
Performance portability evaluation of blocked stencil
computations on GPUs

Oscar Antepara
Hans Johansen
Samuel Williams

{oantepara,hjohansen,swwilliams}@lbl.gov
Lawrence Berkeley National Lab

Berkeley, California, USA

Tuowen Zhao
Samantha Hirsch

Priya Goyal
Mary Hall

mhall@cs.utah.edu
School of Computing, University of Utah

Salt Lake City, Utah, USA

ABSTRACT
In this new era where multiple GPU vendors are leading the super-
computing landscape, and multiple programming models are avail-
able to users, the drive to achieve performance portability across
platforms faces new challenges. Consider stencil algorithms, where
architecture-specific solutions are required to optimize for the par-
allelism hierarchy and memory hierarchy of emerging systems.
In this work, we analyze performance portability of the BrickLib
domain-specific library and vector code generator for stencils. Brick-
Lib employs fine-grain data blocking to reduce the large amount
of data movement associated with stencils. We compare different
GPUs (NVIDIA, AMD and Intel) and their associated programming
models (CUDA, HIP and SYCL). By testing a wide range of stencil
configurations, we show that overall, BrickLib achieves good perfor-
mance independent of machine or programming model. Moreover,
we introduce correlation models as a new tool for comparing archi-
tectures and programming models from Roofline model data.

CCS CONCEPTS
• Software and its engineering→ Compilers; Software nota-
tions and tools; • Computer systems organization → Hetero-
geneous (hybrid) systems.

KEYWORDS
Stencil computation, GPU, programming models, Roofline model,
performance models, data blocking, vectorization

ACM Reference Format:
Oscar Antepara, Hans Johansen, Samuel Williams, Tuowen Zhao, Samantha
Hirsch, Priya Goyal, and Mary Hall. 2023. Performance portability eval-
uation of blocked stencil computations on GPUs. In Proceedings of 2023
International Workshop on Performance, Portability & Productivity in HPC
(P3HPC’23). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
P3HPC’23, November 2023, Denver,CO, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Supercomputer architectures based on GPUs are prevalent and have
dominated the Top500 list for the last four years [1]. Notably, one
thing has changed starting in June 2022: the top two GPU archi-
tectures on the list incorporate AMD Instinct MI250X GPUs, well
above the rankings of the platforms based on NVIDIA A100 and
V100 GPUs. Soon Aurora [2] will introduce Intel GPUs to this list
as well. With multiple GPU vendors leading the supercomputing
landscape, we now have a variety of programming models and
associated compilers available to target these architectures. How-
ever, programmers of these systems desire performance portability,
i.e., achieving high performance across current and future GPU
platforms, ideally using a single source code. Today’s GPU systems
support both native programming models (CUDA and HIP), and
portable programming models such as SYCL that are intended to
promote performance portability; therefore, another aspect of per-
formance portability is whether a similar code written in either
SYCL or a native programming model for the same platform both
achieve high performance. At this inflection point in the supercom-
puting landscape, it is important to consider howmuch architecture,
programming models, and maturity of compiler implementations
impact performance portability for a given application class.

For such a performance-portability study, we consider the stencil
computation, used to solve partial differential equations using the
finite difference or finite volume methods, where the derivative at
each point in space is calculated as a weighted sum of neighbor-
ing point values (a “stencil”). Stencils come in a variety of shapes
corresponding to different discretizations and varying numbers
of neighboring points. Low-order discretizations result in smaller
stencils with limited data reuse, are typically bound by memory
bandwidth, and thus underutilize the compute capability afforded
by GPU architectures. High-order discretizations perform more
floating point computations per point but can attain equal error
with larger grid spacings (smaller array sizes); therefore, they ex-
hibit higher arithmetic intensity and can derive solutions with less
total data movement. However, exploiting data reuse in high-order
stencils has been shown to exhibit increased data movement result-
ing from redundant loads and stores of temporary data. In practice,
a high-performance stencil must incorporate architecture-specific
optimizations to: (1) reduce data movement at multiple levels of
the memory hierarchy (registers, caches, memory, TLBs) [3–25];
(2) exploit parallelism at multiple levels (across domains, nested
threading, and fine-grain SIMD parallelization) [17, 26–29]; and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

P3HPC’23, November 2023, Denver,CO, USA Antepara et al.

(3) avoid redundant loads/stores and computation for stencils that
exhibit high arithmetic intensity [5, 22, 30–34].

Given the need for architecture-specific optimization for stencils,
a key question is how to achieve performance portability across
different architectures and programming models. In this paper,
we determine whether a domain-specific stencil library and code
generator called BrickLib [28, 29, 35] delivers on its promises. When
using BrickLib, stencil computations are expressed in a python-like
DSL, and the system generates high-performance code for a variety
of target programmingmodels, including CUDA,HIP and SYCL. The
defining feature of BrickLib is its use of fine-grain data blocking in
the form of bricks, a data layout where mini subdomains are stored
in contiguous memory so that accesses within a brick are part of
a single address stream; neighboring subdomains are described
with adjacency information, allowing flexibility in how bricks are
organized in memory. In addition, BrickLib includes a vector code
generator that exploits data reuse and eliminates redundant loads
within a brick’s computation. For benchmark comparisons, BrickLib
also provides an option that defaults to a conventional array layout,
while still exploiting the vector code generator.

In this paper, we study performance portability of stencil com-
putations for different GPUs (NVIDIA A100, AMD M1250X and
Intel PVC) and their associated programming models (CUDA, HIP
and SYCL). We compare different data layouts (bricks vs. standard
arrays), and isolate the contributions of bricks and the vector code
generator by presenting results for arrays with vector code gener-
ation. We consider different stencil shapes and different problem
sizes to observe how these variations strain memory bandwidth
under different implementation scenarios. The paper makes the
following contributions: (1) it is the first performance-portability
study applied to stencils across recent NVIDIA, AMD and Intel
GPUs; (2) it demonstrates differences in performance on the same
platform using both vendor programming models and SYCL; (3)
it introduces the correlation model and potential speedup as tools
for comparing architectures and programming models using the
Roofline model; and, (4) it demonstrates that optimizations used
in BrickLib reduce data movement across all implementations and
mitigate the differences between models on the same platform.

2 RELATEDWORK
On structured grids, stencil computations are present at the core of
several scientific and engineering applications. Historically, most
optimization strategies for single nodes focus on spatial and tem-
poral tiling to change memory access order and improve locality
in cache [3–21, 36]. As data movement increasingly dominates per-
formance, some research focuses on instead on organizing data
in a blocked physical representation to improve memory access
order including BrickLib [28, 29], YASK [36] and RTM on the Cell
processor [25]. All these fine-grained blocking techniques target
large, compute-intensive stencils, and the small data blocks such as
bricks do not have per-block ghost zones. TiDA [23, 24] uses coarse-
grained data blocking, where the entire grid is tiled into sub-grids,
each with its own ghost zone. High order stencils require additional
optimizations to reduce redundant memory operations associated
with temporary storage of reused data; techniques to reduce this

data movement usually exploit associative reordering of computa-
tion, similar to identifying array common subexpressions and vector
scatter used in the BrickLib vector code generator [5, 22, 30–34].

Research efforts on compilers and programming models are en-
couraged to achieve high performance on different heterogeneous
systems: thus, achieving performance portability which enables
scientific progress on themost powerful systemswithout code refac-
toring. A popular approach to compiler optimization of stencils
is the use of domain-specific compilers for parallel code genera-
tion from a stylized stencil specification [37–40] or from a code
excerpt [27]. Many of these target GPUs.

In this paper, we focus on the performance portability evaluation
of fine-grain data blocking and vector code generation to leverage
performance on modern supercomputers for stencil computations.
We are looking to evaluate different techniques, such as tiling,
data layouts, vector code generation, and warp-based computations
on GPU based systems, such as NVIDIA, AMD and Intel, native
programming models CUDA and HIP, and portability programming
model SYCL. Since we are using an existing stencil framework
BrickLib for this study, the primary contributions of this work is
as a cross-platform performance-portability study of stencils on
current-generation GPUs and available programming models.

We cite here prior cross-platform performance-portability stud-
ies of stencils and GPU programming models, and a recent experi-
ment for tensor contraction on the same architectures. In the multi-
core era, a study of stencil optimizations applied to the 3D Heat
Equation (7pt stencil) on five multi-core architectures highlighted
differences between these systems and pointed to the performance
and energy benefits of many-core platforms and autotuning [5]. A
previous study demonstrated performance portability of BrickLib
across CPU (Intel KNL, Intel Skylake) and GPU (NVIDIA P100) [28].
Lee et al. examined performance portability of a stencil-based CFD
application for thermodynamics simulation, performing an earlier
generation cross-platform (NVIDIA and AMD GPUs, Intel Many
Integrated Cores, and Altera FPGAs) and cross programming model
(OpenMP+MPI, OpenACC+MPI, and CUDA+MPI) study [41].

Several recent performance portability studies have similarly
evaluated the same or older GPU architectures on other applica-
tions. Mehta et al. compared OpenMP implementations of the SNAP
application, a proxy for LAMMPS, on earlier GPUs, and evaluated
the effectiveness of different layout optimizations in OpenMP using
the Roofline model [42]. A comparison of Kokkos, SYCL and na-
tive programming models for the Milc-Dslash benchmark showed
comparable performance, using speedup over a common baseline
as the metric of interest [43]. Two articles present a comparison
across mini-applications and the programming models used in their
implementation applied the same performance portability metric
as in this paper, along with metrics for evaluating consistency of
performance [44, 45]. An examination of sparse block diagonal ma-
trix times multiple vectors (SpMM) computation compared CUDA,
HIP, OpenACC and Kokkos implementations; because the compu-
tation’s performance varies with the input sparse matrix, the paper
introduced a weighted aggregate performance portability metric
to capture both variability and importance of individual measure-
ments [46]. A recent performance portability experiment for tensor
contraction compared native CUDA/HIP to performance portability
frameworks Kokkos and SYCL on the same architectures as this

Performance portability evaluation of blocked stencil computations on GPUs P3HPC’23, November 2023, Denver,CO, USA

BrickLib DSL Input
D e c l a r e i n d i c e s
i = Index (0)
j = Index (1)
k = Index (2)

D e c l a r e g r i d
input = Grid (" i n " , 3)
ou tpu t = Gr id (" out " , 3)
a0 = ConstRe f (" MPI_B0 ")
a1 = ConstRe f (" MPI_B1 ")
a2 = ConstRe f (" MPI_B2 ")

E x p r e s s c ompu t a t i on
c a l c = a0 ∗ input (i , j , k) + a1 ∗ input (i +1 , j , k) + \

a1 ∗ input (i −1 , j , k) + a1 ∗ input (i , j +1 , k) + \
a1 ∗ input (i , j −1 , k) + a1 ∗ input (i , j , k +1) + \
a1 ∗ input (i , j , k −1) + a2 ∗ input (i +2 , j , k) + \
a2 ∗ input (i −2 , j , k) + a2 ∗ input (i , j +2 , k) + \
a2 ∗ input (i , j −2 , k) + a2 ∗ input (i , j , k +2) + \
a2 ∗ input (i , j , k −2)

ou tpu t (i , j , k) . a s s i g n (c a l c)

Figure 1: Python-syntax BrickLib DSL code to specify a star-
shaped, radius 2 stencil in 3D.

study, showing a more significant performance loss when using
Kokkos/SYCL as compared to CUDA on the NVIDIA GPU than the
corresponding experiment on AMD [47].

As compared to prior performance portability studies applied to
stencils, the work in this paper is distinguished by looking at recent
GPUs and comparing native programming models to SYCL. We
show BrickLib reduces data movement across the different imple-
mentations and mitigates the differences between native and SYCL
implementations. Moreover, we introduce the use of correlation
models as a tool for comparing architectures and programming
models from Roofline model data.

3 BRICKLIB
For the sake of completeness, this section summarizes salient as-
pects of BrickLib, which are detailed in references upon which we
build for this work [28, 29].

Brick data layout and fine-grained data blocking: The brick
data layout embodies fine-grained data blocking (similar to ref-
erences [25, 36, 48]) for stencil loops, without traditional “ghost
cell" approaches and their associated memory overheads. For the
purposes of this paper, bricks are 3D blocks stored in contiguous
memory, specifically 4×4×SIMD_width for our experiments, where
SIMD_width is architecture specific, as described in Section 4.4.
These fine-grained data blocks take advantage of hardware fea-
tures that optimize data movement of contiguous addresses, such
as multi-word cache lines, prefetch engines, and TLBs. In contrast,
when using a conventional array data layout for 3D stencils, a
4 × 4 × SIMD_width tile touches a large number of address streams,
resulting in inefficient use of these hardware features and more
data movement as compared to bricks.

BrickLib domain-specific library: BrickLib is a domain-specific
library and code generator, in which the brick data layout underlies
stencil grids. By applying code transformations for optimizations
to a python-like stencil DSL, the final optimized kernel is able to
target a specific architecture without low-level performance opti-
mization. Stencils are defined in terms of constant weights for each
offset, and can take any shape, from star-shaped grid-aligned, to
cube-shaped full regions. Figure 1 shows the DSL input for a 3D,
radius 2 star-shaped stencil over 13 points, which could be used
to calculate a fourth-order accurate Laplacian stencil, for example.
This format is fairly flexible and can be easily transformed to create
compile-time layouts, improve register and intermediate reuse, and
inject intrinsic instructions optimized for the stencil radius and
brick dimensions.

Vector code generation: To this end, an important aspect of Brick-
Lib is its domain-specific vector code generator. Since BrickLib is
designed to target both CPUs and GPUs, it uses a common internal
abstraction of vectors to develop the structure of the generated
code, and subsequently map to architecture-specific instructions:
SIMT code for GPUs, and wide SIMD instructions for CPUs. Figure 2
shows code snippets for GPU kernels using bricks with CUDA, HIP
and SYCL for a star stencil.

There are three essential domain-specific optimizations in vector
code generation. First, vector folding as described by Yount [49] is
used to create long vectors by collapsing brick dimensions. Second,
in a stencil pattern, some input data is reused from computing
neighboring output points, but shifted in the 3D domain requiring
data reorganization in the vectors as observed byHenretty et al. [26].
BrickLib’s vector code generator detects this reuse of array common
subexpressions [30, 32], exploiting reuse in buffers and shifting
iteration spaces rather than data. Third, for high-order stencils, it is
often profitable to eliminate redundant loads by scattering an input
to all the outputs that use it to avoid data movement associated with
the large amount of temporary data when gathering; vector scatter
is used when profitable in conjunction with the reuse of buffers
described above in a vector version of the associative reordering via
statement splitting approach described by Stock et al. [22].

The code resulting from vector code generation looks like a se-
quence of code blocks that compute portions of a brick’s stencil
grid. To achieve high performance on GPUs, data is moved through
the register file of neighboring threads using shuffle primitives;
the need for the movement is expressed with a macro that is re-
placed by architecture-specific implementations. For CUDA ver-
sion 9 and later, __𝑠ℎ𝑓 𝑙_𝑑𝑜𝑤𝑛_𝑠𝑦𝑛𝑐 and __𝑠ℎ𝑓 𝑙_𝑢𝑝_𝑠𝑦𝑛𝑐 , for earlier
CUDA versions and HIP __𝑠ℎ𝑓 𝑙_𝑑𝑜𝑤𝑛 and __𝑠ℎ𝑓 𝑙_𝑢𝑝 , and SYCL
uses 𝑠𝑢𝑏_𝑔𝑟𝑜𝑢𝑝_𝑠ℎ𝑓 𝑙_𝑑𝑜𝑤𝑛 and 𝑠𝑢𝑏_𝑔𝑟𝑜𝑢𝑝_𝑠ℎ𝑓 𝑙_𝑢𝑝 . Although be-
yond the scope of this paper, architecture-specific implementations
for CPUs include SIMD instructions in AVX2, AVX512, and SVE.

BrickLib performance portability. With the addition of auto-
tuning for brick dimension, layout, and ordering, BrickLib demon-
strates some level of performance portability [50], relative to the
Roofline performance on a given architecture across a wide vari-
ety of stencils. Performance portability was demonstrated on Intel
Xeon Phi, Intel Skylake, and NVIDIA P100 architectures in [28].

P3HPC’23, November 2023, Denver,CO, USA Antepara et al.

CUDA
__g l o b a l _ _ void d 3 s t a r _ b r i c k
(unsigned (∗ g r i d) [STRIDEB] [STRIDEB] ,
B r i c k <Dim<BDIM> , Dim<VFOLD>> bIn ,
B r i c k <Dim<BDIM> , Dim<VFOLD>> bOut) {

long tk = GB + b l o c k I d x . z ;
long t j = GB + b l o c k I d x . y ;
long t i = GB + b l o c k I d x . x ;
unsigned b = g r i d [tk] [t j] [t i] ;
bOut [b] [k] [j] [i] = (b In [b] [k +2] [j] [i] +

b In [b] [k −2] [j] [i] + b In [b] [k] [j +2] [i] +
b In [b] [k] [j −2] [i] + b In [b] [k] [j] [i +2] +
bIn [b] [k] [j] [i − 2]) ∗ MPI_B2 +

(b In [b] [k +1] [j] [i] + b In [b] [k −1] [j] [i] +
b In [b] [k] [j +1] [i] + b In [b] [k] [j −1] [i] +
b In [b] [k] [j] [i +1] + bIn [b] [k] [j] [i − 1])
∗ MPI_B1 + bIn [b] [k] [j] [i] ∗ MPI_B0 ; }

HIP
__g l o b a l _ _ void d 3 s t a r _ b r i c k
(unsigned (∗ g r i d) [STRIDEB] [STRIDEB] ,
B r i c k <Dim<BDIM> , Dim<VFOLD>> bIn ,
B r i c k <Dim<BDIM> , Dim<VFOLD>> bOut) {

long tk = GB + h i pB l o ck I d x_ z ;
long t j = GB + h ipB l o ck I dx_y ;
long t i = GB + h ipB l o ck I dx_x ;
unsigned b = g r i d [tk] [t j] [t i] ;
bOut [b] [k] [j] [i] = (b In [b] [k +2] [j] [i] +

b In [b] [k −2] [j] [i] + b In [b] [k] [j +2] [i] +
b In [b] [k] [j −2] [i] + b In [b] [k] [j] [i +2] +
bIn [b] [k] [j] [i − 2]) ∗ MPI_B2 +

(b In [b] [k +1] [j] [i] + b In [b] [k −1] [j] [i] +
b In [b] [k] [j +1] [i] + b In [b] [k] [j −1] [i] +
b In [b] [k] [j] [i +1] + bIn [b] [k] [j] [i − 1])
∗ MPI_B1 + bIn [b] [k] [j] [i] ∗ MPI_B0 ; }

SYCL
cgh . p a r a l l e l _ f o r < c l a s s d 3 s t a r _ b r i c k >(nworkitem , [=] (nd_item <3> WIid) {

long bk = WIid . ge t_group (2) ; long k = WIid . g e t _ l o c a l _ i d (2) ;
long b j = WIid . ge t_group (1) ; long j = WIid . g e t _ l o c a l _ i d (1) ;
long b i = WIid . ge t_group (0) ; long i = WIid . g e t _ l o c a l _ i d (0) ;
bElem ∗ bDat = (bElem ∗) bDat_s . g e t _ p o i n t e r () ;
auto b S i z e = c a l _ s i z e <BDIM > : : v a l u e ;
s y c l B r i c k <Dim<BDIM> , Dim<VFOLD>> bIn (b I n f o _ s . g e t _ p o i n t e r () , bDat , b S i z e ∗ 2 , 0) ;
s y c l B r i c k <Dim<BDIM> , Dim<VFOLD>> bOut (b I n f o _ s . g e t _ p o i n t e r () , bDat , b S i z e ∗ 2 , b S i z e) ;
unsigned b = b Idx_ s [b i + (b j + bk ∗ (STRIDEBY − 2)) ∗ (STRIDEBX − 2)] ;
bOut [b] [k] [j] [i] = (b In [b] [k +2] [j] [i] + b In [b] [k −2] [j] [i] + b In [b] [k] [j +2] [i] +

b In [b] [k] [j −2] [i] + b In [b] [k] [j] [i +2] + bIn [b] [k] [j] [i − 2]) ∗ MPI_B2 +
(b In [b] [k +1] [j] [i] + b In [b] [k −1] [j] [i] + b In [b] [k] [j +1] [i] + b In [b] [k] [j −1] [i] +
b In [b] [k] [j] [i +1] + bIn [b] [k] [j] [i − 1]) ∗ MPI_B1 + bIn [b] [k] [j] [i] ∗ MPI_B0 ; }) ;

Figure 2: Kernel example for a star stencil using bricks with different programming models (without vector code generation).

4 EXPERIMENTAL SETUP
In this section, we provide details of the GPU-based systems used for
the performance and portability study. We also provide additional
details about the programming models used in the evaluation.

4.1 GPU Architectures
Perlmutter [51] is the new HPE Cray EX supercomputer at the
National Energy Research Scientific Computing Center (NERSC),
Lawrence Berkeley National Laboratory. Each Perlmutter GPU
node contains one AMD EPYC 7763 CPU and four of NVIDIA’s
latest Ampere A100 GPUs [52]. Each GPU includes 108 streaming
multiprocessors (SM) each with four warp schedulers of 16 integer
units and 8 double-precision floating point units. The GPU provides
a peak performance of about 9.77 TFLOP/s in double-precision. The
SMs each include a 192KB shared memory/data cache and share
a 40 MB L2 cache and 40 GB of HBM accessible at 1.5TB/s. The
GPUs are individually connected to the CPU with a PCIe 4.0 x 16
link providing 32 GB/s. Nodes are connected with a Slingshot 11
interconnect system providing up to 12.5 GB/s bandwidth per NIC.

Crusher [53] is a testbed for the Frontier supercomputer at the
Oak Ridge National Laboratory. Each node comprises one 64-core
AMD EPYC 7A53 CPU and four AMD MI250X GPUs [54]. Each
MI250X instantiates two Graphical Compute Dies (GCDs) each with
110 compute units (CU). Each CU includes four 16-wide 64b SIMD
units to execute either integer or floating-point instructions and a

small L1 cache. Each GCD also includes an 8MB L2 cache, provides
a peak FP64 performance of about 24 TFLOP/s, and is connected
to 4 HBM stacks of 64 GB providing 1.6 TB/s. Network connection
between nodes uses Slingshot 11 system but the NIC is attached
directly to the GCDs. Thus, compared to Perlmutter’s A100, each
MI250X GCD provides more than twice peak FLOP rate for FP64,
comparable bandwidth, and more overall network bandwidth.

Florentia [55] is a JLSE (Joint Laboratory for System Evaluation)
testbed for application and software development prior to Aurora
supercomputer at Argonne National Laboratory. Each Florentia
node is a Quad GPU Early Silicon Ponte Vecchio (PVC) Node. Each
node consists of four Intel Data Center GPUs, codenamed Ponte
Vecchio, and two 4th Gen Intel Xeon Scalable processors [56]. Each
PVC GPU is a two stack/tile architecture interconnected by Xe
links with the other PVC GPUs. Each stack has 64-GB of HBM,
208MB L3 per stack and 448KB L1 with two 80KB lcache per Xe-
core. The entire GPU supports a total of 1024 execution units, each
with a SIMD width of 512b. Eight EUs are grouped together into
an Xe-core with a shared cache. Sixteen Xe-core form a slice, and
four slices form a stack providing a peak FP64 performance of
about 16TFLOP/s and 1.64TB/s of memory bandwidth per stack.
Compared to Perlmutter’s A100 and Crusher’s MI20X GCD, a PVC
stack provides similar memory bandwidth, about 1.6x higher peak
FLOP rate for FP64 than A100, and about 0.6x TFLOP/s less than
AMD MI250X GCD.

Performance portability evaluation of blocked stencil computations on GPUs P3HPC’23, November 2023, Denver,CO, USA

In practice, programmers are advised to run one process per
GCD on Crusher and one process per Stack on Florentia, which is
what our tests use in this paper; our comparisons use either one
A100 GPU on Perlmutter or one MI250X GCD on Crusher or one
PVC GPU stack on Florentia.

4.2 Compilers and Profiling Tools
Table 1 lists the programming models, modules, and programming
environments used on each of our target systems.

On Perlmutter, CUDA and HIP are available through NVIDIA
CUDA compiler drivers and HIP installation [51]. The HIP mod-
ule on Perlmutter functions as a wrapper that calls the NVIDIA
compiler, while SYCL is available by using the Intel-llvm compiler
installed on the system. We use NVIDIA Nsight Compute [57, 58]
to profile and collect GPU performance metrics.

Crusher offers AMD compiler drivers [53] for HIP codes and an
experimental module for DPC++ [59] to compile SYCL codes on
AMD GPUs. We use AMD ROCm Profiler [60] and AMD Omniperf
[61] to collect the GPU performance metrics on AMD MI250X.

The Florentia architecture provides Intel compiler drivers, li-
braries and tools for several languages. In this work we focus on a
C++ SYCL code and Intel oneAPI products [62] are used to compile
our tests on Intel PVC GPUs. We use Intel Advisor [63] to collect
GPU performance metrics on Intel PVC.

Table 1: Programming models, modules and compiler ver-
sions used for CUDA, HIP and SYCL on Perlmutter, Crusher
and Florentia.

HPC Progr. Modules Compiler version
System Model Load
Perlmutter CUDA cudatoolkit NVHPC 22.7,
NERSC nvidia CUDAToolkit 11.7,

PrgEnv-nvidia/8.3.3,
nvcc/11.7

HIP hip hip/5.3.2, nvcc/11.7
SYCL intel-llvm PrgEnv-llvm/0.1,

intel-llvm/2023-WW13,
clang++/17.0.0

Crusher HIP amd PrgEnv-amd/8.3.3,
OLCF amd/5.1.0, ROCm/5.2.0,

AMD clang/14.0.0
SYCL dpcpp/22.09 dpcpp/22.09, ROCm/5.2.0,

clang++/16.0.0
Florentia SYCL oneapi oneapi/eng-compiler/
JLSE 2022.12.30.003,

icpx/2023.1.0

4.3 Stencils
In this subsection, we describe the benchmark tests used to exam-
ine the performance of stencil computations. Broadly speaking, we
define two classes of extensible stencils designed to proxy many
common high-order finite difference stencils. Star-shaped stencils
include points only along the axes with a distance (radius) of the

Table 2: Stencils used for performance portability evaluation.

Stencil Shape Radius Points Unique Coefficients
Star 1 7 2

2 13 3
3 19 4
4 25 5

Cube 1 27 4
2 125 10

central point. In 3D, this class nominally reproduces the classic 7-
point stencil with 𝑟𝑎𝑑𝑖𝑢𝑠 = 1 and 13-point stencils with 𝑟𝑎𝑑𝑖𝑢𝑠 = 2.
Our second class of stencils are classified as cube-shaped and include
all points within a cubical bounding box of dimension 2× radius+ 1
centered on the central point. This class reproduces the common
27-point (𝑟𝑎𝑑𝑖𝑢𝑠 = 1) and 125-point (𝑟𝑎𝑑𝑖𝑢𝑠 = 2) stencils. In both
cases, we use a minimal number (exploiting symmetry) of constant
coefficients for each stencil (a 7-point stencil has two unique coeffi-
cients, while a 27-point stencil has four unique coefficients. Table 2
summarizes the stencils evaluated in our performance portability
benchmarking effort. Experiments consist of computing stencils of
different shapes and radii on a 3D grid with 512 double-precision
elements in each dimension in an out-of-place manner.

4.4 Methodology
In this paper, we explore three combinations of data layout (array
vs. bricks) and code generation (native compiler vs. vector codegen).
Concurrently, we evaluate two metrics: performance (relative to
Roofline), and performance portability. The evaluated ations are:

• array: Conventional array data layout is used, optimized
with 3D tiling and a tile size of 4× 4× SIMD_width elements,
which are mapped to the ⟨𝑧,𝑦, 𝑥⟩ thread dimensions. It uses
a lexicographic representation of i,j,k for the input and
output arrays.

• array codegen: Using a conventional array data layout,
vector code generation available in the library computes
stencils with a tiled lexicographic representation of the input
and output arrays. When compared with array, this version
permits isolating the benefits of the vector code generator.

• bricks codegen: Brick data layout is used, where each brick
consists of 4×4×SIMD_width elements stored in contiguous
memory, with adjacency information to preserve the logical
ordering of the data. Vector code generation available in the
library is applied. When compared with array codegen, this
version isolates the benefits of the data layout in reducing
data movement.

We use architecture-specific tile and brick sizes based on SIMD_width
to show each system in its best light: 32 for NVIDIA A100; 64 for
AMD MI250X; and for Intel PVC, where there is a choice between
16 or 32, we use 16 because it achieves better performance than 32.
Note, for all kernels that use the vector code generator, the library
applies different configurations for vector_size related to a specific
GPU architecture. On NVIDIA A100, a vector_size=32, on AMD
MI250X a vector_size=64, and on Intel PVC a vector_size=16 are
recommended in order to match warp/wave instructions to their
respective architectures.

P3HPC’23, November 2023, Denver,CO, USA Antepara et al.

Performance: In this paper, we evaluate performance relative to
the Roofline Model [64]. The Roofline model makes the simplifying
assumption that computations are either memory- or compute-
bound. This allows us to evaluate how close the various imple-
mentations come to the theoretical limits (imposed by bandwidth,
FLOP/s, and theoretical stencil arithmetic intensity). We use the
mixbench benchmark [65] to derive the double-precision Roofline
plots for the NVIDIA A100 and AMD MI250X GPUs. In the case
of Intel PVC, the Roofline plot was taken from Intel Advisor hl
reports. For the Roofline model, GPU metrics – such as FLOP count,
Bytes moved and kernel time – have been collected using NVIDIA
Nsight Compute-CLI [58], AMD ROCm Profiler [60], AMD Om-
niperf [61], and Intel Advisor [63] on NVIDIA A100, AMD MI250X
and Intel PVC GPUs, respectively. This performance study uses the
same FLOP count for all kernels to avoid introducing FLOP count
variations on the Roofline model due to different kernel implemen-
tations. The FLOP count for all the kernels has been selected as the
minimum due to FLOP normalization in the Roofline model and to
avoid inconsistent FLOP count given by the profilers.

Performance Portability:Wedefine performance portability as
attaining a similar fraction of Roofline across multiple architectures
and/or moving the minimum amount of data from the GPU. The
soft definition of performance portability allows the brick library to
select the optimal programming model for the target architecture
while a strict approach is evaluated for a given programming model.

5 RESULTS AND ANALYSIS
In this section, we analyze performance and data movement for
each stencil shape and radius for NVIDIA, AMD and Intel GPUs
using CUDA, HIP and SYCL. Next, we present new correlation and
potential speed-up models that characterize stencil computations
and give better insight into performance and data movement across
programming models and GPU architectures by combining GPU
metrics from different Roofline plots into one. We also present
results for the established performance portability metric from
Pennycook et al. [50].

5.1 Performance
Figure 3 shows the arithmetic intensity (x-axis) and performance in
FLOP per second (y-axis) for the three kernel implementations, rep-
resented by colors with different stencil shapes and sizes. Cross sym-
bols represent star-shaped stencils. Meanwhile, full square symbols
represent cube-shaped stencils. Trend lines connecting the same
color and symbols represent different radii for the same shaped
stencil and are generally from lower to higher AI based on stencil
radius. Note that we have a Roofline model per architecture and
programming model. Overall results show that using bricks data
layout gives a higher arithmetic intensity over tiled array data
layout and that vector code generator implementations perform
better than not using vector code generation. Observe that for all
the plots considered here, we use the same number of FLOPs for
the same stencil; thus, higher arithmetic intensity indicates reduced
data movement resulting from improvements in data locality for
the same stencil. As mentioned in Section 4.4, a minimum FLOP
count among all kernels was used to calculate performance for the
Roofline model.

On NVIDIA GPUs, CUDA brings the best overall performance
among all programming models. Observe that vector code genera-
tion improves performance up to a factor of 1.3× for star stencils
and up to 2× for cube stencils. Note that bricks brings the best per-
formance for high order stencils, where a brick shape with the last
dimension matching the warp size can achieve higher performance,
especially for the compute-intensive 125-point stencil. Continuing
the analysis on the NVIDIA A100, CUDA and HIP show the same
performance and arithmetic intensity since the HIP interface is a
wrapper for the NVIDIA compiler. Conversely, SYCL shows a no-
ticeable difference in performance between kernels that use vector
code generation – an improvement of up to 13× for star stencils
and up to 26× for cube stencils compared with tiled array represen-
tations. Overall, bricks codegen achieves the highest performance
and arithmetic intensity across all kernels and stencil shapes and
sizes on the NVIDIA A100.

One GCD on anAMDMI250XGPU offers a similar HBMmemory
bandwidth as an NVIDIA A100 but with almost three times peak
performance on double precision. A glance at figure 3 shows that
all the kernels using HIP or SYCL on AMD GPU are in the same
performance and arithmetic intensity range as CUDA or SYCL on
NVIDIA GPU, and highlighting a performance and data movement
consistency across different architectures. On AMD GPUs, and
using HIP, bricks codegen achieves a performance improvement
of up to 1.3× for star stencils and up to 3× for cube stencils compared
to array. Moreover, bricks codegen shows better data locality, as
the arithmetic intensity is higher than array codegen, improving
performance by using a better data layout. A similar analysis can
be derived for SYCL on AMD GPUs, where arrays codegen and
bricks codegen take advantage of the vector code generator and
improves the performance by up to 3× on star stencils and up to 9×
on cube stencils. On the AMDMI250X, fine-grain data blocking plus
vector code generator (bricks codegen) gives the best performance
independent of the programming model being used.

One stack provides a similar HBM bandwidth on Intel PVC GPUs
compared to an A100 NVIDIA or one GCD on AMD MI250X. On
the other hand, the Peak FLOP rate for double precision is higher on
Intel GPU compared to NVIDIA but less high than AMD GPU peak
FLOP rate. Kernels with vector code generation perform better than
tiled arrays, as much as 3× on star stencils and up to 5× on cube
stencils. The array codegen kernel shows a similar arithmetic in-
tensity as arrays, where computing stencil outputs based on vector
operations provided by the code generator makes the performance
difference. Conversely, bricks codegen shows a better arithmetic
intensity provided by the bricks data layout that incurs less data
movement from the device memory and the vector code generator
that improves GPU performance.

Additional performance details are in Figure 4 related to L1 data
movement. We can observe that bricks codegen provides less
variability on L1 data movement across all stencil shapes, program-
ming models and architectures. The array implementation moves
10× or more L1 bytes compared to the vector code generator im-
plementations. The main reason behind those differences is that
array codegen or bricks codegen offers better register reuse by
concentrating instructions in a warp/wave level on the vector code
generation. Furthermore, bricks codegen takes advantage of the

Performance portability evaluation of blocked stencil computations on GPUs P3HPC’23, November 2023, Denver,CO, USA

1.00e-02

1.00e-01

1.00e+00

1.00e+01

 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

AI [FLOP/byte]

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

1.00e-02

1.00e-01

1.00e+00

1.00e+01

 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

AI [FLOP/byte]

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

1.00e-02

1.00e-01

1.00e+00

1.00e+01

 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

AI [FLOP/byte]

array

array codegen

bricks codegen

star stencil - 7,13,19,25 points

cube stencil - 27,125 points

1.00e-02

1.00e-01

1.00e+00

1.00e+01

 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

AI [FLOP/byte]

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

1.00e-02

1.00e-01

1.00e+00

1.00e+01

 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

AI [FLOP/byte]

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

1.00e-02

1.00e-01

1.00e+00

1.00e+01

 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

AI [FLOP/byte]

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

Figure 3: Roofline for stencil computations using CUDA (top row), HIP (middle row) and SYCL (bottom row) on NVIDIA A100
GPU (left column), single GCD on AMD MI250X GPU (middle column) and single stack on Intel PVC GPU (right column).

 1

 10

 100

 1000

7pt 13pt 19pt 25pt 27pt 125pt

L
1
 B

y
te

s
 a

c
c
e
s
s
e
d
 [
B

y
te

s
](

1
=

1
e
9
)

Stencil size

array
array codegen

bricks codegen
CUDA
SYCL

 1

 10

 100

 1000

7pt 13pt 19pt 25pt 27pt 125pt

L
1
 B

y
te

s
 a

c
c
e
s
s
e
d
 [
B

y
te

s
](

1
=

1
e
9
)

Stencil size

array
array codegen

bricks codegen
HIP

SYCL

 1

 10

 100

 1000

7pt 13pt 19pt 25pt 27pt 125pt

L
1
 B

y
te

s
 a

c
c
e
s
s
e
d
 [
B

y
te

s
](

1
=

1
e
9
)

Stencil size

array
array codegen

bricks codegen
SYCL

Figure 4: L1 data movement using CUDA or SYCL on NVIDIA A100 GPU (left), HIP or SYCL on a single GCD on AMD MI250X
GPU (middle) and SYCL on a single stack on Intel PVCGPU (right). Note that bricks-codegen is themost efficient implementation
related to L1 data movement by doing a better register reuse across programming models and GPU architectures (lower is
better).

data layout and shuffle instructions available on CUDA, HIP and
SYCL to further improve data reuse at the L1 memory hierarchy.

5.2 Performance Portability
In this section, we look closer at performance and data movement
across programming models and architectures, using correlation
plots to analyze performance portability. Moreover, we analyze

P3HPC’23, November 2023, Denver,CO, USA Antepara et al.

different performance portability metrics as fraction of the Roofline
and introduce fraction of theoretical arithmetic intensity, which
could give us information about efficient hardware utilization and
better data reuse, attaining minimum data movement.

5.2.1 Performance Portability Correlations. Figure 5 shows a scat-
ter plot containing all the stencils and kernels (represented by
symbols and colors respectively) to analyze different programming
models on the NVIDIA A100 GPU.

Figure 5 (left) plots the performance as FLOPs for CUDA on
the y-axis and FLOPs for SYCL on the x-axis on A100. A diagonal
line is included to observe the pattern and relationship between
programmingmodels. Stencil symbols appearing above the diagonal
indicate that CUDA outperforms SYCL on A100 GPUs. Results show
thatmost of the stencils perform better using CUDA instead of SYCL.
However, it is important to notice that most symbols pertaining
to bricks codegen are closer to the diagonal, meaning that using
fine grain data blocking with vector code generation reduces the
performance gap between programming models.

Figure 5 (right) plots the measured bytes accessed using CUDA,
represented on the y-axis, and SYCL, on the x-axis, on A100. Note
that symbols falling below the diagonal indicate that SYCL has more
byte accesses than CUDA. Dotted lines are included to denote an es-
timation of theoretical Bytes of data movement for this benchmark.
Theoretical Bytes accessed have been measured as we have a 5123
domain, one read and one write using double precision, giving us a
total of 2.15 GBytes. The dotted lines represent a lower bound for
Bytes accessed and estimate which programming model moves less
data. We observe array codegen is moving closer to 4 Gbytes of
data, indicating a lack of data reuse. Meanwhile, bricks kernels are
significantly closer to the lower bound. Moreover, CUDA is moving
2× less data than SYCL, indicating a better locality.

Figure 6 (left) plots the performance in FLOPs for AMD MI250X
GPU using HIP on the y-axis and SYCL on the x-axis. Similar to
the analysis for the NVIDIA A100 GPU, symbols appearing above
the diagonal indicate that HIP is performing better than SYCL on
AMD GPUs. Results show a more balanced scenario where no clear
programming model performs better than the other.Arraywithout
vector code generation performs better using HIP; array codegen
and bricks codegen perform the same independently if HIP or
SYCL is being used. Another observation, using the performance
correlation plots, is that symbols going toward the upper right
corner have the highest performance and are the fastest kernels.
Overall, bricks codegen is faster and reduces the performance gap
between programming models on AMD MI250X GPU.

Figure 6 (right) shows the Bytes accessed for the AMD GPU
using HIP on the y-axis and SYCL on the x-axis. As a reminder,
symbols falling below the diagonal indicate that SYCL has more
byte accesses, and symbols above the diagonal involve more byte
accesses with HIP. Kernels using HIP show Bytes accessed very
close to the lower bound of 2.15 Gbytes, except for array codegen,
which moves more than 10 Gbytes. SYCL on AMD attains better
locality as fine-grain data blocking is used and reaches closer to the
minimum for bricks codegen. Moreover, a similar effect happens
here compared to the performance correlation where bricks code-
gen shows similar performance and data movement for HIP and
SYCL on AMD MI250X GPU.

Table 3: Performance Portability metric P based on fraction
of the Roofline for bricks codegen. bricks codegen achieves
a P greater than 60% when averaged across all platforms and
programming models

Stencil A100 A100 MI250X MI250X PVC P
CUDA SYCL HIP SYCL SYCL

7pt 95% 84% 66% 68% 77% 77%
13pt 92% 79% 66% 67% 67% 73%
19pt 85% 87% 65% 66% 53% 69%
25pt 69% 79% 66% 64% 47% 63%
27pt 82% 60% 66% 67% 61% 66%
125pt 47% 39% 42% 63% 23% 38%

61%

5.2.2 Performance Portability Metrics and Potential Speed-Up. In
this paper, we use the performance portability metric described in
[50]. Performance portability metric P is based on the harmonic
mean of the application’s performance efficiency across different
platforms. Here, we want to explore using P across architectures
and programming models to assess the performance portability
for bricks codegen. We define performance portability P, given a
set of platforms and programming models H for an application a
solving problem p is:

P(𝑎, 𝑝, 𝐻) =

|𝐻 |∑
𝑖∈𝐻

1
𝑒𝑖 (𝑎,𝑝)

, if i is supported ∀𝑖 ∈ 𝐻

0, otherwise

where 𝑒𝑖 (𝑎, 𝑝) is the performance efficiency. In this paper, in
order to orthogonalize code generation efficiency from innate cache
subsystem performance, we examine two efficiencies 𝑒𝑖 (𝑎, 𝑝) and
two performance portability metrics P: one based on fraction of
roofline for empirical arithmetic intensity and another based on
fraction of theoretical arithmetic intensity.

Table 3 presents performance portability using fraction of the
Roofline with empirical AI as 𝑒𝑖 (𝑎, 𝑝). Although depressed by the
low fraction of Roofline for the 125pt stencil, bricks codegen still
attains a P greater than 60%when averaged across all architectures
and programming models.

Table 3 represents an assessment of our data structure and vector
code generator’s ability to saturate memory bandwidth and not an
assessment on attaining ideal data locality. To that end, we also
compare observed AI (basically inverse of data movement) to the
theoretical bounds based on compulsory (cold) cache misses for
each stencil and GPU shown in Table 4. In essence, we assume a
bound in which each GPU has an infinite capacity, fully associative
cache. Proximity to this highly idealized bound would represent
near perfect cache performance using finite hardware. Thus, we
define a new P based on fraction of theoretical arithmetic inten-
sity and present the results for each stencil and GPU in Table 5.
We observe that bricks codegen on finite GPU caches achieves
nearly 70% portability when averaged over all architectures and
programming models, meaning that using an optimized data layout
and vector operations ensures GPUs can keep data movement to
within about 1.5× of what could be attained with infinite resources.

Figure 7 unifies these two performance portability metrics into
a single figure where fraction of theoretical AI is the x-coordinate

Performance portability evaluation of blocked stencil computations on GPUs P3HPC’23, November 2023, Denver,CO, USA

 0.01

 0.1

 1

 10

 0.01 0.1 1 10

C
U

D
A

 P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

SYCL Performance [FLOP/s](1=1e12)

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

 1

 10

 100

 1 10 100

Theoretical
Bytes
2.15 GBytes

C
U

D
A

 B
y
te

s
 a

c
c
e
s
s
e
d
 [
B

y
te

s
](

1
=

1
e
9
)

SYCL Bytes accessed [Bytes](1=1e9)

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

Figure 5: Performance (left) and Bytes accessed (right) correlation between CUDA and SYCL on NVIDIA A100 GPU. Observe,
CUDA implementations consistently outperforms SYCL and usually moves near minimal data.

 0.01

 0.1

 1

 10

 0.01 0.1 1 10

H
IP

 P
e
rf

o
rm

a
n
c
e
 [
F

L
O

P
/s

](
1
=

1
e
1
2
)

SYCL Performance [FLOP/s](1=1e12)

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

 1

 10

 100

 1 10 100

Theoretical
Bytes
2.15 GBytes

H
IP

 B
y
te

s
 a

c
c
e
s
s
e
d
 [
B

y
te

s
](

1
=

1
e
9
)

SYCL Bytes accessed [Bytes](1=1e9)

array

array codegen

bricks codegen

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

Figure 6: Performance (left) and Bytes accessed (right) correlation between HIP and SYCL on AMD MI250X GPU (single GCD).
Dotted lines represent theoretical lower bounds. Observe, with the exception of array code generation, HIP implementations
incur near minimal data movement and bricks codegen moved a minimum amount of data for both HIP and SYCL.

Table 4: Theoretical arithmetic intensity (FLOP:Byte) for all
stencils shapes and sizes.

Stencil Shape Number of points Theoretical AI
Star 7 0.5

13 0.9375
19 1.375
25 1.8125

Cube 27 1.875
125 8.375

Table 5: Performance Portability metric P based on fraction
of the theoretical arithmetic intensity for bricks codegen.
Notice that bricks codegen a P of nearly 70% when averaged
across all platforms and programming models

Stencil A100 A100 MI250X MI250X PVC P
CUDA SYCL HIP SYCL SYCL

7pt 92% 49% 62% 59% 93% 67%
13pt 92% 88% 66% 48% 92% 72%
19pt 91% 87% 60% 43% 91% 68%
25pt 88% 81% 56% 41% 91% 65%
27pt 93% 59% 67% 59% 92% 71%
125pt 92% 89% 64% 38% 92% 67%

68%

and fraction of the Roofline is the y-coordinate. One can define a set
of iso-curves of constant potential speedup (any mix of improved
code generation/bandwidth with improved data locality) in order
to quantify overall implementation performance.

Figure 7 shows with bricks codegen, NVIDIA and Intel show
a higher fraction of AI, meaning they are closer to moving the
minimum possible data from the device. On those architectures,
there is still a potential speedup of up to 2× or 4× by improving
kernel execution performance. Most of the stencils on AMD are
at 50% on both metrics; there is still an overall potential speedup
between 2× and 4× by improving data movement and/or code
generation. In the context of stencil computation using bricks, one
way to achieve this speedup is by changing the size of the brick
which would expose more vector parallelism, amortize shuffling,
and potentially improve data locality for a specific stencil on an
architecture or programming model.

6 CONCLUSIONS
New emerging heterogeneous supercomputers increase HBMmem-
ory bandwidth and peak FLOPs, presenting opportunities to con-
tinue to scale application performance. However, as architectures
advance, it is still challenging to develop portable solutions that can
attain high performance independently of the system and without
requiring total code rewriting.

P3HPC’23, November 2023, Denver,CO, USA Antepara et al.

 0

 25

 50

 75

 100

 0 25 50 75 100

16x

8x

4x

2x

1.33x

1x
16x 8x 4x 2x 1.33x 1x

%
 R

o
o

fl
in

e

P
o

te
n

ti
a

l
S

p
e

e
d

-U
p

 b
y
 i
m

p
ro

v
in

g
 P

e
rf

o
rm

a
n

c
e

% Theoretical AI

Potential Speed-Up by improving AI

NVIDIA-CUDA

NVIDIA-SYCL

AMD-HIP

AMD-SYCL

INTEL-SYCL

star stencil: 7-13-19-25 points

cube stencil: 27-125 points

Figure 7: Potential Speed-Up plot for bricks-codegen imple-
mentation on NVIDA A100, AMD MI250X and Intel PVC
using CUDA, HIP and SYCL. Bricks codegen attained over
50% of the Roofline and theoretical arithmetic intensity over-
all among all stencil configurations, programming models
and GPU architectures.

This paper explores performance portability for stencil compu-
tations, which are widely used by the computational science and
engineering community. Data reuse and vector operations (code-
gen) in the form of warp/wave level instructions are required to
obtain high performance on stencil computations. These optimiza-
tions are provided by the BrickLib domain-specific library and code
generator and reduce the reliance on such optimizations being avail-
able in performance-portable programming models. Results show
fine-grain data blocking and vector code generation ensure perfor-
mance and arithmetic intensity remain relatively similar between
NVIDIA A100, AMD MI250X and Intel PVC GPUs and also among
different programming models such as CUDA, HIP, and SYCL.

The performance gap between standard tiled arrays and fine-
grain data blocking kernels is relatively small on CUDA or HIP, up
to 2×, but it gets bigger with SYCL, between 4× to 10× for different
stencil sizes. Still, BrickLib codegen improves the performance of
SYCL substantially. Further compiler developments are required to
ensure that a programming model designed for a diverse group of
GPUs can be competitive against in-house compilers from a specific
GPU vendor, primarily when domain-specific library optimizations
are focused on vector shuffle and alignment operations.

Our work introduces correlation plots and performance metrics
for performance portability analysis. By using Roofline metrics,
we can make a direct comparison of programming models on the
same GPU architecture or analyze metrics across architectures and
programming models. Performance, measured in FLOPs, demon-
strated that bricks codegen attained the highest performance
overall on all three GPUs Additionally, bytes access demonstrated
that bricks’ data movement is comparable to the theoretical lower
bound on CUDA and SYCL on NVIDIA A100, HIP and SYCL on
AMD MI250X, and SYCL on Intel PVC. Among architectures, the
fraction of Roofline can be analyzed as a metric for performance

portability, where bricks codegen attained over 60% overall on
most of the stencil shapes and sizes. We also demonstrate the use
of fraction of theoretical arithmetic intensity as a new performance
efficiency metric to evaluate performance portability, especially as
stencil computations are mostly memory-bound operations, where
bricks codegen also attained over 65% overall on most of the
stencils. By merging performance metrics, such as fraction of the
Roofline and fraction of theoretical arithmetic intensity, we could
plot potential speed-up for an application by illustrating the same
application on different architectures and programming models.

The results presented in this paper are encouraging, as fine-grain
data blocking and vector code generators can improve the perfor-
mance and data movement of stencil computations independently
of the GPU architecture or the programming model. Moreover, cor-
relation plots and performance portability metrics are fundamental
tools to analyze and compare performance or data movement be-
tween GPUs or among programming models.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.
This research used resources of the National Energy Research Scien-
tific Computing Center, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231, resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725, and we gratefully acknowledge
the computing resources provided and operated by the Joint Labora-
tory for System Evaluation (JLSE) at Argonne National Laboratory.

A ARTIFACT DESCRIPTION
A.1 Abstract
The paper focuses on the performance portability evaluation of
blocked stencils on GPUs, as well as, different programming models
such as CUDA, HIP and SYCL. Here, we describe the hardware
and software used for stencil computations and the methodology
to extract the data needed for the Roofline and correlation plots
included in the paper.

Machines: Results presented in this paper were obtained on a
NVIDIA A100 GPU on Perlmutter at NERSC, AMD MI250X GPU
on Crusher at OLCF and Intel PVC GPU on Florentia at JLSE. In all
experiments, we use only a single process running on one GPU.

Application: We evaluated blocked stencil computations us-
ing BrickLib. The source code is available at https://github.com/
OscarAntepara/bricklib/tree/artifact_sc23/ and can be cloned using:
git clone -b artifact_sc23
https://github.com/OscarAntepara/bricklib.git

B REPRODUCIBILITY OF EXPERIMENTS
We evaluated blocked stencil computations using BrickLib. The
experiments source code is in the examples/perf_port directory.
The README file in examples/perf_port contains all the instruc-
tions needed to compile and run the experiments on Perlmutter-
NERSC, Crusher-OLCF and Florentia-JLSE. All the experiments are

https://github.com/OscarAntepara/bricklib/tree/artifact_sc23/
https://github.com/OscarAntepara/bricklib/tree/artifact_sc23/

Performance portability evaluation of blocked stencil computations on GPUs P3HPC’23, November 2023, Denver,CO, USA

for star (radius 1, 2, 3, 4) and cube (radius 1, 2) stencils on a 5123
domain. At configuration/compilation time, user must select radius
and architecture via -DSTENCIL_RADIUS and -DCODEGEN_ARCH. Ra-
dius one and NVIDIA architecture are the default values, radius
values are between 1 and 4, and architectures could be NVIDIA,
AMD or INTEL. At run time, user can select to execute the exper-
iment with star or cube stencil by adding "<exe> -s star" or
"<exe> -s cube" as parameter. Each experiment has an execution
time of a couple of seconds and the output will show the execution
time in seconds for each stencil technology presented in the paper.

C GPU PROFILING AND DATA COLLECTION
In this section we describe the command lines given to the profiler
to gather GPU metrics for the data on the Roofline and correlation
figures described in the paper.

C.1 Perlmutter-NERSC
On Perlmutter-NERSC, NVIDIA Nsight Compute command line to
gather GPU metrics for double precision is depicted below:
nv-nsight-cu-cli -k <kernel_name> --metrics
"sm__sass_thread_inst_executed_op_dfma_pred_on.sum,
sm__sass_thread_inst_executed_op_dadd_pred_on.sum,
sm__sass_thread_inst_executed_op_dmul_pred_on.sum,
sm__cycles_elapsed.avg,sm__cycles_elapsed.avg.per_second,
dram__bytes.sum" <exe> <params>

To compute FLOP count , the formula is:
FLOP=(sm__sass_thread_inst_executed_op_dadd_pred_on.sum +
sm__sass_thread_inst_executed_op_dmul_pred_on.sum + 2*
sm__sass_thread_inst_executed_op_dfma_pred_on.sum)

Time is calculated in nanoseconds as,
Time = (sm__cycles_elapsed.avg / sm__cycles_elapsed.avg.per_second)

Then, performance in 𝐹𝐿𝑂𝑃𝑠 is computed as 𝐹𝐿𝑂𝑃/𝑇𝑖𝑚𝑒/1𝑒9 and
arithmetic intensity𝐴𝐼 = 𝐹𝐿𝑂𝑃/𝑑𝑟𝑎𝑚__𝑏𝑦𝑡𝑒𝑠.𝑠𝑢𝑚. Another NVIDIA
profiler to get the Roofline plots, and L1 data movement is NVIDIA
Nsight Compute by using the next command line:
srun -n 1 ncu -o output_file --set full <exe> <params>

where results in the𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 can be visualized using theNVIDIA
Nsight Compute API on your local machine. Examples of the com-
mand lines to collect GPUmetrics for the experiments on Perlmutter-
NERSC are in the README file in examples/perf_port.

C.2 Crusher-OLCF
Amd-ROCProf is the profiler available on Crusher-OLCF to collect
GPU metrics. The command line used is:
rocprof -i input.txt --timestamp on -o out.csv <exe> <params>

AMD ROCm Profiler needs an input file with the kernel name and
the metrics to be collected.

Inputs file for the experiments are in examples/perf_port direc-
tory, specifically, the files prof_star.txt and prof_cube.txt to
gather GPU metrics for star and cube stencils, respectively. To com-
pute Roofline metrics needed as FLOP count, time, FLOPs and Bytes
moved, follow the instructions described here: https://docs.olcf.ornl.
gov/systems/crusher_quick_start_guide.html#roofline-profiling-with-
the-rocm-profiler. Another alternative to gather GPU metrics as
FLOP count, arithmetic intensity or L1 data movement is by using
omniperf. To gather GPU metrics and profile your application, the
terminal command is:

omniperf profile -n output_name -- <exec> <params>

To visualize the results, as Roofline plots or memory hierarchy
metrics per each kernel, the gui API was used as:
omniperf analyze -p workloads/output_name/mi200/ --gui

C.3 Florentia-JLSE
Intel provides several tools for GPU profiling. In this work, we have
used Intel Advisor as the GPU metrics collector for Roofline data
and L1 data movement. To profile our application with Intel Advisor
we used the following command line:
ZE_AFFINITY_MASK=0.0 advisor --collect=roofline
--profile-gpu -- <exec> <params>

where 𝑍𝐸_𝐴𝐹𝐹𝐼𝑁 𝐼𝑇𝑌_𝑀𝐴𝑆𝐾 = 0.0, is at the beginning of the line
to run our executable with one stack. Intel Advisor will collect
the information in a directory that will be needed to create a html
report with the next line:
advisor --report=all --project-dir=.
--report-output=roofline.html

The ℎ𝑡𝑚𝑙 file can be opened with a web browser and it contains
Roofline plots for your kernels, as well as, general information of
data movement across the memory hierarchy, FLOP count, instruc-
tions executed, etc.

REFERENCES
[1] “Top 500 website.” https://www.top500.org/.
[2] “Aurora.” https://www.alcf.anl.gov/aurora.
[3] S. Sellappa and S. Chatterjee, “Cache-efficient multigrid algorithms,” International

Journal of High Performance Computing Applications, vol. 18, no. 1, pp. 115–133,
2004.

[4] G. Rivera and C. Tseng, “Tiling optimizations for 3D scientific computations,” in
Supercomputing (SC), 2000.

[5] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” in Supercomputing (SC), 2008.

[6] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, “Lattice Boltzmann simula-
tion optimization on leading multicore platforms,” in Interational Conference on
Parallel and Distributed Computing Systems (IPDPS), 2008.

[7] S. Williams, L. Oliker, J. Carter, and J. Shalf, “Extracting ultra-scale lattice Boltz-
mann performance via hierarchical and distributed auto-tuning,” in Supercom-
puting (SC), 2011.

[8] M. Kowarschik and C. Weiß, “Dimepack - a cache-optimized multigrid library,”
in International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), volume I, 2001.

[9] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss, “Cache optimization
for structured and unstructured grid multigrid,” Elect. Trans. Numer. Anal, vol. 10,
pp. 21–40, 2000.

[10] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick, “The potential
of the Cell processor for scientific computing,” in Proc. Conference on Computing
Frontiers, 2006.

[11] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D blocking opti-
mization for stencil computations on modern CPUs and GPUs,” in Proc. ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2010.

[12] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick, “Optimization
and performance modeling of stencil computations on modern microprocessors,”
SIAM Review, vol. 51, no. 1, pp. 129–159, 2009.

[13] M. Frigo and V. Strumpen, “Evaluation of cache-based superscalar and cacheless
vector architectures for scientific computations,” in Proc. ACM International
Conference on Supercomputing (ICS), 2005.

[14] Y. Song and Z. Li, “New tiling techniques to improve cache temporal locality,” in
Proc. ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), 1999.

[15] D. Wonnacott, “Using time skewing to eliminate idle time due to memory band-
width and network limitations,” in Proc. Interational Conference on Parallel and
Distributed Computing Systems, 2000.

[16] J. McCalpin and D. Wonnacott, “Time skewing: A value-based approach to opti-
mizing for memory locality,” Tech. Rep. DCS-TR-379, Department of Computer
Science, Rutgers University, 1999.

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#roofline-profiling-with-the-rocm-profiler
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#roofline-profiling-with-the-rocm-profiler
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#roofline-profiling-with-the-rocm-profiler
https://www.top500.org/
https://www.alcf.anl.gov/aurora

P3HPC’23, November 2023, Denver,CO, USA Antepara et al.

[17] P. Micikevicius, “3d finite difference computation on gpus using cuda,” in Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU-2, 2009.

[18] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “Efficient temporal
blocking for stencil computations by multicore-aware wavefront parallelization,”
in International Computer Software and Applications Conference, 2009.

[19] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rude, and G. Hager, “Introducing
a parallel cache oblivious blocking approach for the lattice Boltzmann method,”
Progress in Computational Fluid Dynamics, vol. 8, 2008.

[20] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and D. Padua, “Hierar-
chical overlapped tiling,” in Proc. International Symposium on Code Generation
and Optimization (CGO), 2012.

[21] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and
P. Sadayappan, “Effective automatic parallelization of stencil computations,” in
Proc. ACM SIGPLAN conference on Programming language design and implemen-
tation (PLDI), 2007.

[22] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanujam, and
P. Sadayappan, “A framework for enhancing data reuse via associative reordering,”
in ACM SIGPLAN Notices, vol. 49, pp. 65–76, ACM, 2014.

[23] D. Unat, T. Nguyen, W. Zhang, M. N. Farooqi, B. Bastem, G. Michelogiannakis,
A. Almgren, and J. Shalf, TiDA: High-Level Programming Abstractions for Data
Locality Management, pp. 116–135. Cham: Springer International Publishing,
2016.

[24] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamber-
lain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot,
A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. New-
burn, and M. Pericás, “Trends in data locality abstractions for hpc systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 3007–3020,
2017.

[25] M. Araya-Polo, F. Rubio, R. de la Cruz, M. Hanzich, J. M. Cela, and D. P. Scarpazza,
“3d seismic imaging through reverse-time migration on homogeneous and het-
erogeneous multi-core processors,” Sci. Program., vol. 17, pp. 185–198, Jan. 2009.

[26] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and P. Sadayap-
pan, “Data layout transformation for stencil computations on short-vector simd
architectures,” in Compiler Construction, pp. 225–245, Springer, 2011.

[27] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance code gener-
ation for stencil computations on gpu architectures,” in International Conference
on Supercomputing (ICS), 2012.

[28] T. Zhao, S. Williams, M. Hall, and H. Johansen, “Delivering performance-portable
stencil computations on cpus and gpus using bricks,” in 2018 IEEE/ACM Inter-
national Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 59–70, 2018.

[29] T. Zhao, P. Basu, S. Williams, M. Hall, and H. Johansen, “Exploiting reuse and
vectorization in blocked stencil computations on cpus and gpus,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’19, (New York, NY, USA), Association for Computing
Machinery, 2019.

[30] P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker, and P. Colella, “Compiler-
directed transformation for higher-order stencils,” in Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International, pp. 313–323, IEEE, 2015.

[31] K. Datta, Auto-tuning Stencil Codes for Cache-Based Multicore Platforms. PhD
thesis, EECS Department, University of California, Berkeley, 2009.

[32] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Eliminating redundancies in sum-
of-product array computations,” in Proceedings of the 15th international conference
on Supercomputing, pp. 65–77, ACM, 2001.

[33] R. De La Cruz, M. Araya-Polo, and J. M. Cela, “Introducing the semi-stencil algo-
rithm,” in International Conference on Parallel Processing and Applied Mathematics:
Part I (PPAM), 2010.

[34] P. S. Rawat, A. Sukumaran-Rajam, A. Rountev, F. Rastello, L.-N. Pouchet, and
P. Sadayappan, “Associative instruction reordering to alleviate register pressure,”
in Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC ’18, (Piscataway, NJ, USA), pp. 46:1–46:13,
IEEE Press, 2018.

[35] “Bricklib documentation.” https://bricks.run/.
[36] C. Yount, J. Tobin, A. Breuer, and A. Duran, “Yask-yet another stencil kernel: A

framework for hpc stencil code-generation and tuning,” in Proceedings of the Sixth
International Workshop on Domain-Specific Languages and High-Level Frameworks
for HPC, WOLFHPC ’16, 2016.

[37] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures,” in Parallel Distributed Processing Symposium (IPDPS), 2011.

[38] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson, “The
pochoir stencil compiler,” in ACM symposium on Parallelism in algorithms and
architectures, 2011.

[39] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3d stencil codes on
gpu clusters,” in International Symposium on Code Generation and Optimization
(CGO), 2012.

[40] N. Zhang, M. Driscoll, C. Markley, S. Williams, P. Basu, and A. Fox, “Snowflake: A
lightweight portable stencil dsl,” in 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 795–804, May 2017.

[41] S. Lee, J. Gounley, A. Randles, and J. S. Vetter, “Performance portability study
for massively parallel computational fluid dynamics application on scalable
heterogeneous architectures,” Journal of Parallel and Distributed Computing,
vol. 129, pp. 1–13, 2019.

[42] N. A. Mehta, R. Gayatri, Y. Ghadar, C. Knight, and J. Deslippe, “Evaluating perfor-
mance portability of openmp for snap on nvidia, intel, and amd gpus using the
roofline methodology,” in Accelerator Programming Using Directives (S. Bhalachan-
dra, S. Wienke, S. Chandrasekaran, and G. Juckeland, eds.), (Cham), pp. 3–24,
Springer International Publishing, 2021.

[43] A. S. Dufek, R. Gayatri, N. Mehta, D. Doerfler, B. Cook, Y. Ghadar, and C. DeTar,
“Case study of using kokkos and sycl as performance-portable frameworks for
milc-dslash benchmark on nvidia, amd and intel gpus,” in 2021 International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), pp. 57–67,
2021.

[44] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa, and
J. Salmon, “Performance portability across diverse computer architectures,” in
2019 IEEE/ACM International Workshop on Performance, Portability and Productiv-
ity in HPC (P3HPC), pp. 1–13, 2019.

[45] J. Kwack, J. Tramm, C. Bertoni, Y. Ghadar, B. Homerding, E. Rangel, C. Knight, and
S. Parker, “Evaluation of performance portability of applications and mini-apps
across amd, intel and nvidia gpus,” in 2021 International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), pp. 45–56, 2021.

[46] K. Z. Ibrahim, C. Yang, and P. Maris, “Performance portability of sparse block
diagonal matrix multiple vector multiplications on gpus,” in 2022 IEEE/ACM Inter-
national Workshop on Performance, Portability and Productivity in HPC (P3HPC),
pp. 58–67, 2022.

[47] M. E. Ozturk, O. Asudeh, G. Sabin, P. Sadayappan, and A. Sukumaran-Rajam, “A
performance portability study using tensor contraction benchmarks,” in AsHES
2023: The Thirteenth International Workshop on Accelerators and Hybrid Exascale
Systems (to appear), 37th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2023.

[48] J. Jayaraj, A strategy for high performance in computational fluid dynamics. PhD
thesis, University of Minnesota, 2013.

[49] C. Yount, “Vector folding: Improving stencil performance via multi-dimensional
simd-vector representation,” in 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International Sympo-
sium on Cyberspace Safety and Security, and 2015 IEEE 12th International Confer-
ence on Embedded Software and Systems, pp. 865–870, Aug 2015.

[50] S. Pennycook, J. Sewall, and V. Lee, “Implications of a metric for performance
portability,” Future Generation Computer Systems, vol. 92, pp. 947–958, 2019.

[51] “NERSC: Perlmutter GPU nodes.” "https://docs.nersc.gov/systems/perlmutter/.
[52] “NVIDIA A100 GPU architecture.” https://images.nvidia.com/aem-dam/en-zz/

Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf.
[53] “OLCF: Crusher GPU nodes.” "https://docs.olcf.ornl.gov/systems/crusher_quick_

start_guide.html.
[54] “AMD CDNA 2 architecture.” https://www.amd.com/system/files/documents/

amd-cdna2-white-paper.pdf.
[55] “JLSE: Florentia GPU nodes.” "https://www.jlse.anl.gov/hardware-under-

development.
[56] “INTEL IRIS XE GPU architecture.” "https://www.intel.com/content/

www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-
architecture.html.

[57] “NVIDIA Nsight documentation.” https://docs.nvidia.com/nsight-systems/
UserGuide/index.html.

[58] “NVIDIA Nsight Compute CLI documentation.” https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html.

[59] “DPC++ on Crusher-OLCF.” https://github.com/intel/llvm/releases/tag/2022-09.
[60] “AMD rocProf documentation.” https://rocmdocs.amd.com/en/revamp/ROCm_

Tools/ROCm-Tools.html.
[61] X. Lu, C. Ramos, F. Zheng, K. W. Schulz, J. Santos, K. Lowery, and C. D. Pietran-

tonio, “Amdresearch/omniperf: v1.0.8 (30 may 2023),” May 2023.
[62] “Intel oneAPI on Florentia-JLSE.” https://software.intel.com/ONEAPI.
[63] “Intel Advisor tool on Florentia-JLSE.” https://www.intel.com/content/www/us/

en/developer/tools/oneapi/advisor.html.
[64] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual

performance model for multicore architectures,” Commun. ACM, vol. 52, p. 65–76,
apr 2009.

[65] E. Konstantinidis and Y. Cotronis, “A quantitative roofline model for gpu kernel
performance estimation using micro-benchmarks and hardware metric profiling,”
Journal of Parallel and Distributed Computing, vol. 107, pp. 37–56, 2017.

Received XX August 20XX; revised XX September 20XX; accepted XX
September 20XX

https://bricks.run/
"https://docs.nersc.gov/systems/perlmutter/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data- center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data- center/nvidia-ampere-architecture-whitepaper.pdf
"https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
"https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
"https://www.jlse.anl.gov/hardware-under-development
"https://www.jlse.anl.gov/hardware-under-development
"https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
"https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
"https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2023-0/intel-iris-xe-gpu-architecture.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://github.com/intel/llvm/releases/tag/2022-09
https://rocmdocs.amd.com/en/revamp/ROCm_Tools/ROCm-Tools.html
https://rocmdocs.amd.com/en/revamp/ROCm_Tools/ROCm-Tools.html
https://software.intel.com/ONEAPI
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

	Abstract
	1 Introduction
	2 Related Work
	3 BrickLib
	4 Experimental Setup
	4.1 GPU Architectures
	4.2 Compilers and Profiling Tools
	4.3 Stencils
	4.4 Methodology

	5 Results and Analysis
	5.1 Performance
	5.2 Performance Portability

	6 Conclusions
	Acknowledgments
	A Artifact Description
	A.1 Abstract

	B Reproducibility of Experiments
	C GPU Profiling and data collection
	C.1 Perlmutter-NERSC
	C.2 Crusher-OLCF
	C.3 Florentia-JLSE

	References

