Modeling Antarctic Ice Sheet Dynamics using Adaptive Mesh Refinement

Dan Martin Applied Numerical Algorithms Group Lawrence Berkeley, National Laboratory

Joint work with:

- Mark Adams (LBNL)
- Stephen Cornford (Swansea)
- Xylar Asay-Davis (Potsdam-PIK)
- Stephen Price (LANL)
- Esmond Ng (LBNL)

Marine Ice Sheets: Larsen B Breakup (2002)

• January 31, 2002

Marine Ice Shelves: Larsen B Breakup (2002)

• February 17, 2002

Marine Ice Shelves: Larsen B Breakup (2002)

• February 23, 2002

Marine Ice Shelves: Larsen B Breakup (2002)

• March 5, 2002

Aftermath...

- 3,250 square kilometers (1,250 square miles)
- Breakup took about 1 month
- Likely due to exceptionally warm summer
 - Melt pools on surface surface melting -> hydrofracture
 - Warm ocean temperatures in the Weddell Sea

- Results: Larsen A and B glaciers
 - abrupt acceleration, about 300% on average
 - mass loss went from 2–4 gigatonnes per year in 1996 and 2000 (gigatonne = one billion metric tonnes), to between 22 40 gigatonnes per year in 2006.
 - Not the last! (Wilkins, 2008-2009)

Why do we care?

Global Sea Level Budget:

- Ocean thermal expansion: ~1 mm/yr
- Glaciers and ice caps:
- Ice sheets:
 - Greenland 0.6 mm/yr
 - Antarctica 0.4 mm/yr
- Terrestrial storage:
 - Dam retention -0.3 mm/yr
 - Groundwater depletion 0.3 mm/yr

The ice sheet contribution has roughly **doubled** since 2000 and will likely continue to increase.

Antarctic ice mass loss (Velicogna 2009)

~1 mm/yr

~1 mm/yr

~0 mm/yr

Currently two ice sheets...

Greenland Ice Sheet

5-7 m Sea Level Equivalent (SLE)

Antarctic Ice Sheet

60 m SLE (4-5m in marine-grounded parts of West Antarctica)

Image: http://www.snowballearth.org

Antarctic Marine Ice Sheet Instability

Antarctic Marine Ice Sheet Instability

LeBrocq et al., 2010

- 12 -

BISICLES Ice Sheet Model

- Scalable adaptive mesh refinement (AMR) ice sheet model
 - Dynamic local refinement of mesh to improve accuracy
- Chombo AMR framework for block-structured AMR
 - Support for AMR discretizations
 - Scalable solvers
 - Developed at LBNL
 - DOE ASCR supported (FASTMath)
- Collaboration with Bristol (U.K.) and LANL
- Variant of "L1L2" model (Schoof and Hindmarsh, 2010)
- Now in second-round of SciDAC funding (PISCEES, ProSPect)
- Users in Berkeley, Bristol, Beijing, Brussels, and Berlin...

Why is this useful? (another BISICLE for another fish?)

- Ice sheets -- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)
- Antarctica is really big too big to resolve at that level of resolution.
- Large regions where such fine resolution is unnecessary (e.g. East Antarctica)
- Well-suited for adaptive mesh refinement (AMR)
- Problems still large: need good parallel efficiency
- Dominated by nonlinear coupled elliptic system for ice velocity solve: good linear and nonlinear solvers

Target Problems

- Idealized Ice-Ocean interaction test problems
 - Simple/small geometries designed to understand GL dynamics and ice-ocean interactions
 - MISMIP3D, MISMIP+, MISOMIP

- Realistic full-scale
 - Fully-resolved (500m) full-continent
 - Antarctica

BISICLES: Models and Approximations

Physics: Non-Newtonian viscous flow: $\mu(\dot{\epsilon^2},T) = A(T)(\dot{\epsilon^2})^{\frac{(1-n)}{2}}$ Where $\dot{\epsilon}^2$ is the strain rate invariant, typically n = 3

- "Full-Stokes"
 - Best fidelity to ice sheet dynamics
 - Computationally expensive (full 3D coupled nonlinear elliptic equations)

Approximate Stokes

- Use scaling arguments to produce simpler set of equations
- Common expansion is in ratio of vertical to horizontal length scales ($\varepsilon = \frac{[h]}{[l]}$)
- E.g. Blatter-Pattyn (most common "higher-order" model), accurate to $O(\varepsilon^2)$
- Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

"L1L2" Model (Schoof and Hindmarsh, 2010)

Uses asymptotic structure of full Stokes system to construct a higher-order approximation

- Expansion in
$$\varepsilon = \frac{[H]}{[L]}$$
 and $\lambda = \frac{[\tau_{shear}]}{[\tau_{normal}]}$ (ratio of shear & normal stresses)

- Large λ: shear-dominated flow
- Small λ: sliding-dominated flow
- Computing velocity to $O(\varepsilon^2)$ only requires τ to $O(\varepsilon)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations. (can reconstruct 3d)
 - Recovers proper fast- and slow-sliding limits:
 - SIA $(1 \ll \lambda \le \varepsilon^{-1/n})$ -- accurate to $O(\varepsilon^2 \lambda^{n-2})$
 - SSA $(\varepsilon \le \lambda \le 1)$ accurate to $O(\varepsilon^2)$

Discretizations

- Baseline model:
 - Logically-rectangular grid, obtained from a time-dependent uniform mapping.
 - 2D equation for ice thickness *H*:

$$\frac{\partial H}{\partial t} = b - \nabla \cdot (H\overline{u})$$

- Vertically-integrated momentum balance results in 2D **nonlinear** viscous tensor solve (viscosity a function of velocity) for velocity $\overrightarrow{u_b}$ at the base of the ice:

$$\beta^{2} \overrightarrow{u_{b}} + \nabla \cdot \left[\mu \left(\dot{\varepsilon}^{2} \right) \left(\vec{\nabla} + \vec{\nabla}^{T} \right) \overrightarrow{u_{b}} - 2\mu \left(\nabla \cdot \overrightarrow{u_{b}} \right) \right] = -\frac{g}{\rho} H \vec{\nabla} s$$

 β^2 = friction coefficient, $\dot{\varepsilon}$ = strain rate invariant of ice velocity, g = gravity, ρ = ice density, H = ice thickness, $\vec{\nabla}s$ = horizontal gradient of upper surface

Enthalpy formulation for energy

Discretizations, cont

- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

Chombo – Scalable Adaptive Mesh Refinement (AMR)

Scalable adaptive mesh refinement (AMR) framework.

Enables implementing scalable AMR applications with support for complex geometries.

BERKELEY L

Adaptive Mesh Refinement (AMR)

- Block structured AMR dynamically focuses computational effort where needed to improve solution accuracy
- Designed as a developers' toolbox for implementing scalable AMR applications
- Implemented in C++/Fortran
- Solvers for hyperbolic, parabolic, and elliptic systems of PDEs

Complex Geometries

- Embedded-boundary (EB) methods use a cut-cell approach to embed complex geometries in a regular Cartesian mesh
- EB mesh generation is extremely efficient
- Structured EB meshes make high performance easier to attain

Higher-order finite-volume

- Higher (4th)-order schemes reduce memory footprint and improve arithmetic intensity
- Good fit for emerging architectures
- Both EB and mapped-multiblock approaches to complex geometry

Nonlinear and Linear Solvers

- 90% of computational time spent in nonlinear viscous tensor solve
- Jacobian-Free Newton Krylov (JFNK) + Picard iterative nonlinear solvers
- Need good linear solver performance!
- Chombo native solvers Geometric MultiGrid (GMG)
 - Follows Naturally from AMR hierarchy
 - When it works, it works really well (after some tuning)
 - Matrix-free!
 - Relatively efficient
- Other problems require AMG solvers
 - Link to PETSc (HYPRE, GAMG)

Mesh resolution requirements for marine AIS

Experiment – 1000-year Antarctic simulations

- Range of finest resolution from 8 km (no refinement) to 500m (4 levels of factor-2 refinement)
- Subgrid basal friction parameterization (e.g. Seroussi et al)
 - Experience shows that it buys us about a factor of 2x
- At initial time, subject ice shelves to extreme (outlandish) depth-dependent melting:
 - No melt for h < 100m
 - Range up to 400 m/a where h > 800 m.
 - No melt applied in partially-grounded cells
- For each resolution, evolve for 1000 years

Initial Condition for Antarctic Simulations

- Full-continent Bedmap2 (2013) geometry
- Temperature field from Pattyn (2010)
- Initialize basal friction to match Rignot (2011) velocities
- SMB: Arthern et al (2006)
- AMR meshes: 8 km base mesh, adaptively refine to Δx_f

Antarctic ice loss simulation using the SciDAC-supported BISICLES ice sheet model

Resolution requirements...

- Upper plot Contribution to SLR
 - Convergent at sufficient resolution

- Lower plot -- Rate of Change
 - Big spike WAIS collapse
 - Timing, pathways are a function of resolution

"Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic Ice Dynamics", Cornford, Martin, Lee, Payne, Ng, *Annals of Glaciology*, 57 (73), 2016

Evaluating Antarctic Vulnerability...

• Next step – restrict forcing regionally

Antarctic vulnerability to warm-water forcing

- Basic idea try to understand where AIS is vulnerable to forcing from warm-water incursions
 Antarctic sectors
- Divide AIS into sectors
- For each sector in turn (and for some combinations), apply extreme depth-dependent melt forcing
 - No melt for h < 100m
 - Range up to 400m/a where h > 800m.
 - No melt applied in partially-grounded cells

• Run for 1000 years, compare with control (no melt).

Martin, D. F., Cornford, S. L., & Payne, A. J. (2019). Millennial-scale vulnerability of the Antarctic Ice Sheet to regional ice shelf collapse. *Geophysical Research Letters*, 46, 1467–1475.

https://doi.org/10.1029/2018GL081229

Antarctic Vulnerability results:

Sector 5 (Weddell Sea/Ronne Ice Shelf)

Regional Independence

 Resource limitations often force models to look at individual sectors/drainage basins

• Relies on the assumption of regional independence

• Can look at combinations of sectors to see if they behave independently...

Change in VaF vs. Time, sectors 2 and 4

Change in VaF vs. Time, sectors 2 and 5

- Yellow, Blue single sectors
- Purple combination
- Green sum of the two single-sector runs
- For WAIS sectors, roughly independent at start, after O(200a), start to interact

Summary

- First fully-resolved, systematic study of millennial-scale ice sheet response to regional ice shelf collapse based on 14 drainage basins.
- Sustained ice-shelf loss in **any** of the Amundsen Sea, Ronne, or Ross sectors can lead to wholesale West Antarctic collapse.
- Even with extreme forcing, loss is relatively modest for the initial century, increasing markedly afterward in West Antarctic collapse scenarios.
- Results indicate that Antarctic drainage basins are dynamically independent for 1-2 centuries, after which dynamic interactions between basins become increasingly important (and regional modeling results will be increasingly inaccurate).
- Combination of AMR and NERSC resources made this possible 35,000 years of fully-resolved full-continent Antarctic simulation.

Acknowledgements:

- US Department of Energy Office of Science (ASCR/BER) SciDAC applications program (PISCEES, ProSPecT)
- NERSC

Thank you!

