the recvbuffer and use

PSCW synchronization mechanism. However, due to memory

efficiency, each process only maintains one recvbuffer, i.e.,

both its left and right neighbors will put their exiting particles

into it. Suppose the left neighbor fills the buffer starting

from offset 0, the right neighbor does not know where to

start. As illustrated in Figure 6, P0 fills P1’s recvbuffer from

offset 0 to mrecvleft and P2 should fill the buffer from offset

mrecvleft. But it does not own this information. Therefore,

one more piece of information must be exchanged in step

2 between P0 and P2. After this additional information is

exchanged, we can then replace the MPI Sendrecv function

with MPI Put. It should be noted that it is possible to maintain

two receiving buffers to simplify this problem, but that requires

more memory to be allocated.

1) UPC++ Implementation: For UPC++, we use remote

tasks to synchronize. One advantage is that in step 2 we only

need to explicitly exchange msendright. The offset needed in

2222



TABLE II
THE TIME BREAKDOWNS (IN SECONDS) OF GTC-P COMMUNICATION FOR 256X8 CORE CASE

Packing Comm Unpacking Imbalance Total

MPI(Two-sided) 17.2 39.0 4.9 24.2 85.3
MPI(One-sided, PSCW) 17.2 54.3 4.9 16.0 92.5
UPC++ 18.8 18.4 7.2 15.1 59.4

Packing+Comm Unpacking Imbalance Total
MPI(One-sided, PSCW, pipeline) 58.2 0 15.6 73.7
UPC++ (pipeline) 34.8 0 14.8 49.6

Figure 6 is obtained through async parameters. The function

async_copy_and_signal is used to transfer the data.

B. Performance

Figure 7 shows the strong scaling performance of shift
under different programming models under label MPI(two-

sided), MPI(One-sided, PSCW), and UPC++. The measured

problem is size C, which corresponds to the JET tokamak,

the largest device currently in operation [17]. There are 96

particles per grid cell and the domain is partitioned into

a fixed 64 subdomains in the toriodal (zeta) direction. The

number of partitions in the radial (psi) direction is total
number of processes / 64. GTC-P is an MPI+OpenMP hybrid

code and we run the code with four MPI or UPC++ ranks

per node and eight OpenMP threads per MPI rank. Overall,

MPI one-sided performs worse than MPI two-sided (except

for the smallest concurrency) while the best performance is

delivered by UPC++. Table II shows the time breakdown

spent in the shift communication for the 256 × 8 case. The

Imbalance time is the synchronization time to check whether

some processes still have particles to move. If not, the shift
phase will complete. We can see that the MPI one-sided

messaging approach requires much more communication time

than MPI two-sided, indicating the inefficiency of MPI one-

sided for GTC-P. Conversely, UPC++, which delivers the best

performance, requires much less communication time than

either MPI variants but some more time for data unpacking.

It should be noted that GTC-P has much larger message sizes

than BoxLib.

C. Message Pipelining

Table II shows that a significant amount of time is spent

in packing and unpacking data. As we mentioned earlier, one

advantage of using one-sided messaging is to use a proper

message size to pipeline the messages and overlap packing

and network communication. Therefore, there is no need to

wait for all the data to have been packed before initiating the

data transfer. We can choose a proper message size. As long

as enough data has been packed, we send it out immediately

so that we can pipeline packing and data communication.

Furthermore, we can control the packing to pack the data for

each data field individually so that the data can be directly

sent to the corresponding destination array (structure-of-arrays

layout), eliminating the unpacking stage. This is different from

BoxLib, where the large amount of fine-grained messages will

create a performance bottleneck.
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Fig. 7. The strong scaling performance of different implementations for GTC-
P’s Shift phase. Both MPI one-sided and UPC++ show substantial benefit when
pipelined (’pipeline’).

The resultant strong scaling performance for both pipelined

MPI one-sided and UPC++ is shown in Figure 7 under label

MPI(One-sided,PSCW,pipeline) and UPC++ (pipeline). Com-

pared with their corresponding versions without pipelining,

both have improved their performance significantly. With

pipelining, the performance of MPI one-sided finally outper-

forms MPI two-sided. The time breakdowns for the pipelined

versions are also shown in Table II. We time the Packing and

Comm phases together as it becomes difficult to differentiate

them due to overlapping. For both MPI one-sided and UPC++,

the sum of Packing and Comm time are reduced substan-

tially. Also, the unpacking times are completely eliminated.

Compared with the current, highly-tuned, two-sided MPI im-

plementation, the pipelined MPI one-sided performs 10-60%

better for the shift communication phase and 2-16% better

for the whole application. Moreover, UPC++ implementation

performs 60-90% better for the shift phase and 17-23% better

for the whole application. The performance gains come from

better overlapping of data transfer and packing and eliminating

the unpacking stage.

VII. SUMMARY AND FUTURE WORK

In this paper, we examine the performance of one-sided

communication for nearest-neighbor communication using two
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production codes, an adaptive mesh framework (BoxLib),

and a scientific application GTC-P. Both of them show very

frequent synchronization requirements as there is only one

data transfer per communicating pair between consecutive

synchronization points. Such communication characteristics

often do not favor one-sided communication. However, com-

pared with MPI two-sided, MPI one-sided could deliver better

performance for BoxLib and GTC-P by applying message

pipelining.

UPC++ performs significantly better than MPI one-sided

for BoxLib and GTC-P, which is due to efficient point-to-

point synchronization which provides programming ease and

performance benefits when buffers are allocated dynamically.

Moreover, it enables better overlaps of local computation and

communication.

Regarding programming effort and productivity, in order to

leverage one-sided MPI, BoxLib, GTC-P (without message

pipelining), and GTC-P (with message pipelining) required

170, 178, and 460 lines of code to be modified respectively.

Similarly, UPC++ required 330, 340, and 590 lines. These

changes were small compared to the size of the respective

code bases (around 80000 lines for BoxLib, and 14000 for

GTC-P). More importantly, the changes were localized to

the communication routines making incremental changes and

modularity a reality.
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