
Analysis of the Effect of Core Affinity on
High-Throughput Flows

Nathan Hanford, Vishal Ahuja,
Matthew Farrens, and Dipak Ghosal

Department of Computer Science
University of California

Davis, CA
{nhanford, vahuja, mkfarrens, dghosal}@ucdavis.edu

Mehmet Balman, Eric Pouyoul, and Brian Tierney
Energy Sciences Network

Lawrence Berkeley National Laboratory
Berkeley, CA

mbalman@lbl.gov, lomax@es.net, bltierney@es.net

Abstract—Network throughput is scaling-up to higher data
rates while end-system processors are scaling-out to multiple
cores. In order to optimize high speed data transfer into multicore
end-systems, techniques such as network adapter offloads and
performance tuning have received a great deal of attention.
Furthermore, several methods of multithreading the network
receive process have been proposed. However, thus far attention
has been focused on how to set the tuning parameters and
which offloads to select for higher performance, and little has
been done to understand why the settings do (or do not) work.
In this paper we build on previous research to track down
the source(s) of the end-system bottleneck for high-speed TCP
flows. For the purposes of this paper, we consider protocol
processing efficiency to be the amount of system resources used
(such as CPU and cache) per unit of achieved throughout (in
Gbps). The amount of various system resources consumed are
measured using low-level system event counters. Affinitization,
or core binding, is the decision about which processor cores
on an end system are responsible for interrupt, network, and
application processing. We conclude that affinitization has a
significant impact on protocol processing efficiency, and that the
performance bottleneck of the network receive process changes
drastically with three distinct affinitization scenarios.

I. INTRODUCTION

Due to a number of physical constraints, processor cores
have hit a clock speed “wall”. CPU clock frequencies are
not expected to increase. On the other hand, the data rates
in optical fiber networks have continued to increase, with
the physical realities of scattering, absorption and dispersion
being ameliorated by better optics and precision equipment
[1]. Despite these advances at the physical layer, we are
still limited with the capability of the system software for
protocol processing. As a result, efficient protocol processing
and adequate system level tuning are necessary to bring higher
network throughput to the application layer.

TCP is a reliable, connection-oriented protocol which guar-
antees in-order delivery of data from a sender to a receiver,
and in doing so, pushes the bulk of the protocol processing
to the end-system. There is a certain amount of sophistication
required to implement the functionalities of the TCP protocol,
which are all instrumented in the end-system since it is an
end-to-end protocol. As a result, most of the efficiencies
that improve upon current TCP implementations fall into two
categories: first, there are offloads which attempt to push TCP
functions at (or along with) the lower layers of the protocol

stack (usually hardware, firmware, or drivers) in order to
achieve greater efficiency at the transport layer. Second, there
are tuning parameters, which place more sophistication at the
upper layers (software, systems, and systems management).

Within the category of tuning parameters, this work focuses
on affinity. Affinity (or core binding) is fundamentally the
decision regarding which resources to use on which processor
in a networked multiprocessor system. Message Passing in the
Linux network receive process in modern systems principally
allows for two possibilities: First, there is interrupt processing
(usually with coalescing), in which the NIC interrupts the
processor once it has received a certain number of packets.
Then, the NIC transmits the packets to the processor via
DMA, and the NIC driver and the OS kernel continue the
protocol processing until the data is ready for the application
[2]. Second, there is NIC polling (known in Linux as the
New API (NAPI)), where the kernel polls the NIC to see if
there is any network data to receive. If such data exists, then
the kernel processes the data in accordance with the transport
layer protocol in order to deliver the data to the Application
in accordance with the socket API. In either case, there
are two types of affinity: 1) Flow affinity, which determines
which core will be interrupted to process the network flow,
and 2) Application affinity, which determines the core that
will execute the application process that receives the network
data. Flow affinity is set by modifying the hexadecimal core
descriptor in /proc/irq/<irq#>/smp affinity, while Application
affinity can be set using taskset or similar tools. Thus, in a 12-
core end-system, there are 144 possible combinations of Flow
and Application affinity.

In this paper, we extend our previous work [3], [4] with
detailed experimentation to stress-test each of affinitization
combinations with a single, high-speed TCP flow. We use end-
system performance introspection to understand the effect that
the choice of affinity has on the receive-system efficiency. We
conclude that there are three different affinitization scenarios,
and that the performance bottleneck varies drastically within
these scenarios.

II. RELATED WORK

There has been several studies evaluating performance of
network I/O in multicore systems [5]–[8]. A major improve-
ment that is enabled by default in most of the current kernels is



NAPI [9]. NAPI is designed to solve the receive livelock prob-
lem [8] where most of the CPU cycles are spent for interrupt
processing. When a machine enters to a livelock state since
most of the cycles are spent in hard and soft interrupt contexts,
it starts dropping packets. A NAPI enabled kernel switches
to polling mode at high rates to save CPU cycles instead
of operating in a purely interrupt-driven mode. Other related
work characterizing the packet loss and performance over
10 Gbps WAN include [10], [11]. [12] focuses more on the
architectural sources of latency rather than throughput of intra-
datacenter links. Another method of improving the adverse
effects of the end-system bottleneck involves re-thinking the
hardware architecture of the end-system altogether. Transport-
Friendly NICs, and even new server architectures have been
proposed along these lines [13], [14]. Unfortunately, too few
of these dramatic changes have found their way into the type
of commodity end-systems that have been deployed for the
purposes of these tests.

A. Linux Network Performance Tuning Knobs

Contemporary NICs support multiple receive and transmit
descriptor queues. NICs apply a filter and send packets to
different queues to distribute the load among multiple cores.
In Receive-Side Scaling (RSS) [15], packets for each flow are
sent to different receive queues and processed by different CPU
cores. RSS is supported by the NIC. Receive Packet Steering
(RPS) [16] is simply a software version of RSS done in host
kernel. It selects the CPU core that will perform protocol
processing for incoming set of packets. Receive Flow Steering
(RFS) [17] is similar to RPS but it uses the TCP 4-tuple to
make sure all packets of a flow go to the same queue and core.
All these scaling techniques are designed to allow performance
increase uniformly in multicore systems.

Common wisdom is to select cores that share the same
lowest cache structure 1 when doing network processing [6],
[18]. For example, when a given core (e.g. core A) is selected
to do the protocol/interrupt processing, the core that shares
the L2 cache with core A should execute the corresponding
user-level application. Doing so will lead to fewer context
switches, improved cache performance, and ultimately higher
overall throughput.

Irqbalance daemon does a round-robin scheduling to dis-
tribute interrupt processing load among cores. However, it
has adverse effects as shown by [19], [20]. We require a
more informed approach and we need control over selecting
cores for interrupt processing. In our experiments we disable
irqbalance daemon.

Pause frames [21] allow Ethernet to prevent TCP with flow
control, thus avoiding a multiplicative decrease in window
size when only temporary buffering at the router or switch is
necessary. In order to do this, Ethernet devices which support
pause frames use a closed-loop process in each link in which
the sending device is made aware of the need to buffer the
transmission of frames until the receiver is able to process
them.

Jumbo Frames are simply Ethernet frames that are larger
than the IEEE standard 1500-byte MTU. In most cases, starting

1In this document we consider the L1 cache to be at a lower level (closer
to the core) than the L2 cache, L2 lower than L3, etc.

with Gigabit Ethernet, frame sizes can be up to 9000 bytes.
This allows for better protocol efficiency by increasing the
ratio of payload to header size for a frame. Although Ethernet
speeds have now increased to 40 and 100 Gbps, this standard
9000-byte frame size has remained the same [22]. The reason
for this is the various segmentation offloads. Large/Generic
Segment Offload (LSO/GSO) and Large/Generic Receive Of-
fload (LRO/GRO) work in conjunction with Ethernet imple-
mentations in contemporary routers and switches to send and
receive very large frames in a single TCP flow, for which the
only limiting factor is the negotiation of transfer rates and error
rates.

B. Data Movement Techniques

Although this research is not directly concerned with the
practice of moving large amounts of data across long distances,
there have been several implementations of effective end-
system applications which have helped leverage TCP effi-
ciently [23]–[26]. The general idea behind these sophisticated
applications is to use TCP striping, splitting transfers at the
application layer into multiple TCP flows, and assigning the
processing and reassembly of those flows to multiple proces-
sors [27]–[29]. Most of these applications are also capable of
leveraging alternative transport-layer protocols based on UDP,
such as RBUDP [30] and UDT [31].

There have long been protocols designed for moving large
amounts of data quickly and reliably within closed networks,
either within datacenters, or between datacenters. Lately, such
protocols have focused on moving data directly from the mem-
ory of one system into the memory of another. Two examples
include RDMA [32] and InfiniBand [33]. The commonality
of these protocols is their reliance on relatively sophisticated,
robust, and reliable intermediary network equipment between
the end-systems.

Previously, we conducted research into the effect of affinity
on the end-system bottleneck [3], and concluded that affiniti-
zation has a significant impact on the end-to-end performance
of high-speed flows. That research left off with the question
of precisely where the end-system bottleneck lies in these
different affinitization scenarios. Our current research goal is
to identify the location of the end-system bottleneck in these
different affinitization scenarios, and evaluate whether or not
these issues have been resolved in newer implementations of
the Linux kernel (previous work was carried out on a Linux
2.6 kernel).

III. EXPERIMENTAL SETUP

There are many valid arguments made in favor of the use
of various NIC offloads. NIC manufacturers typically offer
many suggestions on how to tune the system in order to get
the most out of their high-performance hardware. A valuable
resource for Linux tuning parameters, obtained from careful
experimentation on ESnet’s 100 Gbps testbed, is available from
[34]. ESnet has given a number of presentations detailing the
experiments that have led to their tuning suggestions - however,
light is rarely shed on the empirical rationale for these tuning
suggestions and offloads.

In this paper, our methods focus on improving the mul-
tithreading of protocol processing, or pushing the protocol



processing to different parts of the protocol stack. We endeavor
to demonstrate the importance of spatial locality of reference
in the processing of data flows across multiple flows in an
end system. As such, these experiments employ iperf3 [35] to
generate a stress test which consists of pushing the network
I/O limit of the end-system using a single, very high-speed
TCP flow. This is not a practical scenario; an application such
as GridFTP [23] delivers faster, more predictable performance
by using multiple flows, and such a tool should be carefully
leveraged in practice when moving large amounts of data
across long distances. However, it is important to understand
the limitations of data transmission in the end-system, which
can best be accomplished using a single flow.

To that end, we have employed two servers that are
connected with <1ms RTT, as opposed to our previous ex-
periments [3] which used the ESnet Testbed’s 95ms RTT fiber
loop. While loop testing is important to see TCP’s bandwidth
behavior over long distances, our goal here was to place stress
on, and analyze, the performance efficiency of receiver end-
system.

Both of the systems in these experiments were running
Fedora Core 20 with the 3.13 kernel, as opposed to our
previous experiments, which used CentOS6 running a 2.6
kernel. The use of one of the latest Linux kernels assures
that the latest advancements in kernel networking design are
employed in this system.

The benchmark application used to generate the TCP flows
was iperf3. Again, to ensure that the stress was placed on
the end-system, the transfers were performed in zero-copy
mode, which utilizes of the TCP sendfile system call to avoid
unnecessary copies into and out of memory on the sending
system.

The systems under test were modeled after prototypes for
ESnet Data Transfer Nodes (DTNs). The goal of these systems
is to serve as an intermediary to transfer large amounts of data
from high-performance computers (HPCs) to the consuming
end-systems [36]. In practice, they must be able to take in large
amounts of data as quickly as possible through InfiniBand host-
bus adapters, transfer the data to local disks or large amounts
of local memory, and then serve the data over high-speed
(100 Gbps) WAN to similar receiving systems. They make
use of PCI-Express Generation 3 connected to Intel Sandy
Bridge processors. There are two hexa-core processors per
end-system2. Due to the design of Sandy Bridge processors,
each socket is directly connected to its own PCI-Express bus,
meaning that certain PCI-Express slots are directly physically
linked to a single socket. This limitation is overcome with the
addition of low-level inter-socket communication provided by
the Quick Path Interconnect (QPI). This architecture is seen in
Figure 1.

The testbed used was the ESnet 100 Gbps testbed [37],
which is host to a variety of commodity hardware based end-
systems connected to a dedicated transcontinental 100 Gbps
network. The testbed is open to any researcher, and provides
the added benefit of yielding repeatable results, since the
entire testbed is reservable. This guarantees that there is no

2Herein, these six-core packages will be referred to as “sockets” and the
individual multi-instruction multi-data (MIMD) cores will be referred to as
“cores.”

Fig. 1: Block diagram of the end-system I/O architecture

competing traffic. For the purposes of these experiments, it
allowed us to ensure that the bottleneck was in the end-
systems, and not the network.

The Linux performance profiler used was Oprofile. Oprofile
is a system profiler for Linux which enables lightweight, but
highly introspective monitoring of system hardware counters
[38]. Oprofile’s new ocount and operf tools were used to
monitor counters of various events on the receiving system.
Oprofile’s low overhead and ability to do detailed Linux
kernel introspection proved critical in these experiments, due
to the need to monitor a possibly oversubscribed receiver. The
overhead of operf was able to be effectively measured through
the introspection, and it was found that this overhead was
always at least one order of magnitude less than the counter
results from the monitored processes. Oprofile was chosen
over Intel’s Performance Counter Monitor (PCM) for these
experiments due to the number of counters available and the
introspection capability. However, PCM is capable of reporting
power consumption, which could be useful in future tests.

The following are the independent variables used in the
experiments:

• Flow affinity: Cores 0 through 11
• Application affinity: Cores 0 through 11
• Total Number of Tests: 12x12=144

The following are the dependent variables used in the
experiments

• Throughput
• Instructions Retired (both System-Wide and with Intro-

spection into the kernel and user processes)
• Last-Level Cache References (System-Wide and Intro-

spection)
• L2 Cache Accesses
• Memory Transactions Retired
• Offcore Requests



A. List of Environmental Parameters

A summary of the experimental environment is listed in
Table I. The sending and receiving end systems were identical.

Parameter Value
RTT <1ms
Router ALU S7750 100 Gbps
Motherboard PCI Gen3
Processors 2 hexa-core Intel Sandy Bridge
Processor Model Intel Xeon E5-2667
On-Chip QPI 8 GT/s
NIC Mellanox ConnectX-3 EN
NIC Speed 40 Gbps
Operating System Fedora Core 20 Kernel 3.13
irqbalance Disabled
TCP Implementation HTCP
Hardware Counter Monitor Oprofile 0.9.9
Test Application iperf3 3.0.2

TABLE I: List of environmental parameters.

IV. EXPERIMENTAL APPROACH

Before each experimental run of 144 tests, a script would
recheck a variety of system network settings and tuning param-
eters, to ensure that subsequent runs of the experiment were
consistent. The system was configured using ESnet’s tuning
recommendations for the highest possible TCP performance.
Preliminary tests were conducted to ensure that no anomalies
were causing variable bandwidth results. The sending system
was set to an optimal affinity configuration and its affinity
settings were not changed. An iperf3 server was started on
the sender and left running. Then, on the receiver, a nested
for-loop shell script modified the settings in /proc/irq/<irq# of
all rx queues>/smp affinity such that all the receive queues
were sent to the same core. The inner for loop would run operf
while conducting an iperf3 reverse TCP zero-copy test, binding
the receiver to a given core, and then report the results. In
this manner, all combinations of Flow and Application affinity
were tested. The experiment was run several times to ensure
consistency.

V. RESULTS

Both our current and previous work [3] concluded that
there exists three different performance categories, correspond-
ing to the following affinitization scenarios: 1) Same Socket
Same Core (i.e., both Flow and Application affinitized to the
same core), which reaches a throughput of around 20 Gbps;
2) Different Sockets (thus Different Cores) which reaches a
throughput of around 28 Gbps; and 3) Same Socket Different
Cores, which reaches a throughput of around 39 Gbps. While
changing the OS (from CentOS running a 2.6 kernel to Fedora
running a 3.13 kernel) and updating the NIC driver improved
the overall performance, the relative performance for the three
affinitization settings remained the same.

Our previous work showed that there was a correlation be-
tween low throughput and cache misses on the oversubscribed
receiver at the system level. This work picks up at that point,

using ocount to monitor the hardware counters at the system
level and operf for kernel introspection, to closely examine the
source of the bottleneck in the receiver.

21 

39 

39 

39 

39 

40 

28 

28 

27 

28 

27 

28 

40 

20 

39 

40 

40 

39 

28 

28 

27 

27 

27 

28 

39 

39 

21 

39 

39 

39 

28 

28 

27 

27 

27 

27 

40 

39 

39 

21 

39 

39 

27 

27 

27 

27 

27 

27 

40 

39 

39 

40 

21 

39 

27 

27 

26 

27 

27 

28 

39 

39 

39 

40 

39 

21 

27 

27 

27 

27 

27 

28 

28 

28 

28 

28 

28 

28 

21 

40 

40 

40 

39 

39 

27 

29 

28 

28 

29 

29 

39 

21 

39 

39 

40 

40 

28 

29 

28 

28 

27 

29 

40 

40 

21 

39 

39 

40 

28 

27 

28 

28 

28 

28 

39 

40 

39 

20 

39 

39 

28 

28 

29 

28 

28 

28 

39 

40 

40 

40 

21 

39 

27 

28 

28 

28 

28 

28 

40 

39 

39 

39 

39 

21 

0
1
2
3
4
5
6
7
8
9

10
11

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11

Ap
pl

ic
at

io
n 

Af
fin

ity
 

Flow Affinity 

Throughput (Gbps) 

Achieved Throughput Line Rate

Fig. 2: The throughput results of all 144 tests arranged in a
matrix by affinity choice. The empty circles represent the line
rate of the NICs (40 Gbps). The size of the filled-in circles
corresponds to the achieved throughput.

A. Interpretation of Results

In order to convey the results of the 144 tests effectively, we
elected to create a matrix as seen in Figure 2. The Application
affinity lies on the y-axis, while the Flow affinity lies along
the x-axis. The numbers 0 through 11 on both axes represent
the physical cores, as they appear to the operating system.
Therefore, cores 0 through 5 lie on socket 0, and cores 6
through 11 lie on socket 1. As a matrix, the chart has two
important properties:

1) The diagonal that appears in figure 2 represents the case
where the Application and the Flow are affinitized to the
same core.

2) The chart may be viewed in quadrants, where each
quadrant represents the four possible combinations of
affinity to the two sockets. In other words, all of the points
where the Application affinity core is greater than 5 but
the Flow affinity core is less than 6 represent the case
where the Application is affinitized to socket 1 and the
Flow is affinitized to socket 0, etc.

B. Overall Flow and Application Processing Efficiency

In the following figures we introduce Oprofile hardware
counter results. When interpreting these results, it is important
to note that hardware counters, on their own, convey little
information. For example, one could simply look at the total
number of Instructions Retired during the iperf3 transfer, but
this would not take into account the amount of data that was
actually transferred. The goal here is to view the efficiency,
so the number of instructions retired has been divided by the



throughput of the transfer (in Gbps). This allows normalization
of the results because the length of each test was identical.

Figure 3 shows the number of instructions retired per
gigabyte per second of data transfer. The diagonal in this
figure shows the processing inefficiency when both the Flow
and Application are affinitized to the same core. In this case,
not only is the throughput poor, as seen in Figure 2, but
the processing efficiency is also much worse than the other
cases. The case where the Flow is affinitized to socket 0 but
the Application is affinitized to socket 1 shows that more
instructions are required to move data from socket 0 to socket
1.

0
1
2
3
4
5
6
7
8
9
10
11

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11

Ap
pl

ic
at

io
n 

Af
fin

ity

Flow Affinity

Instructions Retired / 
Throughput (Gbps)

Fig. 3: The processing efficiency of the 144 tests; Larger circles
represent poorer efficiency.

C. Memory Hierarchy

With the exception of the diagonal case mentioned above
(where the Application and Flow were affinitized to the same
core), user copies (copy user generic string) dominated the
resource consumption in the end system. From a system-
wide perspective, this was demonstrated by a large percentage
of instructions that were dedicated to accessing the memory
hierarchy, as shown in Figures 4, 5 and 6. It should be noted
that the titles of these figures have been abbreviated. Again,
the raw counter output has little meaning here, so the counter
data has been divided by the Instructions Retired/Throughput
(Figure 3).

In the cases where the Application and Flow are affinitized
to different cores, but are on the same sockets, memory
hierarchy transactions appear to dominate the total instructions
retired. However, these transfers were so close to line rate that
the memory hierarchy was most likely not an actual bottleneck.
Preliminary investigation shows that for the cases where the
Flow and Application affinity are on different sockets, the
bottleneck is possibly due to LOCK prefixes as the consuming
core waits for coherency.

However, in the cases where the Application and Flow
were affinitized to different sockets, a notably smaller fraction
of instructions retired are dedicated to memory hierarchy
transactions, despite the fact that user copies continue to

dominate CPU utilization. Many different counters have been
monitored and analyzed in an attempt to find the bottleneck
in this case, including hardware interrupts and cycles due
to LOCK prefixes, but none showed any correlation to this
affinitization scenario.

0
1
2
3
4
5
6
7
8
9
10
11

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11�

Ap
pl

ic
at

io
n 

Af
fin

ity

Flow Affinity

L2 Cache Transactions

Fig. 4: The fraction of Instructions Retired/Throughput dedi-
cated to Level 2 Cache Transactions (as measured by counter
l2 trans) for all 144 tests.

0
1
2
3
4
5
6
7
8
9
10
11

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11

Ap
pl

ic
at

io
n 

Af
fin

ity

Flow Affinity

Last Level Cache Transactions

Fig. 5: The fraction of Instructions Retired/Throughput ded-
icated to Last Level Cache Transactions (as measured by
counter LLC TRANS) for all 144 tests.

D. The NIC Driver CPU Utilization Bottleneck

Interestingly, in the diagonal case, transactions involving
the memory hierarchy represent a relatively small fraction of
the overall instructions retired. In these cases, introspection
shows us that the NIC driver (mlx4 en) is the primary con-
sumer of system resources. The exact source of the bottleneck
in this case will be investigated in the future using driver
introspection.



0
1
2
3
4
5
6
7
8
9
10
11

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11

Ap
pl

ic
at

io
n 

Af
fin

ity

Flow Affinity

Memory Transactions

Fig. 6: The fraction of Instructions Retired/Throughput ded-
icated to Memory Transactions (as measured by counter
mem trans retired) for all 144 tests.

VI. CONCLUSION AND FUTURE WORK

One of the most important results of the clock speed
wall is that the line between intra-system and inter-system
communication is rapidly blurring. For one processor core
to communicate with another, data must traverse an intra-
system (on-chip) network. For large-scale data replication and
coherency, data must traverse a WAN. How are these networks
meaningfully different? WAN data transfer performance con-
tinues to become less of a limiting factor, and networks are
becoming more reliable and more easily reconfigurable. At the
same time, intra-system networks are becoming more complex
(due to scale-out systems and virtualization), and perhaps less
reliable (as energy conservation occasionally demands that
parts of a chip could be slowed down, or turned off altogether).
When discussing affinitization, it becomes obvious that despite
these changes, distance and locality still matter, whether the
network is “large” or “small”. In the future, the most efficient
solution may be not only to integrate a NIC onto the processor
die [14], but perhaps even integrate the functionality with
existing I/O structures, such as the North Bridge. However,
the feasibility of doing so may be years away.

More tangibly, this research has concluded that moving
more components of a system onto a chip (in this case, the
PCI north bridge) needs to be done carefully, or it could result
in sub-optimal performance across sockets. This provides
an important backdrop upon which to perform end-system-
centric throughput and latency tests, with attention to the fact
that architectural latency sources for end-to-end TCP flows
could vary drastically on high-throughput, high-performance
hardware.

In the meantime, other NICs and other NIC drivers are
being tested in similar ways to see if results are similar,
and if generalizations can be made. The relatively recent
advancement in NIC drivers that automatically switch between
interrupt coalescing and NAPI is also being studied. In addi-
tion, results for practical, multi-stream TCP, and UDT GridFTP
transfers are being examined along these lines. A future goal
should be to implement a lightweight middleware tool that

could optimize affinitization on a larger scale, extending the
work that has been carried out on the Cache Aware Affiniti-
zation Daemon [18].

ACKNOWLEDGMENTS

This research used resources of the ESnet Testbed, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-05CH11231. This research
was also supported by NSF grant CNS-0917315.

REFERENCES

[1] G. Keiser, Optical Fiber Communications. John Wiley & Sons, Inc.,
2003.

[2] C. Benvenuti, Understanding Linux Network Internals. O’Reilly Media,
2005.

[3] N. Hanford, V. Ahuja, M. Balman, M. K. Farrens, D. Ghosal, E. Pouy-
oul, and B. Tierney, “Characterizing the impact of end-system affinities
on the end-to-end performance of high-speed flows,” in Proceedings of
the Third International Workshop on Network-Aware Data Management,
NDM ’13, (New York, NY, USA), pp. 1:1–1:10, ACM, 2013.

[4] N. Hanford, V. Ahuja, M. Balman, M. K. Farrens, D. Ghosal, E. Pouy-
oul, and B. Tierney, “Impact of the end-system and affinities on
the throughput of high-speed flows.” poster - Proceedings of The
Tenth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS) ANCS14, 2014.

[5] A. Pande and J. Zambreno, “Efficient translation of algorithmic kernels
on large-scale multi-cores,” in Computational Science and Engineering,
2009. CSE’09. International Conference on, vol. 2, pp. 915–920, IEEE,
2009.

[6] A. Foong, J. Fung, and D. Newell, “An in-depth analysis of the impact
of processor affinity on network performance,” in Networks, 2004.
(ICON 2004). Proceedings. 12th IEEE International Conference on,
vol. 1, pp. 244–250 vol.1, Nov 2004.

[7] M. Faulkner, A. Brampton, and S. Pink, “Evaluating the performance
of network protocol processing on multi-core systems,” in Advanced In-
formation Networking and Applications, 2009. AINA ’09. International
Conference on, pp. 16–23, May 2009.

[8] J. Mogul and K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Transactions on Computer Systems
(TOCS), vol. 15, no. 3, pp. 217–252, 1997.

[9] J. Salim, “When napi comes to town,” in Linux 2005 Conf, 2005.
[10] T. Marian, D. Freedman, K. Birman, and H. Weatherspoon, “Empirical

characterization of uncongested optical lambda networks and 10gbe
commodity endpoints,” in Dependable Systems and Networks (DSN),
2010 IEEE/IFIP International Conference on, pp. 575–584, IEEE, 2010.

[11] T. Marian, Operating systems abstractions for software packet process-
ing in datacenters. PhD thesis, Cornell University, 2011.

[12] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
breakdown of end-to-end latency in a tcp/ip network,” International
Journal of Parallel Programming, vol. 37, no. 6, pp. 556–571, 2009.

[13] W. Wu, P. DeMar, and M. Crawford, “A transport-friendly nic for
multicore/multiprocessor systems,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 23, no. 4, pp. 607–615, 2012.

[14] G. Liao, X. Zhu, and L. Bhuyan, “A new server i/o architecture for high
speed networks,” in High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on, pp. 255–265, IEEE, 2011.

[15] S. Networking, “Eliminating the receive processing bottleneckintroduc-
ing rss,” Microsoft WinHEC (April 2004), 2004.

[16] T. Herbert, “rps: receive packet steering, september 2010.” http://lwn.
net/Articles/361440/.

[17] T. Herbert, “rfs: receive flow steering, september 2010.” http://lwn.net/
Articles/381955/.

[18] V. Ahuja, M. Farrens, and D. Ghosal, “Cache-aware affinitization on
commodity multicores for high-speed network flows,” in Proceedings
of the eighth ACM/IEEE symposium on Architectures for networking
and communications systems, pp. 39–48, ACM, 2012.



[19] A. Foong, J. Fung, D. Newell, S. Abraham, P. Irelan, and A. Lopez-
Estrada, “Architectural characterization of processor affinity in network
processing,” in Performance Analysis of Systems and Software, 2005.
ISPASS 2005. IEEE International Symposium on, pp. 207–218, IEEE,
2005.

[20] G. Narayanaswamy, P. Balaji, and W. Feng, “Impact of network sharing
in multi-core architectures,” in Computer Communications and Net-
works, 2008. ICCCN’08. Proceedings of 17th International Conference
on, pp. 1–6, IEEE, 2008.

[21] B. Weller and S. Simon, “Closed loop method and apparatus for
throttling the transmit rate of an ethernet media access controller,”
Aug. 26 2008. US Patent 7,417,949.

[22] M. Mathis, “Raising the internet mtu,” http://www.psc.edu/mathis/MTU,
2009.

[23] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The globus striped gridftp framework and
server,” in Proceedings of the 2005 ACM/IEEE conference on Super-
computing, p. 54, IEEE Computer Society, 2005.

[24] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “Megapipe: A new
programming interface for scalable network i/o.,” in OSDI, pp. 135–148,
2012.

[25] M. Balman and T. Kosar, “Data scheduling for large scale distributed
applications,” in Proceedings of the 9th International Conference on
Enterprise Information Systems Doctoral Symposium (DCEIS 2007),
DCEIS 2007, 2007.

[26] M. Balman, Data Placement in Distributed Systems: Failure Awareness
and Dynamic Adaptation in Data Scheduling. VDM Verlag, 2009.

[27] M. Balman and T. Kosar, “Dynamic adaptation of parallelism level in
data transfer scheduling,” in Complex, Intelligent and Software Intensive
Systems, 2009. CISIS ’09. International Conference on, pp. 872–877,
March 2009.

[28] M. Balman, E. Pouyoul, Y. Yao, E. W. Bethel, B. Loring, M. Prabhat,
J. Shalf, A. Sim, and B. L. Tierney, “Experiences with 100gbps network
applications,” in Proceedings of the Fifth International Workshop on
Data-Intensive Distributed Computing, DIDC ’12, (New York, NY,
USA), pp. 33–42, ACM, 2012.

[29] M. Balman, “Memznet: Memory-mapped zero-copy network channel
for moving large datasets over 100gbps network,” in Proceedings of
the 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, SCC ’12, IEEE Computer Society, 2012.

[30] E. He, J. Leigh, O. Yu, and T. Defanti, “Reliable blast udp : predictable
high performance bulk data transfer,” in Cluster Computing, 2002.
Proceedings. 2002 IEEE International Conference on, pp. 317 – 324,
2002.

[31] Y. Gu and R. L. Grossman, “Udt: Udp-based data transfer for high-speed
wide area networks,” Computer Networks, vol. 51, no. 7, pp. 1777 –
1799, 2007. Protocols for Fast, Long-Distance Networks.

[32] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler, “An rdma
protocol specification,” tech. rep., IETF Internet-draft draft-ietf-rddp-
rdmap-03. txt (work in progress), 2005.

[33] I. T. Association et al., InfiniBand Architecture Specification: Release
1.0. InfiniBand Trade Association, 2000.

[34] ESnet, “Linux tuning, http://fasterdata.es.net/host-tuning/linux.”
[35] ESnet, “iperf3, http://fasterdata.es.net/performance-testing/

network-troubleshooting-tools/iperf-and-iperf3/.”
[36] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The

science dmz: A network design pattern for data-intensive science,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13, (New York, NY,
USA), pp. 85:1–85:10, ACM, 2013.

[37] “Esnet 100gbps testbed.” http://www.es.net/RandD/100g-testbed.
[38] J. Levon and P. Elie, “Oprofile: A system profiler for linux.” http://

oprofile.sf.net, 2004.


