
Methodology for Evaluating the Potential of
Disaggregated Memory Systems

Nan Ding, Samuel Williams, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan
LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, Nicholas Wright

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{nanding, swwilliams, hnam, tgroves, mgawan, lmlindsey, csdaley, roselvitopi, loliker, njwright}@lbl.gov

Abstract—Tightly-coupled HPC systems have rigid memory
allocation and can result in expensive memory resource underuti-
lization. As novel memory and network technologies mature, dis-
aggregated memory systems are becoming a promising solution
for future HPC systems. It allows workloads to use the available
memory of the entire system. In this paper, we propose a design
framework to explore the disaggregated memory system design
space. The framework incorporates memory capacity, network
bandwidth, and local and remote memory access ratio, and
provides an intuitive approach to guide machine configurations
based on technology trends and workload characteristics. We
apply our framework to analyze eleven workloads from five
computational scenarios, including AI training, data analysis,
genomics, protein, and traditional HPC. We demonstrate the
ability of our methodology to understand the potential and
pitfalls on a disaggregated memory system and motivate machine
configurations. Our methodology shows that the 10 out of our
11 applications/workflows can leverage disaggregated memory
without affecting performance.

Index Terms—Memory disaggregation, system architecture
design space

I. INTRODUCTION

The last five decades have seen compute and high-capacity
memory performance continue to diverge. In response, com-
puter architects have added more and more levels of caching
within the memory hierarchy to mitigate this performance
discrepancy for the applications that exhibit sufficient temporal
and spatial locality. Today, GPU-accelerated systems rely on
a hierarchy of progressively faster and smaller memories
— CPU-attached DDR high capacity memory, GPU-attached
HBM high performance memory, and multiple levels of very
fast, on-GPU, SRAM cache memories. Future systems (e.g.
NVIDIA’s Hopper H100 GPU [1]) will continue to leverage
this template, but do so in a more tightly integrated and per-
formant form factor. Integration will ultimately enable single-
chip CPU-GPU architectures — the Accelerated Processing
Unit (APU).

Although the trend towards integration can improve perfor-
mance, it can result in large, expensive, monolithic computing
nodes whose resource utilization can vary greatly from one

This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office of
Science, under Award Number DE-AC02-05CH11231 and used resources of
the National Energy Research Scientific Computing Center (NERSC) which
is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. Thanks Khaled Ibrahim and Tan Nguyen
for answering my questions on the AI workloads. Thanks John Wu and Bin
Dong for providing their expertise on DASSA.

application to another within a workload. Examples include
the observation that only 15% of the scientific workloads on
NERSC’s Cori supercomputer use over 75% of the available
memory per node [2] and that 90% of jobs utilize less than
15% of the node memory capacity on the HPC clusters at
Lawrence Livermore National Laboratory [3]. Additionally,
up to 83% of memory can be underutilized on these tightly-
coupled resources that are over-provisioned for workloads with
the greatest demands [4]. Similarly, in the commercial cloud
sector, it has been shown that memory is the dominate cost of
servers while most VMs use less than half of their available
memory [5]. As such, HPC system architects are often forced
to either overprovision systems for the long tail of memory
requirements (incurring substantial additional cost), deploy a
variety of node architectures (incurring the complexity and
inefficiency of job scheduling), or demand those applications
restructure themselves to fit in half or a quarter of their
nominal memory footprint.

Concurrently, many applications and workflows leverage
high-performance distributed file systems for rather mundane
tasks — holding read-only or private files — resulting in an
overprovisioning of file system performance and degrading
QoS for the applications that truly need a high-performance
distributed file system.

Recent improvements in interconnect technology [5] have
reinvigorated memory disaggregation as a viable solution to
both the memory and file system stranded resource problems.
Memory disaggregation decouples compute and memory re-
sources. Compute nodes would contain only a limited amount
of local memory, but could access a large pool of remote
memory available via the network. This design enables HPC
systems to easily scale memory capacity and allocate memory
more flexibly. Physically, this large pool of memory will
be partitioned among a number of smaller “memory nodes”
containing DRAM and a NIC in order to maximize bandwidth,
capacity, reliability, etc...

In this paper, we explore the value of adding disaggregated
memory to an APU-only HPC system. To that end, it is imper-
ative one provide a methodology for analyzing how technology
and system architecture constrain application performance. In
our work, we:

1) Develop a methodology for evaluating and visualizing
application performance on disaggregated systems.

2) Characterize and analyze eleven applications and work-
flows using two extensions of the Roofline model.

3) Provide insights and guidance to vendors developing
technologies that support disaggregated memory.

4) Discuss how HPC system architects should use our
methodology to evaluate different disaggregated mem-
ory system architectures for their respective workloads
(a time- and space-weighted set of applications).

Our results demonstrate that 10 of our 11 examined applica-
tions do not suffer a performance penalty using a disaggregated
system with a significantly reduced memory balance.

II. RELATED WORK

Recent studies highlight how the current approach of al-
locating resources to jobs on statically-configured compute
nodes wastes memory and NIC resources. Utilization analysis
for HPC systems report the average memory utilization of a
job can be as small as 11.9% and 74.63% of individual jobs
never use more than 50% of on-node memory. Approximately
three-quarters of the time, each compute node uses only
0.3% of memory bandwidth and 0.5% of available NIC band-
width [4]. Often resources are idle, since HPC system node
design is based on the peak usage, i.e., the maximum memory
usage. It is worth mentioning that DRAM consumes static
power even when idle, so unused memory still contributes to
the HPC system operating cost [3]. It has become a common
state of the practice for memory resources on HPC systems to
be over-provisioned and have low resource utilization.

The problem of low memory utilization is fundamentally
not solvable with current static allocations on tightly-coupled
HPC systems. Network-attached memory disaggregation has
been proposed to improve resource utilization for nearly a
decade and is seeing a resurgence of interest to improve
memory utilization in commercial cloud data centers [4, 6–
12]. The growing interest and maturity of Compute Express
Link (CXL) [13–16], a standardized protocol for memory
pooling, has been contributing to this renewed interest in
memory disaggregation. CXL provides memory coherency and
semantics over the PCIe physical layer. A practical CXL based
disaggregated solution for a production cloud deployment
projected that the memory pooling approach would incur
only a performance loss between 1-5%, but could achieve a
9-10% reduction in overall system DRAM required, which
represents hundreds of millions of dollars in cost savings for
a large cloud provider [5]. Recently, disaggregated remote
memory has been proposed for HPC systems. Peng et al.
further designed a user-space remote paging library to allow
applications to explore the potential of throughput scaling on
disaggregated memory [3].

Previous studies focus on exploring the potential benefits
of memory disaggregation and the limitations using current
HPC systems [3, 4, 9, 10, 17]. The main concern for imple-
menting memory disaggregation is the bandwidth and latency
penalty over the network which would degrade application
performance [18]. However, there is no structured analytical
method that demonstrates which applications are performance
constrained on the disaggregated memory system, how much
the network performance penalty affects performance, and

HBM2
[40GB,1555GB/s]

HBM3
[512GB,6555GB/s]

HBM3
[512GB,6555GB/s]

DDR4
[256GB,204GB/s]

DDR4
[512GB,409GB/s]

DRR5
[4096GB,819GB/s]

PCIe4 [25GB/s]
PCIe5 [50GB/s] PCIe6 [100GB/s]

Year 2022 Year 2024 Year 2026

Fig. 1: Memory bandwidth trends for HBM, DDR and PCIe
from years 2022 to 2026. Relative bandwidth improvements
remain constant. The PCIe is the performance bottleneck for
disaggregated systems.

what are important application metrics to reason the per-
formance on a disaggregated memory system. Missing from
past work is a practical and intuitive approach to assess how
much disaggregation is needed or viable given the technology
trend and the impacts to the diverse workload. In this paper,
we aim to provide a structured system design model to
explore the architecture design space and its capabilities. We
provide several methods to visualize the design space and a
methodology that could be adapted for a broader range of
users, e.g., vendors and application developers, to help to
design a new architecture or purchase future systems.

III. SYSTEM ARCHITECTURE DESIGN

It is necessary to understand the emerging technology trends
and capabilities in a future disaggregated memory system to
assess the potential benefits and pitfalls. Fig. 1 charts the
memory bandwidth trends of HBM, DDR, and PCIe from
today to the year 2026. We assume HBM3 is built with eight
16-Hi stacks and each stack has a capacity of 64 GB. We
use the maximum capacity and bandwidth per DIMM (DDR4:
32 GB/DIMM and 25.6 GB/s/DIMM; DDR5: 256 GB/DIMM
and 51.2 GB/s/DIMM) with a total of 16 DIMMs for DRAM
memory. Both CXL devices and network interface cards are
limited by the performance of the physical PCIe interconnect
that they connect through. As such, PCIe would eventually be
the performance bottleneck on a disaggregated system since
data needs to be loaded from DDR via the network.

Fig. 2 presents a schematic of a basic network-attached
disaggregated memory system. We consider that such a system
could have C compute nodes and M memory nodes. Each
compute node consists of an accelerated processing unit (APU)
with its own local high-bandwidth memory (HBM). An APU
combines a CPU with a GPU onto a single silicon die, and both

Memory node

…

…

APU
HBM

APU
HBM

APU
HBM

APU
HBM

network

Memory node Memory node

Fig. 2: Conceptual disaggregated memory system architecture.

2

Memory
node

APU
HBM

network

100% bandwidth
100% memory node capacity

(a) C
M

= 1
1

: 100% of one memory node capacity
and 100% of remote memory bandwidth

Memory
node

APU
HBM

network

50% bandwidth
50% memory node capacity

APU
HBM 50% bandwidth

50% memory node capacity

(b) C
M

= 2
1

: 50% of one memory node capacity
and 50% of remote memory bandwidth

Memory
node

APU
HBM

network

100% bandwidth
200% memory node capacity

Memory
node

(c) C
M

= 1
2

: 200% of one memory node capacity
and 100% of remote memory bandwidth

Fig. 3: Three use cases for network-attached disaggregated memory. Each varies the ratio of compute nodes (C) to
memory nodes (M) and gives the available remote memory bandwidth (relative to one NIC) and remote memory capacity
(relative to one memory node) available to each compute node. The flexibility of disaggregated memory allows systems
to realize all three configurations simultaneously for different applications.

CPU and GPU share a common path to the remote memory.
Future processor trends favor the APU because it addresses the
bottleneck of data transfers between CPU and GPU [19, 20].
Each memory node is equipped with DDR memory as the
remote memory. The compute nodes and memory nodes are
connected via a network and is assumed to have one PCIe
NIC. Using these assumptions, we propose a structured system
architecture design methodology to explore the potential and
pitfalls of disaggregated memory.

A. Remote memory resources versus utilization

Fig.3 visualizes three use cases that highlight the impact
of system architecture on available remote memory capacity
and memory bandwidth. Fig. 3a highlights the simplest case
(C
M = 1

1), where each compute node is in a job is paired with
one memory node. Each compute node would theoretically
have access the the memory’s nodes full capacity and 100%
of the NIC’s bandwidth as remote memory bandwidth. Unsur-
prisingly, in the case of C

M = 2
1 in Fig. 3b, each compute node

has haf the capacity and half the remote memory bandwidth.
Interestingly, if C

M = 1
2 as in Fig. 3c, each compute node could

access 200% of a memory node’s capacity, but still only attain
100% of the NIC bandwidth as remote memory bandwidth as
bandwidth is constrained by the APU’s NIC rather than the
two memory node NICs.

Following this method, we can build a design space with
various ratios to describe the hardware capabilities in terms
of memory capacity and available remote memory bandwidth.
We scale the building blocks to a modern-day HPC system and
assume that we have 10K compute nodes. The heat maps in
Fig. 4 present the (a) available remote memory capacity and
(b) available remote memory bandwidth per compute node
under different compute and memory node ratios, assuming
one memory node capacity of 4TB. For the fixed number of
compute nodes, Fig. 4a shows the available DDR5 remote
memory capacity (TB) to the compute nodes with growing
numbers of memory nodes (100 to 20K). The vertical axis is
binned into the percentage of compute nodes that will require
more resources than the local HBM memory and use the
remote DDR memory, a value that will be specific to HPC
systems and their workload. The available remote memory

capacity per compute node becomes larger as we increase the
number of memory nodes (moving left to right of Fig. 4a).
That is to say, there is less contention as we increase the
number of memory nodes. Similarly, we can also reduce
contention as the number of compute nodes that require remote
memory decreases (moving top to bottom of Fig. 4a). For
example, the first row represents the scenario where all the
compute nodes require remote memory. Therefore, if we have
10K DDR5 memory nodes (C

M = 1
1), each compute node can

access one memory node’s capacity of 4TB. When decreasing
the demand, only 5K compute nodes (50% of the total 10K)
require the remote memory of 10K memory nodes, then each
compute node can then access 8TB of remote memory, which
equals the capacity of two memory nodes. Correspondingly,
Fig. 4b presents the available remote memory bandwidth for
the cases in Fig. 4a. Unlike memory capacity in Fig. 4a,
memory bandwidth in Fig. 4b will saturate at the compute
node’s peak NIC bandwidth as one moves decreases C

M (right)
or one decreases the fraction of compute nodes requiring
remote memory (down).

Determining an optimal system configuration relies on mul-
tiple factors specific to the HPC system workload (demand)
and available budget (supply of memory nodes). Fig. 1 sug-
gests in the 2026 time frame, HBM3 could provide 0.5TB of
local memory. Thus, in planning for the next machine, as a
guiding principle, there should be enough memory nodes to
provide more remote memory capacity per node than local
memory capacity. As such, configurations in the upper left
region of Fig. 4 where memory node capacity is smaller than
0.5TB are wasteful architectures. Conversely, configurations
on the right of the figure can be quite expensive as there are as
many or more memory nodes than compute nodes (the network
has 2-3× more endpoints). Finally, although configurations in
the bottom right provide 100s of TB per compute node, they
can only access it at 100GB/s. As such, it will take minutes to
hours to read all of remote memory once. Such architectural
configurations may become impractical given the number of
times an application might desire to read memory coupled with
finite job run time limits.

3

%
co

m
pu

te
 n

od
es

re

qu
ire

 re
m

ot
e

m
em

or
y

System architecture
TOT MEM: 0.4PB 2PB 4PB 10PB 20PB 40PB 80PB

𝑪
𝑴 :

𝟏𝟎𝑲
𝟎. 𝟏𝑲

𝟏𝟎𝑲
𝟎. 𝟓𝑲

𝟏𝟎𝑲
𝟏𝑲

𝟏𝟎𝑲
𝟐. 𝟓𝑲

𝟏𝟎𝑲
𝟓𝑲

𝟏𝟎𝑲
𝟏𝟎𝑲

𝟏𝟎𝑲
𝟐𝟎𝑲

TB

TB

TB

TB

(a) Available remote memory capacity per compute node.

%
co

m
pu

te
 n

od
es

re

qu
ire

 re
m

ot
e

m
em

or
y

System architecture
𝑪
𝑴
:

𝟏𝟎𝑲
𝟎. 𝟏𝑲

𝟏𝟎𝑲
𝟎. 𝟓𝑲

𝟏𝟎𝑲
𝟏𝑲

𝟏𝟎𝑲
𝟐. 𝟓𝑲

𝟏𝟎𝑲
𝟓𝑲

𝟏𝟎𝑲
𝟏𝟎𝑲

𝟏𝟎𝑲
𝟐𝟎𝑲

GB/s

GB/s

GB/s

GB/s

GB/s

(b) Available remote memory bandwidth per compute node.

Fig. 4: Disaggregated memory system design space assuming
fixed 10K (C) compute nodes and varying the number of (M)
memory nodes, each with 4TB of DDR5 remote memory
accessed through a PCIe6 NIC. Contention is reduced from
left to right and from top to bottom. The y-axis shows the
demand from compute nodes for remote memory and the x-
axis shows the supply of memory nodes available.

B. Remote memory access patterns

Disaggregated memory promises to improve system-wide
memory utilization, but individual application performance is
of equal concern. Prior work argues that disaggregation comes
with substantial bandwidth and latency penalties to applica-
tions [3]. However, such conclusions are derived assuming
current technologies and lack consideration of emerging tech-
nologies in the future. To analyze the impact to individual
applications in the near future, we introduce the local to
remote memory access ratio (L:R) metric to characterize
application performance on a disaggregated memory system.

We then correlate the metrics using a memory Roofline plot
to provide a generalized framework to evaluate and visualize
the performance bottlenecks of applications running on a
disaggregated memory system.

The traditional Roofline model [21] characterizes an appli-
cation’s performance (GFLOP/s) as a function of its arithmetic
intensity (FLOPs executed per Byte moved). It provides a
quick visual comparison of the application performance com-
pared against the bounds set by the peak compute performance
(GFLOP/s) and the peak memory bandwidth of the target
architecture (GB/s) to determine what is limiting performance:
memory or compute.

Following the methodology of the traditional Roofline
model, our new memory Roofline model characterizes an
application’s sustained memory performance (GB/s) as a func-
tion of its local and remote memory access ratio (L:R), the
peak local memory bandwidth, and the peak remote memory
bandwidth. An application’s L:R on a disaggregated memory
system could be considered as the ratio of HBM data move-
ment (local) to the DDR data movement (remote over PCIe) or
even the HBM to file size ratio when examining applications
using memory nodes as a private file system. Applications
with a L:R data movement ratio greater than the system’s
local:remote bandwidth ratio can effectively hide the slow
remote (disaggregated) memory bandwidth behind a multitude
of fast, local memory accesses.

Fig. 5 presents the memory Roofline model using future
HBM (local) and PCIe (remote) bandwidths. One quickly
observes the visual similarity to the traditional Roofline model
with local bandwidth replacing the traditional peak GFLOP/s
plateau and remote bandwidths replacing the traditional mem-
ory diagonals. We observe an HBM3:PCIe6 machine balance
of 65.5 — the ratio of data movement that results in equal
time for local and remote transfers. This ratio is very close to
today’s HBM2:PCIe4 machine balance of 62.2. This suggests
future hardware trends will not detract from the efficacy of
disaggregated memory.

Applications like ADEPT with a L:R ratio of nearly 500 (far
greater than 65.5) are insensitive to memory disaggregation,
dominated by on-node performance, and will use less than
14% of the available PCIe bandwidth (green diagonal line).
Conversely, applications like STREAM with an theoretical L:R
ratio of 2 will see their performance limited and degraded
by disaggregated memory bandwidth. Ultimately, increases in
NIC bandwidth shift the machine balance to the left (decreas-
ing the number of applications penalized by disaggregation)
while increases in HBM bandwidth shift the machine balance
to the right (increasing the number of applications penalized
by disaggregation).

IV. APPLICATION CASE STUDIES

In this section, we apply our system architecture design
methodology to select a disaggregated system configuration
and evaluate the potential performance using eleven applica-
tions across five computational scenarios.

4

Local:Remote memory access ratio

STREAM
L:R=2

AD
EP

T
(t

ra
ce

ba
ck

)
L:

R=
47

7

L:
R=

62
.2

Required PCIe bandwidth: 13.7 GB/s

Fig. 5: Memory Roofline model characterizing an appli-
cation’s memory access performance (GB/s) as a function
of its local to remote memory access ratio (L:R). A high
L:R ration is critical in mitigating the performance penalties
of disaggregated memory. Observe ADEPT is insensitive to
disaggregated memory while STREAM is penalized by it.

A. Disaggregated System Configurations

To select a machine configuration, recall the HPC system
described in Section III. A with 10,000 compute nodes with
512 GB of HBM3 local memory capacity, accessing DDR5
remote memory nodes via PCIe6-connected NICs. As previous
studies showed only 15% of the workloads use 75% of
the node memory [2], we conservatively assume that at any
instant, 10% of the compute nodes will require remote memory
for our machine configuration. Referencing Fig 4a, at 10%,
we could choose 500 memory nodes or more with DDR5
memory (x-axis) to ensure each compute node has access
to remote memory greater than the local HMB3 memory.
Including the memory bandwidth information from Fig 4b,
the maximum memory bandwidth per compute node peaks at
1000 memory nodes. Purchasing more memory nodes would
only add additional capacity and cost, not additional memory
bandwidth. For the configuration of 10,000 compute nodes
accessing an aggregate four petabytes of DDR5 memory
on 1000 memory nodes, we see from Fig.4 that each of
the compute nodes requiring remote memory can access, on
average, four terabytes of remote memory with a peak remote
memory bandwidth of 100 GB/s.

B. Application Characteristics

Due to the diversity of applications, the case studies we
examined required a variety of approaches to measure or
estimate the local and remote memory accesses (L:R). This
section summaries the high-level methods of calculating L:R
for each workload. Note that throughout the paper, we assume
each application will preserve its current conceptual approach
to exploiting data locality and expressing data movement when
ported to a disaggregated memory architecture even if the
mechanisms are syntactically different.

Artificial intelligence (AI) training workloads. AI is an
area of increasing scientific interest with growing computa-
tional demands [2]. It is a driver for future DOE investments
in HPC platforms [22]. We focus on training workloads,
which is more computationally expensive and requires a larger

memory capacity than inference. We demonstrate the benefit
of a disaggregated memory system using three AI training
workloads: CosmoFlow [23] and DeepCAM [24] from the
MLPerf HPC benchmark suite [25], and a well established
image classification model, ResNet-50 [26] from the MLPerf
Training benchmark suite [27]. The actual computation and
memory characteristics of the three AI training workloads
come from Ibrahim et al. [28] and listed in Table I. The
local:remote memory ratio is characterized by FLOP:sample
Byte/Flop:HBM Byte. All the numbers reported in Table I
refer to the memory per job.

TABLE I: Computation and Memory Characteristics

ResNet-50 DeepCAM CosmoFlow
Training set size [28] 0.15 TB 8.8 TB 5.1 TB
FLOP:HBM Byte [28] 55.35 55.5 38.6
FLOP:sample Byte [28] 221,000 107,000 15,400
Local:Remote memory access ratio 3993 1927 399

Data analysis workloads. Data analysis applications are
a growing workload in HPC facilities [2]. We use two data
analysis software frameworks, DASSA [29] and TOAST [30],
to showcase disaggregated memory benefits. DASSA [29] is a
distributed acoustic sensing (DAS) data storage and analysis
framework for geophysicists to perform DAS data analysis
on HPC systems. We use a real DAS data analysis case for
earthquake detection via local similarity. We use analytical
modeling to estimate the L:R and refer its input file size as
the remote memory capacity requirement.

TOAST [30] is a software framework designed for sim-
ulation and reduction of data from telescope receivers which
acquire time streams of individual detector responses. Here we
use a satellite telescope benchmark as an example to show the
implication of memory disaggregation. The core computation
in the satellite telescope benchmark is the PCG solver. We
profile its DRAM data movement using Intel Vtune on one
Cori Haswell [31] node as its local memory accesses and refer
its input file size as the remote memory capacity requirement.

Genomics workloads. With the rapid development of
genome sequencing technologies, it is now possible to sample
and study genomes at an unprecedented scale. MetaHip-
Mer [32] is a large-scale metagenome assembler that can
leverage the large memory and compute capacities of su-
percomputers to co-assemble terabase-scale datasets. We use
three important kernels in MetaHipMer, ADEPT [33] w/wo
traceback and EXTENSION [34] to understand the their po-
tential on a disaggregated memory system. We use analytical
modeling to calculate the L:R of ADEPT w/wo traceback
kernels. We use NVIDIA NSight compute [35] to collect the
HBM data movement for single extension on Cori GPU [36],
and then multiply that with 45 million extensions as its local
memory access. We use analytical modeling to estimate the
remote memory capacities for all three kernels.

Protein similarity search workloads. Bioinformatics
applications have been increasingly turning to HPC solutions
for solving big problems with reasonable time-to-solution.

5

Especially in metagenomics research, the scale of the data
often requires memory and compute resources that are beyond
what serial systems can provide. An important task that
forms the backbone of many bioinformatics workflows is
the alignment of a set of given sequences against a refer-
ence database. PASTIS [37] is a distributed-memory many-
against-many search tool specifically developed for protein
sequences. This search requires a lot of memory and its
memory complexity grows quadratically with the number of
sequences while being compute-intensive. For batch pairwise
alignments required by the protein similarity search, PASTIS
uses SeqAn [38] for CPUs and ADEPT [33] for GPUs. We
use NVIDIA NSight compute [35] to collect the HBM data
movement as the local memory access and use analytical
modeling to estimate the remote memory capacities.

Traditional HPC Workload Bookends. Traditional HPC
workloads are designed for distributed-memory systems. They
can sometimes scale to thousands of and even millions of
cores [39–41]. They can distribute the memory footprint, and
can fit in the 512 GB HBM3 in a 2026 disaggregated system
which is larger than the currently provided node-local DDR
(256 GB DDR on a 2021 HPC system). We use GEMM [42]
and STREAM [43] as two representative benchmarks to show
the implications as the data size grows. We use analytical
modeling to estimate the L:R for GEMM and STREAM. Note
that STREAM can be a proxy for giant AI=O(1) linear solvers
(stencil/sparse) without any multiphysics/AMR.

C. Application Analysis

Fig. 6 visualizes a summary of all the tested applications in
this section. It combines the two critical metrics, the local and
remote memory access ratio (L:R) from Fig. 5 and the per-
node memory capacity to provide an intuitive way to visual
the performance of applications on a future disaggregated
memory system and assess individual application potential
and pitfalls. Our system assumes 2026 memory technologies
with each compute node having 512 GB HBM3 local memory
which is two times larger than a 2021 machine’s node-local
DDR capacity [44]. Thus, applications that can fit in 2021
machine’s node-local DDR can undoubtedly fit in future local
memory. We characterize the applications into three categories.
Blue: required memory footprint can fit in local HBM mem-
ory. Thus, applications in this region would be HBM bound,
e.g., ResNet-50. Orange: required memory footprint can not
fit in local memory and there will be a performance penalty
from disaggregation due to the low L:R ratio (smaller than
65.5), e.g., STREAM (>512GB). Green: required memory
footprint does not fit in local memory but applications could
achieve HBM3 bandwidth due a high L:R ratio (larger than
65.5), and would thus not incur a performance penalty from
disaggregation, e.g., DeepCAM. Note, applications in the
green region are ultimately HBM bound, but can still be
impacted by the PCIe NIC bandwidth due to inefficient data
movement and bandwidth contention forcing them to fall into
the orange zone.

51
2

GB
 H

BM
3

40
GB

 H
BM

20

21
 m

ac
hi

ne

25
6

DD
R4

20

21
 m

ac
hi

ne

HBM bound
(Disaggregated)

PCIe NIC bound
(Disaggregated)

ResNet-50 DeepCAM

CosmoFlow

DASSA
ADEPT (traceback)ADEPT

(no traceback)

STREAM

HBM bound (0 memory node) L:R=65.5
(1 memory node)

L:R=65.5
25 memory nodes

EXTENSION

kmer=77

kmer=55

kmer=33

kmer=21
PASTIS

L:R=524
(0.125 memory nodes)

TOAST

1
m

em
or

y
no

de

4T
B

DD
R5

GEMM

Fig. 6: Capacity and bottleneck visualization of applications
on a disaggregated memory system. The L:R of PASTIS
and ResNet-50 are profiled from Cori GPU [36] at NERSC.
ADEPT w/o traceback is modeled based on its implementation
on Cori GPU.

The antidiagonal line connecting L:R=524 to L:R=65.5
in Fig. 6 shows the implications of network contention. If
the memory capacity the application needs is between 512
GB and 4 TB, there are two design possibilities. The first
is to use one memory node per compute node (L:R=65.5,
one memory node) which guarantees all 100 GB/s of the
PCIe6 NIC bandwidth but wastes memory capacity. The other
possibility is to share memory nodes across compute nodes
(upper left region in Fig. 4a and Fig. 4b). In this case, memory
is not wasted, but compute nodes must contend for memory
node NIC bandwidth (L:R=524, 0.125 memory node). Such
contention leads to an antidiagonal boundary between the
green and orange zones. Following the same methodology,
one could imagine that disaggregating today’s system can
shrink the blue region to the 40GB HBM vertical dotted line.
The green and orange zones expand to the left accordingly.
The antidiagonal boundary moves to lower left, and the L:R
boundary moves down a little to 62.2.

ResNet-50: The ResNet-50 v1.5 is a 50-layer deep convo-
lutional neural network. ResNet-50 has been implemented in
both TensorFlow and PyTorch with numerous implementations
and optimizations that prevent direct comparisons of system
performance. The actual computation and memory character-
istics of ResNet-50 come from Ibrahim et al. [28]. ResNet-
50 on Imagenet data requires 0.15 TB memory to store the
training data set, and its L:R ratio is 3993. On the selected
system configuration, the L:R ratio has no impact because the
training data can easily fit into local memory.

DeepCAM: The DeepCAM climate benchmark is based
on the 2018 work of Kurth et al. [24] which was awarded
the ACM Gordon Bell Prize. It uses deep learning to identify
extreme weather phenomena from background images. Unlike
ResNet-50, DeepCAM has a large memory requirement, 8.8
TB, to store the training size [28]. It requires 2.2 memory
nodes using our selected system configuration. As its L:R is

6

1927, which is higher than 65.5 (on the left of the orange
dotted wall in Fig. 5), DeepCAM can operate at HBM3 speed
on a disaggregated system that uses HBM3 as local memory
and PCIe6 NIC for the network.

CosmoFlow: CosmoFlow uses a 3D convolutional neural
network with five convolutional layers and three fully con-
nected layers. For the training run in Table I, we can replicate
the 5.1TB training data over 1.25 memory nodes per APU [28]
in the disaggregated memory system. It has an L:R of 399.

As the AI model size grows exponentially [45], it pushes
the AI training workloads to have even larger memory require-
ments in the future. Therefore, AI training workloads with
dense activation layers will result in a high L:R ratio and ben-
efit from memory disaggregation (green zone). Alternatively,
AI training workloads with shallow networks will pay the
network bandwidth performance penalty on a disaggregated
memory system (orange zone).

DASSA: The local similarity method is a time-domain
data analysis algorithm developed to detect earthquakes in
array seismic datasets [46]. Each input file contains a 2D
array (30,000 time samples and 11,648 channels). For each
cell in that 2D array, it calculates two correlations and each
correlation needs to refer the other cells in a different channel
in the window. With a typical window size of five hundred
cells, one cell needs to access one thousand cells for its
computation. Thus, the number of local memory accesses per
cell is one thousand cells. The remote memory access is to
stream the input data to the local memory once. As such, the
number of remote memory accesses equals the total number
of cells. This leads to an L:R ratio of 1,000.

TOAST: The L:R ratio is calculated by profiling the
DRAM data movement using the Intel Vtune on one Cori
Haswell [31] node and dividing the input size. Thus, the L:R
ratio is 278 and the required memory capacity is 1TB.

ADEPT (no-traceback): The core computation of ADEPT
is to perform Smith-Waterman (SW) alignments [33]. SW is
a dynamic programming algorithm that constructs an m × n
matrix A given two sequences of lengths m and n. The matrix
A is used to find the optimal local alignment between the two
sequences by listing all possible alignments. When operating
in no-traceback mode, ADEPT is able to discard most of the
matrix A except the cells needed for the next iteration. When
computing the matrix A, the score of any element A(i, j)
depends on elements A(i, j−1), A(i−1, j) and A(i−1, j−1).
The whole score matrix (m · n) is maintained in the local
memory. This leads to the number of local memory access to
3 ·m ·n, and the number of remote memory access to m+n.
In this paper, we use a data set of about 31 million DNA
reads and corresponding reference pairs with upper limits of
m = 200 and n = 780 leading to the 63 GB total remote
memory requirements with a L:R ratio of 477.

ADEPT (traceback): When operating in traceback mode,
ADEPT kernel traces a path connecting the matrix cell with
the highest score (i, j), i > i0, j > j0 back to the starting point
(i0, j0) in the matrix. For this, the full matrix must be available
in the GPU’s HBM therefore, this along with increasing total

HBM requirements also requires additional memory accesses
for traceback. The traceback step usually follows pointers
starting from the highest scoring cell and ending when a
cell with zero score is found, leading to additional l memory
accesses where l represents the longest possible alignment.
The longest alignment can at most be of the length 200, i.e.
longest possible read in the dataset. This also leads to an
approximate L:R ratio of 477.

EXTENSION: MetaHipMer’s [32] local assembly phase
performs local extensions on sections of DNA with the help
of DNA reads. We use the Arctic synth data set [47] with four
typical kmer size: 21, 33, 55 and 77 with 45 million extensions
for four application runs. As such, one can observe that the
L:R ratios vary from 314 to 3,402 with increasing kmer sizes.

PASTIS: We use a dataset that performs around 840 million
pairwise alignments. This results in 158TB of local and 363GB
of remote memory data movement (an L:R of 435).

GEMM: The general matrix multiplication (GEMM) ker-
nel is defined as the operation C = A · B, with A and B
as matrix inputs and C as the output. We assume all three
matrices are square double-precision matrices (N × N) with
N being the maximum dimension that fits in DDR mem-
ory. Using estimates derived from the Holder-Brascamp-Leib
(HBL) inequality [48], we may estimate the data movement
(R) to/from remote memory as 2·N3

√
M

+N2 − 3 ·M elements
where M is the local memory (cache) capacity in elements
(64G). We apply this model recursively to estimate the local
data movement per local GEMM using a 512GB memory and
a 40MB cache [49]. This number is scaled by the requisite
number of local GEMMs ((DDR

HBM)
3
2) to produce the L:R ratio

which we observe varies from about 50 to 90.
STREAM: STREAM TRIAD is a benchmark that measures

sustainable memory bandwidth. It computes a vector operation
C(i) = A(i) + α · B(i). This operation involves two loads
(A(i) and B(i)) and one store (C(i)) in the remote memory.
Reads from (writes to) remote memory incur writes(reads) in
local memory on top of nominal reads/writes in local memory.
Thus, the L:R equals 2.

D. Application Analysis Summary

The case studies represent a diverse array of memory access
patterns and memory capacity needs across multiple domains.
This trend will likely continue as scientific workloads evolve
over time. For the exemplar disaggregated memory system
configuration consisting of 10,000 compute nodes and 1,000
memory nodes, we see that ten out of eleven workloads fall
into the blue and green zones, that will not suffer penalties
from disaggregation. Only the STREAM (>512GB) fall into
the orange zone and could see a penalty from disaggregated
memory. Although we proxied future L:R ratios using today’s
problem sizes, we believe future L:R ratios will be at least as
big as surface to volume ratios never shrink. Ultimately, these
applications are unlikely to see any performance loss from
disaggregated memory over the existing state of the practice.

Assuming these applications represent a workload and the
applications falling into the green and orange zones constitute

7

less than 10% of the total workload node hours, then the
disaggregate system discussed here could save the cost of
40PB of node-local DDR memory (10K compute nodes×4TB)
of memory at the expense of 1000 memory nodes of 4TB each
without hurting performance.

V. DISCUSSION AND CONCLUSIONS

In this paper, we focused on architecture, bottlenecks,
and characterization of applications running on disaggregated
memory system architectures in the 2024-2026 time frame.
As visualized in Fig. 6, 10 out of 11 of the applications we
examined either have sufficiently low memory requirements
that they can comfortably fit in a future APU’s HBM memory
or have a sufficiently high local:remote data movement ratio
that the architected local:remote bandwidth tapering will not
impede performance. Nevertheless, it is imperative HPC sys-
tem architects and vendors follow a few design principles lest
the potential remote bandwidth be underutilized.

Memory Extension: System architects must decide whether
remote memory is exposed as a second NUMA node with
data movement affected via RDMA (e.g. SHMEM put/get)
or uncacheable load/store instructions – or – whether HBM
should be viewed as either a hardware-controlled line cache
or OS-controlled page cache. The nuance arises in whether ap-
plications and processors can express concurrency greater than
remote memory’s latency-bandwidth product [50] assuming a
latency comparable to the 2us observed on a 2021 HPC system
and bandwidth varying from PCIe4 to PCIe6.

Inspired by the Roofline model [21], Figure 7 plots the im-
pact of Little’s Law on memory bandwidth for varying access
quanta (diagonals) and concurrency (vertical lines). System ar-
chitects must choose a quanta that attains available bandwidth
at an application concurrency less than the processor/system
concurrency upper bound. For example, an OS cache sus-
taining only one outstanding page fault (concurrency≤1) will
never be able to sustain even PCIe4 bandwidth with 4KB
pages. Similarly, an A100 GPU has insufficient LDST concur-
rency to sustain PCIe5 bandwidth using coalesced 32B cache
lines. Ultimately, vendors must provide either larger pages
(e.g ≥256KB), ≥64B cache lines, twice as many LDST units
as an A100 GPU, or demand applications continually initiate
hundreds of KB-sized asynchronous RDMAs (spread across
multiple processes).

Lustre Replacement: Lustre is superfluous for applications
requiring either private or read-only file access (e.g. AI training
data). Vendors wishing to leverage remote memory nodes as
a replacement for distributed file systems must provide a file
system interface and guarantee durability for the life of a job
(more than an individual executable). Our Roofline-inspired
Little’s Law analysis (Fig. 7) still applies. That is, assuming
file system software overhead is far less than network latency,
applications must both continually read/write 256KB blocks in
order to sustain PCIe6 bandwidths whilst ensuring the local
to file IO data movement ratio exceeds 65.

Inter-Process Communication: Whereas memory and
inter-process communication (e.g. MPI) were traditionally ar-

O
ne

 O
S

pa
ge

10
 R

DM
As

qu
an

ta
= 2

56
KB

qu
an

ta
= 4

KB

qu
an

ta
= 3

2B

A1
00

 L
DS

T
co

nc
ur

re
nc

y

PCIe6: 100 GB/s

PCIe5: 50 GB/s

qu
an

ta
= 8

B

PCIe4: 25 GB/s

Fig. 7: The Roofline-inspired visualization of Little’s Law
(Concurrency Roofline) informs architects of viable combi-
nations of network bandwidth, memory access quanta, and
concurrency. When the intercept of quanta and concurrency is
less than a PCIe bandwidth, sustained bandwidth is impeded
(e.g. 4KB OS paging or 32B caching on the A100).

chitected with dedicated bandwidths, in disaggregated systems,
they both contend for finite PCIe bandwidth. Applications
with a inter-process to remote memory ratio may see PCIe
bandwidth emerge as a bottleneck.

Future Portents: Historically, latency lags bandwidth [51],
and to a lesser degree, one expects remote bandwidth to lag
local bandwidth. As such, beyond 2026 we expect the latency-
bandwidth product (requisite concurrency) to increase nearly
as fast as remote bandwidth. Systems in that time frame
with require even larger pages, even more concurrent RDMAs
(easily realized with more processes per node), or GPUs
with even more concurrency (almost guaranteed). Similarly,
the hardware local:remote ratio will increase slowly implying
some applications may become remote memory-limited. As
such, memory disaggregation will likely continue to be a
viable approach so long as network bandwidth increases.

Workload Analysis: Whereas this paper focused on ana-
lyzing individual applications in a system with disaggregated
memory, the ultimate efficacy of such a system is premised on
the workload on the system. Practitioners wishing to leverage
our methodology should characterize their applications along
the lines of Fig. 6 and ratio their compute to memory nodes
as the sum of the node hours of all the applications falling
into the blue region divided by the sum of the node hours of
all the applications falling into the green and orange regions
(scaled by memory capacity/4TB). If the scaled node hours of
the green and orange regions dominate, then there is little
value in disaggregation as such a ratio will demand more
memory nodes than compute nodes. Similarly, if the scaled
node hours of the orange region dominates, the workload is
better served with node-local DDR unencumbered by limited
PCIe bandwidths.

For amenable workloads and collaborative vendors, memory
disaggregation will provide a cost-effective means of mitigat-
ing the dynamic and highly variable memory requirements
found in HPC centers.

8

REFERENCES

[1] A. C. Elster and T. A. Haugdahl, “Nvidia hopper gpu
and grace cpu highlights,” Computing in Science &
Engineering, vol. 24, no. 2, pp. 95–100, 2022.

[2] “NERSC-10 workload analysis,” https://portal.nersc.
gov/project/m888/nersc10/workload/N10 Workload
Analysis.latest.pdf.

[3] I. Peng, R. Pearce, and M. Gokhale, “On the memory
underutilization: Exploring disaggregated memory on
hpc systems,” in 2020 IEEE 32nd International Sympo-
sium on Computer Architecture and High Performance
Computing (SBAC-PAD). IEEE, 2020, pp. 183–190.

[4] G. Michelogiannakis, B. Klenk, B. Cook, M. Y. Teh,
M. Glick, L. Dennison, K. Bergman, and J. Shalf, “A
case for intra-rack resource disaggregation in hpc,” ACM
Transactions on Architecture and Code Optimization
(TACO), vol. 19, no. 2, pp. 1–26, 2022.

[5] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst,
P. Zardoshti, M. Shah, I. Agarwal, M. Hill, M. Fontoura
et al., “First-generation memory disaggregation for cloud
platforms,” arXiv preprint arXiv:2203.00241, 2022.

[6] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Rein-
hardt, and T. F. Wenisch, “Disaggregated memory for
expansion and sharing in blade servers,” ACM SIGARCH
computer architecture news, vol. 37, no. 3, pp. 267–278,
2009.

[7] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei, “Remote memory
in the age of fast networks,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 121–127.

[8] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin,
“Efficient memory disaggregation with infiniswap,” in
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 649–667.

[9] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker,
“Network requirements for resource disaggregation,” in
12th USENIX symposium on operating systems design
and implementation (OSDI 16), 2016, pp. 249–264.

[10] F. V. Zacarias, P. Carpenter, and V. Petrucci, “Memory
demands in disaggregated hpc: How accurate do we need
to be?” in 2021 International Workshop on Performance
Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS). IEEE, 2021, pp.
1–6.

[11] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,
P. Ranganathan, and T. F. Wenisch, “System-level impli-
cations of disaggregated memory,” in IEEE International
Symposium on High-Performance Comp Architecture.
IEEE, 2012, pp. 1–12.

[12] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu, “Se-
meru: A Memory-Disaggregated Managed Runtime,” in
14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20), 2020, pp. 261–280.
[13] “Compute Express Link,” https://docs.wixstatic.com/ugd/

0c1418 d9878707bbb7427786b70c3c91d5fbd1.pdf.
[14] “Compute Express Link 2.0 White Paper,” https:

//b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/
ugd/0c1418 14c5283e7f3e40f9b2955c7d0f60bebe.pdf.

[15] “PCIE 6.0 vs 5.0 – All you need to know,” https://www.
rambus.com/blogs/pcie-6/.

[16] S. Van Doren, “Hoti 2019: Compute express link,” in
2019 IEEE Symposium on High-Performance Intercon-
nects (HOTI). IEEE, 2019, pp. 18–18.

[17] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis,
A. Reale, K. Katrinis, and H. P. Hofstee, “Thymesisflow:
a software-defined, hw/sw co-designed interconnect stack
for rack-scale memory disaggregation,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2020, pp. 868–880.

[18] “Memory Bandwidth and System Balance in HPC
Systems: 2021 Update,” https://hpc.fau.de/files/2021/12/
memorybw systembalance slides 2021-12-15.pdf.

[19] M. Daga, A. M. Aji, and W.-c. Feng, “On the efficacy of
a fused cpu+ gpu processor (or apu) for parallel comput-
ing,” in 2011 Symposium on Application Accelerators in
High-Performance Computing. IEEE, 2011, pp. 141–
149.

[20] A. Branover, D. Foley, and M. Steinman, “Amd fusion
apu: Llano,” Ieee Micro, vol. 32, no. 2, pp. 28–37, 2012.

[21] S. Williams, A. Waterman, and D. Patterson, “Roofline:
an insightful visual performance model for multicore
architectures,” Communications of the ACM, vol. 52,
no. 4, pp. 65–76, 2009.

[22] N. Baker, F. Alexander, T. Bremer, A. Hagberg,
Y. Kevrekidis, H. Najm, M. Parashar, A. Patra, J. Sethian,
S. Wild et al., “Workshop report on basic research needs
for scientific machine learning: Core technologies for
artificial intelligence,” USDOE Office of Science (SC),
Washington, DC (United States), Tech. Rep., 2019.

[23] A. Mathuriya, D. Bard, P. Mendygral, L. Meadows,
J. Arnemann, L. Shao, S. He, T. Kärnä, D. Moise, S. J.
Pennycook et al., “Cosmoflow: Using deep learning to
learn the universe at scale,” in SC18: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 819–829.

[24] T. Kurth, S. Treichler, J. Romero, M. Mudigonda,
N. Luehr, E. Phillips, A. Mahesh, M. Matheson,
J. Deslippe, M. Fatica et al., “Exascale deep learning for
climate analytics,” in SC18: International Conference for
High Performance Computing, Networking, Storage and
Analysis. IEEE, 2018, pp. 649–660.

[25] “MLPerf Training: HPC.” https://mlcommons.org/en/
training-hpc-07/.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[27] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Mi-

9

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf
https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.rambus.com/blogs/pcie-6/
https://www.rambus.com/blogs/pcie-6/
https://hpc.fau.de/files/2021/12/memorybw_systembalance_slides_2021-12-15.pdf
https://hpc.fau.de/files/2021/12/memorybw_systembalance_slides_2021-12-15.pdf
https://mlcommons.org/en/training-hpc-07/
https://mlcommons.org/en/training-hpc-07/

cikevicius, D. Patterson, H. Tang, G.-Y. Wei, P. Bailis,
V. Bittorf et al., “Mlperf training benchmark,” Proceed-
ings of Machine Learning and Systems, vol. 2, pp. 336–
349, 2020.

[28] K. Z. Ibrahim, T. Nguyen, H. A. Nam, W. Bhimji, S. Far-
rell, L. Oliker, M. Rowan, N. J. Wright, and S. Williams,
“Architectural requirements for deep learning workloads
in hpc environments,” in 2021 International Workshop on
Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS). IEEE,
2021, pp. 7–17.

[29] B. Dong, V. R. Tribaldos, X. Xing, S. Byna, J. Ajo-
Franklin, and K. Wu, “Dassa: Parallel das data storage
and analysis for subsurface event detection.” in IPDPS,
2020, pp. 254–263.

[30] “TOAST,” https://toast-cmb.readthedocs.io/en/toast3/.
[31] “Cori-NERSC Documentation,” https://docs.nersc.gov/

systems/cori/.
[32] S. Hofmeyr, R. Egan, E. Georganas, A. C. Copeland,

R. Riley, A. Clum, E. Eloe-Fadrosh, S. Roux, E. Golts-
man, A. Buluç et al., “Terabase-scale metagenome
coassembly with metahipmer,” Scientific reports, vol. 10,
no. 1, pp. 1–11, 2020.

[33] M. G. Awan, J. Deslippe, A. Buluc, O. Selvitopi,
S. Hofmeyr, L. Oliker, and K. Yelick, “Adept: a domain
independent sequence alignment strategy for gpu archi-
tectures,” BMC bioinformatics, vol. 21, no. 1, pp. 1–29,
2020.

[34] M. G. Awan, S. Hofmeyr, R. Egan, N. Ding, A. Buluc,
J. Deslippe, L. Oliker, and K. Yelick, “Accelerating large
scale de novo metagenome assembly using gpus,” in
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, 2021, pp. 1–11.

[35] “Nsight Compute Command Line Interface.” https://docs.
nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf.

[36] “Cori GPU Nodes,” https://docs-dev.nersc.gov/cgpu/.
[37] O. Selvitopi, S. Ekanayake, G. Guidi, G. A. Pavlopou-

los, A. Azad, and A. Buluç, “Distributed many-to-many
protein sequence alignment using sparse matrices,” in
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020, pp.
1–14.

[38] A. Döring, D. Weese, T. Rausch, and K. Reinert, “Seqan
an efficient, generic c++ library for sequence analysis,”
BMC Bioinformatics, vol. 9, no. 1, p. 11, Jan 2008.

[39] N. Ding, Y. Liu, S. Williams, and X. S. Li, “A message-
driven, multi-gpu parallel sparse triangular solver,” in
SIAM Conference on Applied and Computational Dis-
crete Algorithms (ACDA21). SIAM, 2021, pp. 147–159.

[40] N. Ding, S. Williams, Y. Liu, and X. S. Li, “Leveraging
one-sided communication for sparse triangular solvers,”
in Proceedings of the 2020 SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, 2020, pp.
93–105.

[41] H. Fu, J. Liao, N. Ding, X. Duan, L. Gan, Y. Liang,

X. Wang, J. Yang, Y. Zheng, W. Liu et al., “Redesigning
cam-se for peta-scale climate modeling performance and
ultra-high resolution on sunway taihulight,” in Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
2017, pp. 1–12.

[42] “General Matrix Multiplication,” https://en.wikipedia.
org/wiki/Basic Linear Algebra Subprograms#Level 3.

[43] “STREAM: Sustainable Memory Bandwidth in High
Performance Computers,” https://www.cs.virginia.edu/
stream/.

[44] “Perlmutter,” https://docs.nersc.gov/systems/perlmutter/
system details/.

[45] “NVIDIA Hopper Architecture In-
Depth,” https://developer.nvidia.com/blog/
nvidia-hopper-architecture-in-depth/.

[46] Z. Li, Z. Peng, D. Hollis, L. Zhu, and J. McClellan,
“High-resolution seismic event detection using local sim-
ilarity for large-n arrays,” Scientific reports, vol. 8, no. 1,
pp. 1–10, 2018.

[47] S. Hofmeyr, R. Egan, E. Georganas, A. C. Copeland,
R. Riley, A. Clum, E. Eloe-Fadrosh, S. Roux, E. Golts-
man, A. Buluç et al., “Terabase-scale metagenome
coassembly with metahipmer,” Scientific reports, vol. 10,
no. 1, pp. 1–11, 2020.

[48] T. M. Smith, B. Lowery, J. Langou, and R. A. van de
Geijn, “A tight i/o lower bound for matrix multiplica-
tion,” arXiv preprint arXiv:1702.02017, 2017.

[49] N. Nvidia, “A100 tensor core gpu architecture,” 2020.
[50] D. Bailey, “Little’s law and high performance comput-

ing,” in RNR Technical Report, 1997.
[51] D. A. Patterson, “Latency lags bandwith,” Communica-

tions of the ACM, vol. 47, no. 10, pp. 71–75, 2004.

10

https://toast-cmb.readthedocs.io/en/toast3/
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/cori/
https://docs.nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf
https://docs.nvidia.com/nsight-compute/pdf/NsightComputeCli.pdf
https://docs-dev.nersc.gov/cgpu/
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
https://www.cs.virginia.edu/stream/
https://www.cs.virginia.edu/stream/
https://docs.nersc.gov/systems/perlmutter/system_details/
https://docs.nersc.gov/systems/perlmutter/system_details/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

TABLE II: Approaches for characterizing the local and remote memory accesses (L:R) and remote memory capacities

Workloads Local memory accesses Remote memory accesses Remote memory capacity

AI training
ResNet-50

memory usage of the activation layer sample batch size Training set sizeDeepCAM
CosmoFlow

Genomics workloads ADEPT (w/wo traceback) analytical modeling analytical modeling

input size
EXTENSION NVIDIA NSight compute

Protein workloads PASTIS NVIDIA NSight compute analytical modeling

Data analysis workloads DASSA analytical modeling analytical modelingTOAST Intel VTune

Traditional HPC workloads GEMM analytical modeling analytical modeling analytical modelingSTREAM
NVIDIA NSight compute Metrics 32B*(dram sectors read.sum + dram sectors write.sum)
Intel VTune Metrics 64B*sum(UNC M CAS COUNT.WR[UNIT0-7],UNC M CAS COUNT.RD[UNIT0-7])

APPENDIX
ARTIFACT DESCRIPTION

A. Abstract

The key contribution of this paper is the methodology for
evaluating system architecture with disaggregated memory,
and evaluating potential and pitfalls for workloads on such a
system. The hardware and software environment used in this
paper are all publicly available as described below.

B. Description

Approaches: Case study results presented in this paper were
obtained using different approaches due to the diversity of the
workloads. Table II lists the approaches to measure or estimate
the local and remote memory accesses (L:R). Note that all the
numbers reported in refer to the memory per job.

The profiling and plotting scripts can be found
https://github.com/nanding0701/memory disaggregation.git.
The repo includes the plotting scripts for disaggregated
memory system design space (Fig. 4) and capacity and
bottleneck visualization of applications on a disaggregated
memory system (Fig. 6). With the metric table above, these
scripts, readers should be able to apply our methodology and
analysis to their own kernels or applications.

Machines: TOAST was profiled on the Haswell nodes on
Cori at NERSC. EXTENSION and PASTIS’s local memory
accesses results were obtained on the GPU-accelerated parti-
tion on Cori (EXTENSION and Cori-GPU) at NERSC.

Applications: The three profiled workloads in the paper are
described below.

1) EXTENSION: the source code can be found https:
//github.com/mgawan/mhm2 staging. Note that it is the
complete MetaHipmer2 application source code with
EXTENSION kernel integrated. We profiled single ex-
tension for vary kmer sizes and then multiply that with
45 million extensions.

2) PASTIS: the source code can be found https://github.
com/PASSIONLab/PASTIS. We run PASTIS using 5
million sequences.

3) TOAST: the source code can be found
https://github.com/hpc4cmb/toast/tree/toast3. We
run the toast benchmark satellite benchmark with a
medium case.

11

https://github.com/nanding0701/memory_disaggregation.git
 https://github.com/mgawan/mhm2_staging
 https://github.com/mgawan/mhm2_staging
https://github.com/PASSIONLab/PASTIS
https://github.com/PASSIONLab/PASTIS
https://github.com/hpc4cmb/toast/tree/toast3

	Introduction
	Related Work
	System Architecture Design
	Remote memory resources versus utilization
	Remote memory access patterns

	Application Case Studies
	Disaggregated System Configurations
	Application Characteristics
	Application Analysis
	Application Analysis Summary

	Discussion and Conclusions
	Appendix: Artifact Description
	Abstract
	Description

