Optimizing Nuclear Configuration Interaction
Calculations on GPUs: A Comparative Performance
Study of Programming Models

Abdullah Alperen*, Nan DingT, Khaled Z. Ibrahim, Pieter Maris*, Leonid Oliker’, Chao YangT, Hasan Metin Aktulga*

* Michigan State University
{alperena, hma} @msu.edu
t Lawrence Berkeley National Laboratory
{nanding, kzibrahim, LOliker, CYang} @Ibl.gov
Howa State University
{pmaris } @iastate.edu

Abstract—MFDn (Many-body Fermion Dynamics for nucleons)
is a cutting-edge Configuration Interaction (CI) code designed
to tackle nuclear quantum many-body problems. The core
computational task in MFDn involves solving a large sparse
eigenvalue problem using iterative methods, where the most
costly computational step is the sparse matrix-vector multipli-
cation (SpMYV). Recently, an MPI/OpenACC based SpMV was
developed to enable MFDn to run efficiently on NVIDIA GPUs.
In this work, we explore various strategies to further enhance
the performance of MFDn by exploiting architecture features of
GPUs and making use of alternative programming models such
as CUDA Kkernels as well as communication protocols such as the
asynchronous point-to-point (P2P) message passing and NVIDIA
Collective Communication Library (NCCL). We demonstrate
the performance gain achieved by using these techniques. In
particular, we show that, on problem sizes with up to 1.3 trillion
nonzeros, we can obtain up to 2.0x improvement in the overall
solver time by switching from OpenACC to a hand-optimized
CUDA implementation across 1540 GPUs. Additionally, when
combined with asynchronous P2P message passing and NCCL,
we observe performance boosts of 2.9x (P2P) and 4.9x (NCCL)
compared to the baseline optimized version using the MPI/Ope-
nACC programming model. Our study has uncovered a few
limitations of the existing directive based programming models
such as OpenACC and highlights the challenges of using CUDA-
aware MPI for certain collective communications. While the
primary focus of this work is on optimizing the performance
of MFDn, the insights and solutions we provide are likely to be
relevant to a broad range of applications.

Index Terms—quantum many-body problem, Lanczos, dis-
tributed SpMV, MPI, NCCL, OpenACC, CUDA, roofline model

This material is based upon work supported by the U.S. Department of
Energy (DOE), Office of Science under the Scientific Discovery through
Advanced Computing (SciDAC) Program via Grants DE-SC0023175 and DE-
SC0023495 from the Office of Nuclear Physics, and via funding for the
SciDAC FASTMath Institute by the Office of Advanced Scientific Computing
Research through Contract No. DE-AC02-05CH11231. We also acknowledge
funding from the U.S. National Science Foundation, Office of Advanced Cy-
berinfrastructure under Grant 1845208. This work used computing resources
of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the DOE Office of Science under Contract No. DE-
ACO02-05CH11231, using NERSC Awards ASCR-ERCAP m1027 for 2024
and NP-ERCAP m94 for 2024, as well as those provided by the High
Performance Computing Center (HPCC) at Michigan State University.

I. INTRODUCTION

Solving quantum many-body problems is one of the most
challenging tasks in computational science. MFDn (Many-
body Fermion Dynamics for nucleons) is a cutting-edge Con-
figuration Interaction (CI) code specifically designed to solve
nuclear quantum many-body problems and enable scientists to
study the structures of atomic nuclei [1]. The core computa-
tional task in MFDn involves solving a large sparse eigenvalue
problem in which the many-nucleon Hamiltonian, expanded in
Slater determinants of an harmonic oscillator single-particle
basis, is partially diagonalized [2]. The dimension of this
matrix, which we denote by n, depends on the number of
nucleons and a truncation parameter N,y that determines
the number of many-body basis functions (Slater determinants)
used to represent the nuclear Hamiltonian. n can easily exceed
a billion for a relatively large Ny,.x even for a nucleus with
a few protons and neutrons (collectively called nucleons) [1].
However, the Hamiltonian matrix is extremely sparse. In most
cases, one needs to compute five to ten eigenvalues at the low
end of the spectrum and the corresponding eigenvectors. As a
result, iterative methods that make use of sparse matrix vector
multiplication are suitable for solving this type of problem.
MFDn contains an efficient implementation of the Lanczos
algorithm [3]; other algorithms such as the Locally Optimal
Block Preconditioned Conjugated Gradient (LOBPCG) algo-
rithm have also been implemented in MFDn [4].

In these iterative algorithms, the multiplication of the sparse
Hamiltonian matrix with one or several vectors (Sparse Ma-
trix Vector and Sparse Matrix Matrix, SpMV and SpMM)
is the most costly computational step in each iteration. A
significant amount of effort has been made to improve the
efficiency of such computation on distributed memory parallel
computers with multi-core processors. In particular, a hybrid
MPI/OpenMP implementation was developed to enable SpMV
and SpMM operations to be performed efficiently on hundreds

of thousands CPU cores [5-9]. The implementation uses a
special matrix partition and distribution scheme while orga-
nizing the computation to overlap with communication. More
recently, an MPI/OpenACC implementation was developed
to enable SpMV and SpMM operations to be performed
efficiently on NVIDIA GPUs [10, 11]. This effort has led to
an order of magnitude reduction in wall clock time for small
to medium sized problems.

However, for large problems that must be solved on many
computational nodes, each with multiple GPUs, the perfor-
mance of the MPI/OpenACC implementation is less than
satisfactory. The lackluster performance is partly due to high
communication overhead relative to the number of floating
point operations carried out on GPU devices. Furthermore,
due to the irregular sparsity pattern of the MFDn Hamilto-
nian, OpenACC has some limitations in mapping concurrent
operations in an SpMV and SpMM to GPU thread blocks and
threads in an optimal fashion.

In this work, we demonstrate the limitations of this initial
GPU-parallel version based on an MPI/OpenACC scheme.
We then propose several ways to improve the performance
of the Lanczos algorithm on large-scale multi-node multi-
GPU configurations. For these experiments, we use Perlmutter
nodes equipped with NVIDIA A100 GPUs at National Energy
Research Scientific Computing (NERSC) [12]. We apply the
proposed improvements to each SpMV, which is by far the
most time-consuming portion of the Lanczos algorithm.

The contributions of this work can be listed as follows:

o We demonstrate a factor of two speedup in the Lanczos
solver time by switching from an optimized OpenACC-
based to a hand-tuned CUDA-based implementation of
the SpMV kernel,

o We show that the MPI collectives — MPI_Reduce and
MPI_Reduce_scatter — limit the scaling perfor-
mance of Lanczos on multi-GPU experiments due to local
reductions needed by these two calls being performed on
the host side;

e We design and implement a P2P/CUDA scheme by
employing non-blocking MPI point-to-point (P2P) com-
munication instead of MPI collectives which can achieve
a factor of three speedup over MPI/OpenACC (using
collectives) on 69 Perlmutter GPU nodes at NERSC;

e We design and implement a NCCL/CUDA scheme by
replacing MPI collectives with NVIDIA Collective Com-
munications Library (NCCL) collectives. This scheme
leverages the massive number of GPU threads for large
messages and achieves a factor of five speedup over
MPI/OpenACC on 48 Perlmutter GPU nodes at NERSC;

o We perform in-depth analysis for all implementations
to help understand each implementation’s performance
benefits and limitations.

Our experiences may help guide other applications that involve
expensive 2D distributed-memory SpMVs or SpMMs.

II. MFDN’S ALGORITHM AND IMPLEMENTATION

In MFDn there are two distinct workloads: one is the
evaluation of matrix elements (both for the construction of the
many-nucleon Hamiltonian at the start of a run, and for the
evaluation of physical observables at the end of a run); and the
other is the iterative solver for the partial diagonalization of the
Hamiltonian. The evaluation of matrix elements is excellently
load-balanced, does not involve any significant amount of
communication overhead, and typically takes (significantly)
less time than the iterative solver. For most production runs
the iterative Lanczos solver takes between 40% and 80% of
the total runtime; and the most time-consuming part of the
Lanczos algorithm is the distributed SpMV. Furthermore, dur-
ing the first 100 Lanczos iterations, the orthogonalization time
(between each iteration) is negligible (less than 2%) compared
to the SpMV time. An efficient implementation of the SpMV
is therefore crucial in order to obtain a high-performance
Lanczos solver. This is particularly true on distributed-memory
where the communication overhead can easily become a bot-
tleneck and hinder performance if not addressed properly, see
Table II in Section III below. We therefore concentrate on the
performance of the distributed SpMV, and in particular on the
communication overhead during the distributed SpMV. For all
our performance tests we use a fixed number of 100 Lanczos
iterations (sufficient to converge the lowest two eigenvectors),
so the orthogonalization time remains negligible compared to
the SpMV time.

A. Data Distribution

The dimension of the sparse matrix H can be extremely
large, and thus, it is often partitioned and distributed across
multiple processes [2]. Additionally, in MFDn, only half of
the symmetric matrix H is stored, utilizing a specialized data
distribution scheme as described below [5, 6].

We first divide the rows and columns of H into ng X ng
submatrices. Since the matrix is symmetric, we only need
ng X (ng 4+ 1)/2 out of ng X ng submatrices to describe the
complete matrix. These submatrices are mapped to a two-
dimensional process grid. The processes are then organized
into (sub)communication groups based on the row and column
indices of their respective submatrices. Well-balanced row and
column (sub)communication groups are key to achieving a
meaningful performance for the distributed SpMV algorithm.

Figure 1a shows an example of this partition and selection
process. The symmetric sparse matrix H is partitioned into
5 X b matrices. We also highlight the selected submatrices,
each of which is assigned to its own process. Notice that each
row and column holds three submatrices. This means there will
be five row and five column communicators, each containing
three MPI processes.

We partition the input vector W and the output vector U
among ng X (ng + 1)/2 processes in two stages. First, we
partition W and U into ng sub-vectors to distribute among
column groups. Then, we further partition each sub-vector into
(ng+1)/2 segments to distribute among the processes within
a column group. Thus, each process is assigned to 1/(ng X

H,, Hiy | Hys 1 12 | 14
H,. | H,, H,, 2 4 15
Hy | Hy, | Hys 3 5 7
H4,2 H4,3 H4,4 6 8 10
H5,3 H5,4 H5,5 9 11 13
(a) Symmetric sparse matrix H
Llwl [w] [[w] [[w] | [w] |

=
K
=

2

1.3 22 31

(b) Input vector W

Fig. 1: (a) The partition of a symmetric sparse matrix H
into 5 x 5 submatrices (left) and the distribution of H and
W among 15 processes where we use a column-major order.
(b) The partition of an input vector W into 5 sub-vectors on
each column where we partition each sub-vector further into
3 segments.

(ng +1)/2) of W and U. We show the partition of W in
Figure 1b for the same example given in Figure 1la.

Note that MFDn employs a data distribution scheme de-
signed to achieve load balance by ensuring that both the
sizes of the distributed matrix blocks and the number of
nonzero matrix elements in each block are approximately
equal. However, these quantities are not perfectly identical
across all MPI ranks. This may lead to some load imbalance
in practice.

B. Distributed-memory SpMV

A specialized SpMV multiplication procedure has been de-
veloped to accommodate this unique data distribution scheme
when multiplying H with . Here, we refer to the jth block
of sub-vectors of W as W;. In MFDn, the distributed-memory
parallel multiplication of H and W is performed as follows:

o Step 1/4: We first gather the distributed segments of the
sub-vector W; onto each process within the jth column
communicator by using an MPI_Allgatherv call.

o Step 2/4: The ¢th diagonal process then broadcasts the
gathered sub-vector W;, where ¢« = j for the diagonal
processes, across the ith row communicator. This is done
in preparation for the distributed SpM V-transpose compu-
tations of the next step. We overlap this MPI_Bcast call

with the local SpMV, which is U; = H; ;W;, by using
the gathered input sub-vector from the previous step.

o Step 3/4: We now reduce the partial results of the output
sub-vectors U; along each row communicator onto the
tth diagonal process. We overlap this MPI_Reduce call
with the local SpMV-transpose, which is U; = HIT jWZ-,
by using the broadcast input sub-vector from the previous
step.

o Step 4/4: After the local SpMV-transpose, on the diag-
onal processes, we add the reduced output sub-vector
U; to the local output sub-vector U;. Finally, we re-
duce and scatter the sub-vectors U; into (ng + 1)/2
segments within the jth column communicator by using
MPI_Reduce_scatter.

Each process starts with a segment of a sub-vector of W and
ends up with the corresponding segment of a sub-vector of
U as intended. We show all four steps in Figure 2 to help
visualize the algorithm.

W, Y| W:| Step 1/4 w, W, | W,
Wiz | W, Wss w, | w, w,
Wi | W, | Wy, Allgatherv w, | w,|w,
w, w,
2 1 on column group W
Wos | W, | Ws, w, | w,|w,
HW, HW, | H,
Step 2/4
et | Had Hasts local
Overlapping local SpMV Haly | Ho Wy | H, kSpN:v
kernel and Broadcast of o, | o, | 1w, e:;:uon
W along the row groups
HW, | oo,
w, w, | w,
w, w,|w, w,
Bcast
w, w,
w, on row group w,
w, ws
w, wr,w, |,
Step 3/4
Ho Wy | W W, H W, local
Overlapping local o, | e [, SpMVvT
SpMVT kernel and kernel
Reduce of U along the S I on GPU
row groups W, | ww, | Hw,
v, u | v v,
u | o, v
local SpMV Reduce 2
results | [o]« —— v
A on row group u,
A v,
U'
m Step 4/4
reduced u,
local SpMV
results v u,, U | Usz
Us
+ Reduce_scatter U, | U, U
U, U, U,
A IO on column group ol Il
v v un Uz,z U4,1
local v, |, | v
Bl :1 U, U, U,
SpMV™ 33 | Yaz | Yss
LA A O
results
A N A

Fig. 2: Four steps of the SpMV algorithm employed in MFDn.

C. Task-to-Process Mapping

At large scales, communication overhead can limit the scal-
ability of the Lanczos Algorithm. Topology-aware mapping
of computational tasks to physical processors is one of these
methods to reduce the communication overhead and thus
improve the efficiency of a Lanczos implementation.

When mapping the submatrices of H and the segments
of W and U to the processes, we use a column-major
mapping scheme developed in [5]. Figure la shows this
column-major mapping for the same example where ng = 5.
This way, we can partially (or completely) hide the cost of
MPI_Bcast and MPI_Reduce by overlapping them with
local SpMV and SpM V-transpose. Both MPI collectives are
performed along row communicators. However, there is no
compute task that can be overlapped with MPI_Allgatherv
or MPI_Reduce_scatter. Therefore, performing these
two MPI collectives on column communicators as efficiently
as possible would improve the overall performanc [5]. Ad-
ditionally, collective operations such as MPI_Reduce can
introduce load imbalance. Specifically, only rank O in each
sub-communication domain performs the local reduction com-
putation, while other ranks remain idle, waiting for rank 0 to
complete the operation.

The MPI library itself considers the network topology when
assigning ranks to processes. For example, processes within a
single node will be given consecutive ranks by default. There-
fore, ordering processes in column-major order will ensure that
the processes in a column group and their corresponding tasks
are assigned to the physically nearby processors (or GPUs).

Although topology-aware mapping is shown to be an NP-
complete problem [13], this heuristic suggested by [5] is
proven to be quite efficient for the performance of the given
SpMV algorithm. As an example, executing 28 MPI ranks
on 7 nodes, with 4 ranks per node, is highly efficient be-
cause the MPI collectives on column communicators are all
performed within a node, while the MPI collectives on row
communicators overlap with local computations. Although the
merit of this heuristic for the MPI/OpenMP implementation of
MFDn was demonstrated on a distributed CPU cluster [5], the
same heuristic is used for the GPU-parallel MPI/OpenACC
scheme [11] as well, following the same underlying principles.

D. Current MPI/OpenACC implementation

MFDn uses an MPI/OpenACC scheme for the distributed
SpMV algorithm outlined above. Specifically, it uses Ope-
nACC as the GPU programming model for the local SpMV
and SpMV-transpose, in combination with MPI collectives for
the Allgatherv, Bcast, Reduce and Reduce_scatter operations.

Each local Hamiltonian submatrix H; ; referred to in sec-
tion II-B is a block sparse matrix, with each block being sparse
as well. The local SpMV procedure used in MFDn loops over
nonzero blocks to perform a sequence of SpMVs on each
sparse block, and accumulates the result into a local vector.
In addition to a local SpMYV, it also performs a local SpMV-
transpose with the same data structure, because only half of the
symmetric matrix is stored. The OpenACC implementation of

!Sacc parallel loop collapse(2) default (present) &
!'$Sacc vector_length (CACHESIZE) private(c_ar,r_ar, x_ ar)
do i = 1, nrowblks
do j = 1, ncolblks
if (CSBnnz (i, 3j) > 0) then
cbase = colCSBoffset (3J)
rbase = rowCSBoffset (i) - 1
do k =1, CSBnnz (i, j), CACHESIZE
kmax = min (CACHESIZE, CSBnnz (i, Jj)-k+1)
koffset = CSBnnzoffset (i, j)+k-1
!'Sacc loop vector
do k = 1, kvmax
c_ar (k) nrhs« (cbase + Hcloc (koffset+k)
r_ar (k) nrhsx (rbase + Hrloc (koffset+k))
x_ar (k) Hval (koffset+k)
enddo
!'Sacc loop vector collapse(2)
do k =1, kvmax
do ii = 1, nrhs
c c_ar(k) + ii
r r_ar(k) + 1ii
X x_ar (k)
!$acc atomic update
Hamp (r) = Hamp(r) + x * amp(c)
!$acc end atomic
end do
end do
end if
end do
end do
!Sacc end parallel loop

-1

Fig. 3: The OpenACC implementation of the local SpMM.
The sparse Hamiltonian matrix is stored in the arrays Hcloc,
Hrloc, and Hval using a Compressed Sparse Block (CSB)
format. The input and output vectors are stored in the arrays
amp and Hamp respectively, and nrhs is the numbers of
vectors (for Lanczos, nrhs=1) .

such an SpMV procedure for GPUs uses parallel loop
and loop vector directives to map sparse matrix blocks
to thread blocks and non-zero matrix elements within each
block to multiple threads to initiate concurrent executation
of the local SpMV [11]. An atomic update directive is
used to avoid write conflicts. A snipped of the OpenACC
implementation is shown in Figure 3.

III. PERFORMANCE OPTIMIZATION METHODOLOGIES

We discuss the three proposed optimization schemes listed
in Table I in this section. The three proposed optimiza-
tion schemes are MPI/CUDA, P2P/CUDA and NCCL/CUDA.
MPI/CUDA uses MPI collectives as is, but replaces the
OpenACC kernels for local SpMV and SpMV-transpose with
the corresponding CUDA kernels. P2P/CUDA is designed and
implemented on top of MPI/CUDA. It replaces MPI_Reduce
and MPI_Reduce_scatter collectives with MPI P2P calls
and local GPU reduction kernels. NCCL/CUDA is also de-
signed and implemented on top of MPI/CUDA, and it replaces
all MPI collectives with NCCL collectives.

A. Improving Local SpMV with CUDA (MPI/CUDA)

OpenACC relies on the compiler to launch kernels with
multiple thread blocks to execute nested loops shown in
Figure 3. The number of thread blocks and the number of
threads within each block is automatically determined by the

TABLE I: Summary of the default MPI/OpenACC as well as
the proposed P2P/CUDA and NCCL/CUDA schemes.

MPI/OpenACC | MPI/CUDA | P2P/CUDA | NCCL/CUDA
(Baseline)
Local SpMV OpenACC CUDA CUDA CUDA
Local SpMV7T OpenACC CUDA CUDA CUDA
Allgatherv MPI Coll MPI Coll MPI Coll NCCL Coll
Bcast (overlapped) MPI Coll MPI Coll MPI Coll NCCL Coll
Reduce (overlapped) | MPI Coll MPI Coll MPI P2P NCCL Coll
Reduce_scatter MPI Coll MPI Coll MPI P2P NCCL Coll

compiler. In our CUDA implementation, shown in Figure 4, we
leverage shared memory as software cache to both the indexes
and the values of block of data to hold active blocks. Accessing
architectural features, such as shared memory, may be used by
high-level offloading programming models only under certain
constraints, for instance for special explicit compile-time array
sizes [11].

Moreover, CUDA implementation enables more flexible
mapping of computation to the three levels of architectural
parallelism (warp-level, intra thread-block, and inter thread-
blocks) and control of scheduling the thread blocks. The
performance of atomic operations on GPU accelerators relies
heavily on reducing the level of conflicts [14], which can be
done more effectively using a low-level implementation.

In general, a low-level programming model like CUDA
enables more precise control of GPU resource utilization
for kernel launch with an optimal thread block size, thread
configurations, and cache size. The performance gap between
OpenACC and CUDA can be influenced by the code genera-
tion process of the OpenACC variant and the mechanism used
to guarantee the atomicity of updates.

B. Improving Communication with P2P (P2P/CUDA)

In the current GPU implementation of MFDn, CUDA-
aware MPI implicitly handles any necessary data movement
between devices and hosts. Table II shows the time spent on
each collective communication operation over 100 Lanczos
iterations for two of our test cases (see Sect.IV for details).
For an accurate measurement, we placed an MPI_Barrier
before these collectives. One can immediately observe that
communication time dominates the total solver time as the
number of GPUs increases. Such observation is consistent with
the that made in [11].

TABLE II: Collective communication time distribution over
100 Lanczos iterations, percentage of communication time to
baseline solver time, and predicted communication speedup
using P2P.

Small Medium
of GPUs 45 91 190 | 91 190 378
Allgatherv 0.51 036 023 | 142 0.76 0.56
Bcast .13 1.07 087 | 3.64 3.07 221
Reduce 556 385 284 | 134 961 7.01
Reduce_scatter 389 336 336 | 859 694 6091
Tot 11.1 864 730 | 27.1 204 16.7
% of Solver Time 425 557 618 | 608 67.1 77.6
Predicted Speedup 235 179 161 | 1.64 149 1.28
Typical Message Size (MB) | 132 95 55 329 230 164

__global__ void spmm_kernel(. . .)
{
i = blockIdx.x;

= blockIdx.y;

= rowCSBoffset[i] - 1;
c_base = colCSBoffset[]j] - 1;

start = CSBnnzoffset[ixncolblks + j];
end = start + CSBnnz[ixncolblks + jl;

rhs_assigned = threadIdx.x & (nrhs - 1);
cache_begin = threadIdx.x >> lognrhs;
cache_jump = blockDim.x >> lognrhs;

_ _shared__ int32_t Hrloc_local [CACHESIZE];
__shared__ int32_t Hcloc_local [CACHESIZE];
__shared___ float Hval_local [CACHESIZE];

for(k = start;
{

k < end; k += CACHESIZE)

len = min (CACHESIZE, end - k);

last = k + len;

for(l = k + threadIdx.x;
Hrloc_local[l-k] =
Hcloc_local[l-k] =

= blockDim.x) {

+
1])<<lognrhs;
1]

1 < last; 1
(r_base+Hrloc|
[

(c_base+Hcloc) <<lognrhs;
Hval_local([l-k] = Hval[l];
}
__syncthreads () ;

for(l = cache_begin; 1 < len; 1 += cache_jump) {
r = Hrloc_local[l] + rhs_assigned;
c = Hcloc_local[l] + rhs_assigned;
xcoef = Hval_localll];
atomicAdd (Hamp+r, xcoefxamp[c]);
atomicAdd (HampT+c, xcoefxampT[r]);
}

__syncthreads () ;

Fig. 4: The CUDA implementation of the local SpMM. Com-
pared with the OpenACC implementation, the cache is imple-
mented using software managed storage on the GPU shared
memory. Moreover, mapping of CSB blocks to thread blocks
impacts the atomic conflicts and the observed performance.

Table II suggests that Reduce and Reduce_scatter
collectives are more expensive than Allgatherv and
Bcast. On the Small problem with 190 GPUs, for instance,
we spend 6.2s total on Reduce and Reduce_scatter
while Allgatherv and Bcast time adds up to 1.1 sec-
onds. Therefore, one needs to address the MPI_Reduce
and MPI_Reduce_scatter calls in MPI/CUDA to achieve
further improvements. The predicted speedups are obtained
using the Message Roofline Model [15] which estimates time
spent in a MPI_Reduce call vs. time spent in a reduction
process implemented by using MPI P2P communication calls
to collect data and performing summation on a GPU. Message
Roofline Model benchmarks the achieved bandwidth according
to the correlated number of messages per synchronization
(square root of the number of GPUs) and typical message
sizes. Intuitively, one would expect the predicted speedups to
increase if communication time as a percentage of solver time
increases. Conversely, our predicted speedups decrease as the
number of GPUs increases. This combined effect of message
size and number of messages results in P2P based reduction
exhibiting non-constant speedups over MPI collectives. This

is why we see a smaller predicted speedup when using more
GPUs.

Figure 5 shows a snapshot of the Nsight Systems pro-
filing of the baseline GPU implementation. The bottom
part shows the blocking nature of MPI_Reduce and
MPI_Reduce_scatter calls on the CPU side. The top
part, which displays the activity on the GPU hardware, high-
lights the copy operations between host and device: device-
to-host data movements (DfoH memcpy) occur before the
MPI_Reduce and MPI_Reduce_scatter calls, followed
by one or multiple host-to-device data movements (HtoD mem-
cpy) after all participating processes complete the reduction
on CPUs. These observations make it clear that summation in
the CUDA-aware MPI_Reduce takes place on the host side,
which is considerably slower than GPU operations for large

reductions.
N
a
GPU

B activity

[Host to Device memcpy |i | 1 I

MPI_Reduce &
MPI_Reduce_scatter

o e Lo] [VP s a2 453 e CPU
H!IB . LII . _31 Sz . ’

activity

[,

Device to Host &

Fig. 5: NSight Systems profiling showing device to host and
host to device copy operations performed during Reduce and
Reduce_scatter calls with MPI.

Point-to-point (P2P) communication is a straightforward
method to address the above problems. One only needs to re-
place MPI_Reduce and MPI_Reduce_scatter calls with
non-blocking point-to-point (P2P) sends and blocking receives,
and implement the summation performed in the reduction
on GPUs. Figure 6 demonstrates a P2P implementation of
MPI_Reduce. We use MPI_ Isend and MPI_Recv with
MPI_ANY_SOURCE calls between two processes to pass local
data from multiple senders to a single target. Note that the
single target approach does not create a significant bottleneck,
as both the reduce and reduce-scatter operations are carried
out over row and column groups whose cardinality scale with
the square root of the number of GPUs used. Furthermore,
the use of MPI_ANY_ SOURCE in MPI_Recv allows the
messages to arrive in any order, improving the communication
efficiency. Finally, the MPI_Recv is issued right before the
saxpy_kernel to enable communication and computation
overlap.

C. Improving Communication with NCCL (NCCL/CUDA)

The MPI standard and its CUDA-aware variant allow good
program and performance portability across architectures, but
they lack support for leveraging massive parallelism for large
messages. As listed in Table II, a typical message size in
MFDn can be tens to hundreds of megabytes. According to
the Message Roofline model [15], MFDn is in the network

!P2P implementation for MPI_Reduce

if (idiag .gt. 0) then !root process
!nsegments = number of participated processes
do i = 1, nsegments - 1

call MPI_Recv (Hamp_buf, nvecs x nrows, MPI_REAL4, &
MPI_ANY_SOURCE, tag, row_comm, &
status, ilerr)

!GPU summation
tBlock = dim3 (1024, 1, 1)
grid = dim3(108, 1, 1)

call saxpy_kernel<<<grid, tBlock, 0, streaml2>>> &

(nvecs * nrows, Hamp_buf, Hamp)
istat = cudaStreamSynchronize (streaml?2)
end do
else
call MPI_Isend(Hamp, nvecs % nrows, MPI_REAL4, O, &

tag_reduce, row_comm, request, ierr)
end if

! GPU summation

attributes (global) subroutine saxpy_kernel(n, x, Vy)
implicit none
real (kind=4), device ::
integer, value :: n
integer :: i
!stride = blockDim%x x gridDim%x
! = 108 « 1024 = 110592
do 1 = blockDim%x * (blockIdx%x — 1)

, 110592
y(i) = y(i) + x(1)
end do
end subroutine saxpy_kernel

x(x), y(*)

+ threadIdx%x, n

Fig. 6: Point-to-point implementation of MPI_Reduce. The
saxpy_kernel is the user-implemented summation for reduc-
tions on GPUs.

bandwidth-bound region. Thus, leveraging the parallelism and
advanced communication links (i.e., NVLink) on GPUs for
such large communication operations in MFDn could improve
the communication performance. The NVIDIA Collective
Communications Library (NCCL) is designed to accelerate
inter-GPU communication by leveraging massive parallelism
on GPUs as well as the NVLink hardware (when available).
NCCL supports all four collectives needed by the distributed
SpMV in MFDn with some adjustments for Allgatherv
and Reduce_scatter. NCCL's ncclAllGather and
ncclReduceScatter calls expect equal-sized input vec-
tors from all participating processes. Therefore, we pad shorter
messages (vectors) with zeros to make them all equal-sized
messages. As the vector size varies by less than 1% between
different communication groups, this padding adjustment in-
troduces a negligible overhead.

However, direct use of NCCL has limited impact. To achieve
high performance, one must carefully coordinate the order of
NCCL and CUDA calls to reduce synchronization overheads,
and fine-tune thread parallelism in NCCL for communication
efficiency. We discuss these in detail in the Results section.

In summary, we use CUDA to leverage the fine-grained
control of architectural parallelism and the high-speed shared
memory to accelerate computations, which is infeasible in
OpenACC. We then use MPI P2P and NCCL to improve
communication efficiency. MPI P2P has relatively better per-
formance compared to MPI collectives and good program

portability compared to NCCL across architectures. However,
it lacks parallelism support for large reductions, and it requires
developers to implement their own summations on GPUs.
Conversely, NCCL is more advanced in leveraging GPU
parallelism for large reductions, but developers must carefully
maintain the orders and synchronizations between NCCL and
GPU computation kernels.

IV. EXPERIMENTAL SETUP

We report the performance of the Lanczos algorithm im-
plemented in MFDn on the GPU partition of the Perlmutter
system at SNERSC [12]. Each Perlmutter GPU node consists
of a single AMD EPYC 7763 processor with 64 cores per
processor and 4 NVIDIA A100 GPUs, as shown in Fig. 7.
GPUs on each node are fully connected via NVLINK 3.0,
which provides 100 GB/s/direction for each GPU pair. The
CPU and GPUs are connected via PCle 4.0, which provides
a peak bandwidth of 25 GB/s/direction per CPU-GPU pair
for data transfers. Each node also has four PCle 4.0 NICs,
which provide 4 x 25 GB/s/direction at peak. Perlmutter uses a
three-hop dragonfly topology with 24 groups, and it has a 28%
bisection bandwidth tapering (4 x 7 GB/s per GPU node) [16].
That is when running on more than 64 GPU nodes, requested
GPU nodes are located on two different network groups, and
the bisection bandwidth limits the peak network performance.

Note that the Perlmutter GPU partition has 256 large
memory GPU nodes, and each GPU on that node is equipped
with 80 GB of High Bandwidth Memory (HBM). Throughout
the paper, experiments that request less than 256 GPU nodes
run on the large memory GPU nodes, while other cases that
request more than 256 nodes run on regular GPU nodes, which
have 40 GB of HBM per GPU. These two types of GPU
nodes share the same architecture, and the only difference
is the HBM size (40 GB vs. 80 GB) and its corresponding
peak HBM bandwidth per GPU (1.5TB/s vs. 2 TB/s). For all
experiments reported in the paper, the software infrastructure
included NVIDIA HPC SDK 23.9, CUDA 12.2, Cray-MPICH
(8.1.28), and NCCL 2.18.3.

PCle 4.0

OAd3 AWV

4 x NVLink 3.0

Fig. 7: Node architecture of Perlmutter GPU partition.

We use four test problems corresponding to the Hamiltonian
matrices of different nuclei represented in different configura-
tion interaction spaces. The dimensions of these matrices as
well as the number of nonzero matrix elements (nnz) in half
of each of these symmetric matrices are listed in Table III.
The dimensions of the test problems range from 1.6 x 108

to 1.8 x 10° whereas their nnz vary between 1.2 x 10! and
1.8 x 10*2.

TABLE III: Dimensions of sparse matrices used in perfor-
mance tests and the number of nonzero matrix elements in
each matrix.

Test case Small Medium Large XLarge
Matrix 0B 2c 9Li 2B
NIUB,X 8 8 l l 9
Matrix dimension (x10°) 0.16 0.57 0.97 1.78
of nonzeros (nnz) (x10'2) 0.12 0.47 1.30 1.81
minimum # of GPUs 28 91 276 378
nnz / min. # of GPUs (x107) 44 5.2 4.7 4.8

The smallest problem, labeled as Small, needs at least 28
NVIDIA A100 GPUs with 80GB of HBM. As the problem
size increases, more GPUs are needed for Lanczos; Medium,
Large and XLarge test cases have to be executed on at least
91, 276 and 378 A100 80GB GPUs, respectively. We report
the total time taken by 100 iterations of the Lanczos solver in
MFDn, including SpMV and orthogonalization steps.

V. RESULTS

We first demonstrate and explain the strong scaling results
and their parallel efficiencies, and then we discuss our NC-
CL/CUDA variants and how each variant performs.

A. Strong Scaling

Figure 8 shows the achieved speedups of three proposed
schemes over baseline MPI/OpenACC scheme. For each test
problem, we start with the minimum GPU count needed
and increase this number to assess this scheme’s strong-
scaling performance. For example, on Medium, we first use
91 GPUs on which the MPI/CUDA achieves 1.35x (left)
and P2P/CUDA achieves 2.25x (middle) and NCCL/CUDA
achieves 3.04x (right) speedups, respectively.

The speedups gained from MPI/CUDA indicate perfor-
mance improvement from computations leveraging the fine-
grained control of architectural parallelism and the fast shared
memory of GPUs. The extra speedups gained from P2P/CUDA
to MPI/CUDA indicate improved performance from a faster
communication and reduced load imbalance effect. The addi-
tional speedups obtained from NCCL/CUDA to P2P/CUDA
indicate further improvement by leveraging GPU’s massive
parallelism for large messages.

MPI/CUDA Results. By changing the local SpMV and
SpMYV transpose kernels originally implemented using Ope-
nACC directives to hand-tuned CUDA implementations, we
achieve up to 2x speedup. However, we observe that the
highest speedup is on the lowest GPU count for each problem.
Taking the Small problem as an example, the 2.00x speedup
obtained on 45 GPUs gradually diminishes to an only 3%
improvement on 276 GPUs (left of Figure 8), essentially
indicating no advantage of using CUDA over OpenACC in
any test cases on the highest GPU count. This is due to the
MPI collectives becoming the bottleneck as we increase the
number of GPUs in the strong-scaling experiments. As Table II

MPI Collective/CUDA Speeduspoo MPI P2PICUDA spee""spun NCCL/CUDA SPeEl""sPuo
& : o . : & 243 :
& & &
o o
S R o . R o 257 231 450
=) T o)
g\»@ \5)\ 4.00 5\0 S,e\ g 4.00 5\0 \\9‘3\ 29 2.96 4.00
) o))
e ‘:e"‘\ 3.50 ° «:\\"h\ 3.50 e “:\x"h\ 271 293 348 3.50
3 3 8
Ife I L 6 U L 309 298 335
RN - AN - = e ’
: e e 1 280 IRKIIIN : e 3 a9
v & 0 3V @4 286 241 AR 3.43 250
o & o & o
5 "\Q"‘ 20 & "\@ 274 225 20 & "\@ 3.88 3.04 200
£ L) L)
u"@ 1.50 g:\@ 2.76 150 g’\’:‘) 3.4 150
w“(\\ 1.00 ﬁ?’Q\ 2'?7 T T 1.00 '\?Q\ 3'7’31 T 1.00
3 & & & $ & &
& & & o S < N
@ & N < S F o
+ & +

&
Problem Size

Problem Size

Problem Size

Fig. 8: Speedup achieved with MPI/CUDA, P2P/CUDA and NCCL/CUDA over MPI/OpenACC for 100 Lanczos iterations.

shows, the communication takes 62% of the total solver time
for the Small case, and nearly 80% for the Medium case.

P2P/CUDA Results. We consistently observe around 2.8 x
speedup over MPI/OpenACC for the Small problem. The
communication speedup can be obtained by subtracting the
speedup factors in the left subfigure from the corresponding
ones in middle subfigure. For example, the predicted maximum
speedup for the Small problem in Table II is 1.61 x using 190
GPUs, but we observe a 1.71x speedup in practice. This is
because the potential speedup listed in the table is based on
the speed of communication only. It does not account for load
imbalance. The additional speedup is gained from reducing
load imbalance between diagonal and off-diagonal ranks.

As we use more GPUs, we see a decline in the relative
performance. For example, for Medium, we start with a 2.3x
speedup on 91 GPUs and end up with 1.8x speedup on
496 GPUs. For the XLarge problem, we only observe a 22%
improvement on 1540 GPUs. Such performance degradation
results from the combined effect of diminishing gain from P2P
communication and worse load balance.

NCCL/CUDA Results. NCCL/CUDA achieves the highest
speedup among the three proposed optimizations. NCCL’s
advantages over P2P/CUDA are immediately apparent. NCCL
leverages GPU parallelism for communications, and with
careful synchronization and stream priorities manipulation, the
NCCL/CUDA results in improvements over P2P/CUDA. We
will discuss the NCCL/CUDA details in Sec. V-C.

B. PFarallel Efficiency

Figure 9 shows the strong scalability and parallel efficiency
for the four implementations of MFDn. We show two problem
sizes, i.e., Small (minimum GPU counts is 28) and XLarge
(minimum GPU counts is 378). The number of GPUs increases
from 28 all the way to 276 for the Small test size. We take
the NCCL/CUDA implementation as the baseline (shortest
run time) for parallel efficiency. Thus, the baseline of the
Small size is NCCL/CUDA using 28 GPUs, which denotes
a 100% efficiency. The parallel efficiency is then obtained
by W, where P refers to the total number
of GPUs and T is the time. One can immediately observe
that MPI/CUDA improves parallel efficiency at a small GPU
count from 30% to 60%. The efficiency is flattened at a large
number of GPUs, i.e., 11% and 12% parallel efficiency at

276 GPUs. This is because the non-overlapped communication
dominates the total run time of MFDn in the two cases. Thus,
the P2P/CUDA scheme further improves its parallel efficiency:
84% parallel efficiency at 28 GPUs and 32% at 276 GPUrs.
Eventually, NCCL/CUDA outperforms the other schemes. The
gap between the observed NCCL/CUDA scaling and ideal
scaling is due to the orthogonalization and atomic updates
in addition to the increased communication overheads, which
together make MFDn lose efficiency at scale.

102

B Small @ XlLarge Para.eff: 30%
Para.cff: 30% Jo— Para.cff: 13%
Paraeff: 55% Para.cff: 14%
Para.eff: 60% Para.eff: 100% Para.eff: 18%
g L | e s Lara.eff: 1% Sl Poracff: 33%
= 10° | Paracss: 100% Para.eff: 12% \\\

3
~ Para.eff: 32%
mmm Baseline, MP1/OpenACC ara-eff: 32%

MPI/CUDA

P2P/CUDA S Partieff: 49%
== NCCL/CUDA S
ol Ideal S~
10 " J
10! 102 103
GPU count

Fig. 9: Strong-scaling and parallel efficiency of Small and
XLarge cases for 100 Lanczos iterations. We take NC-
CL/CUDA implementation as the baseline for parallel ef-
ficiency. MPI/CUDA can improve the parallel efficiency at
a small GPU count. P2P/CUDA can further improve the
efficiency by faster communication and reduced load imbal-
ance effect, and finally, NCCL/CUDA outperforms all three
implementations because it further leverages GPU’s massive
parallelism for large messages.

For the XLarge testcase, the number of GPUs start from
378. We observe that the parallel efficiency drops from 30%
to 13%, 38% to 14%, 55% to 18% and 100% to 33% for
MPI/OpenACC, MPI/CUDA, P2P/CUDA and NCCL/CUDA,
respectively. The drop in efficiency from XLarge to Small is
mainly due to the decrease in the ratio between FLOPs and
communication volume.

To see this, the FLOP count in the SpMV is proportional to
the number of nonzeros in the sparse matrix Hamiltoninan,
which is fixed for a specific problem. The communication

volume required for a distributed SpMV performed over
P =ng4(nqg+ 1)/2 GPUs in MFDn is proportional to
ng+1 n ng—1 n(ng—1)
fta- 2 . ng . ng+1 B 2 ’
where n is the dimension of H and the number of elements
in W. We assume W is partitioned evenly among (ng + 1)/2
GPUs and each GPU sends or receives (n4—1)/2 subvectors in
each collective communication using the ring algorithm, which
seems to be the default reduction algorithm in NCCL. If the
number of nonzeros in the Hamiltonian is a constant multiple
of n, the ratio between the total FLOPs and communication
volume scales as 1/ng or 1/+/P.

Table IV shows the ratio between the measured total FLOP
count and total communication volume, which corresponds to
the number of operations performed per byte communicated.
We see that FLOPs/Byte ratio decreases with respect to P.
Therefore, the lower FLOPs/Byte is the reason for the reduced
efficiency at scale.

6]

TABLE IV: Number of floating point operations performed
per byte communicated in the distributed SpMV algorithm.

Test Case # of GPUs Tot FLOPs Tot Comm Bytes FLOPs/Byte
Small 28 5.16E11 3.97GB 130
276 5.16E11 14.6GB 354
XLarge 378 7.25E12 185GB 39.0
1540 7.25E12 385GB 18.8

C. NCCL/CUDA variants

Figure 10 summarizes the speedups achieved with different
variants of NCCL/CUDA over the baseline MPI/OpenACC
implementation for 100 Lanczos iterations. NCCL/CUDA
variants can be described as follows:

Variant-1: In this variant, we use as few synchronization
calls as possible. All CUDA kernels and NCCL calls are
assigned to asynchronous CUDA streams which are synchro-
nized only when there is data dependency between them.

Variant-2: Variant-2 is the same as Variant-1,
except that before each NCCL call, we add an
MPI_Barrier on the corresponding communicator

and a cudaDeviceSynchronize (). We observe in the
second subplot from the left in Figure 10 that adding barriers
improve the solver time in 17 out of 20 cases (four test cases,
five strong-scaling experiments each). For Medium on 496
GPUs, for example, adding such synchronization leads to
roughly 60% improvement. This is because, although NCCL
initiates communication, the operations may not complete
immediately. Adding MPI_Barrier ensures synchronization
across ranks, preventing some from progressing too soon
while others are still catching up, thereby minimizing delayed
message handling.

Variant-3: This variant truly overlaps a GPU kernel with a
NCCL call. Based on Variant-2, we launch the GPU kernel
first, followed by the NCCL call on the CPU side. We assign
a higher priority to the stream used by NCCL. This way, the
NCCL call can not block the GPU kernel, while the CUDA

runtime can still allocate resources needed by the NCCL call
due to its higher priority. We see in the second subplot from
the right in Figure 10 that this variant performs better than
Variant-2 in all but 2 cases. For example, we see a 33%
improvement over Variant-2 for the Large case on 496 GPUs
(22.9s vs 17.2s).

Variant-4: Our last optimization effort with NCCL/CUDA
is to adjust the number of thread blocks used by the NCCL
communicators based on Variant-3. NCCL by default selects
a thread block count that can saturate the memory bandwidth
whenever we create a NCCL communicator. NCCL then
assigns that many thread blocks to the communicator each
time it is used. However, this default number may not always
yield the best performance. One can observe that this variant
performs better than the Variant-3 in 19 out of 20 cases in the
right plot of Figure 10.

Table V summarizes the slowdown that occurs when as-
signing a non-optimal thread block count for NCCL. These
numbers suggest that configuring the communicators to use
two thread blocks yields the worst performance in general. It
is worth noting that this configuration can be up to 92% slower
on XLarge. Using four thread blocks, on the other hand, work
well on the Small test case although it can be up to 20%
and 30% slower than the best option on Medium and XLarge,
respectively.

TABLE V: Percentage of slowdown observed over the optimal
performance when the NCCL communicators are configured
to use 2, 4, 8, 12 and 16 thread blocks (TB) for Variant-4.
OPT refers to Optimal configuration.

Test Case #ofGPUs 2TB 4TB 8TB 12TB 16TB
28 48% 18% 0.5% Opt 0.3%
45 19% Opt 05% 0.7% 1.0%
Small 91 20% Opt 1.0% 1.3% 1.8%
190 46% Opt 19% 1.6% 2.2%
276 16% 0.5% Opt 3.3% 6.4%
91 33% 12% 3.0% 3.5% Opt
190 35% 14% 7.0% 3.6% Opt
Medium 276 30% 22% 03% Opt 0.3%
378 48% 20% Opt 11% 5.9%
496 23% 13% 3.6% Opt 6.9%
276 53% 15% Opt 4.0% 0.1%
378 39% 4.6% 0.1% Opt 0.3%
Large 496 43% 15% 62% Opt 7.3%
780 29% 12% 3.4% 2.2% Opt
1128 13% 24% 2.1% Opt 0.7%
378 81% 30% 13% Opt -
496 2% 25% 1.6% Opt 1.0%
XLarge 780 - - 1.5% Opt 4.4%
1128 34% 63% 3.4% Opt 4.2%
1540 54% 15% 13% 0.1% Opt

For the remaining three options, there is a trade-off when
transitioning from 8 to 16 thread blocks for NCCL calls. While
eight blocks may result in slightly slower NCCL communi-
cation, it allows more streaming multiprocessors (SMs) to
complete the concurrent GPU kernels a bit faster. As such,
the overall solver time does not vary much when we go from
using 8 to 16 thread blocks. We find 8, 12, and 16 thread
block configurations suitable for our experiments since all

Speedup
500

Speedup
500

Variant 1

Variant 2

%
%

S8 oo e as0
G] wm I 2.37 (1.9 a0
SEP 2.24 w ST 26 2.05
3Fe 3 247 1.6

25 w25 200
Ve BT 226

s W §tel382 23 2
gle w2 o274

s
£

25
237

%
%%,
>

&
o

Problem Size

Fig. 10: Speedup achieved with NCCL/CUDA for all variants over MPI/OpenACC for 100 Lanczos iterations.

Problem Size

three configurations are never more than 13% slower than the
optimal configuration in our tests.

The message size per GPU (or MPI rank) remains constant
for a given test case and number of GPUs. When multiple
thread blocks are used in communication, the message is
evenly distributed among them, causing the message size per
thread block to vary with the number of thread blocks. Better
performance is achieved with a relatively higher number of
thread blocks in Table V because the increased number of
overlapped messages more effectively hides latencies. Con-
versely, performance declines when the number of thread
blocks exceeds the optimal value (COPT’), as scheduling
additional blocks for a single message introduces unnecessary
overhead.

Essentially, parallel configuration in NCCL is essential at
run time. However, how to configure NCCL heavily depends
on the application’s communication patterns and the underly-
ing network architecture. Proper synchronizations and stream
priorities are also critical for designing and implementing
high-performance NCCL applications.

D. Comparison with other work

Many of the existing SpMV (or SpMM) algorithms [17—
19] use specific sparse matrix representations (such as the
compressed row/column format) that are not applicable to
MFDn. A special sparse matrix storage scheme is used for
MFDn to reduce memory usage. We explored cuSPARSE to
improve local SpMV. cuSPARSE is a library provided by
NVIDIA that offers optimized sparse matrix operations on
NVIDIA GPUs. We investigated various algorithmic options
provided by the cusparseSpMV() function through the cuspars-
eSpMVAlg_t parameter. The optimal one achieves performance
comparable to that of our CUDA implementation. However,
in the cuSPARSE implementation, we must store the matrix
in CSR and CSC formats to avoid atomics in SpMV and
transposed SpMV operations. Thus, it doubles the memory
requirements, which is a critical limitation for many MFDn
experiments, as these are applications with high memory
capacity requirements. As such, we did not list cuSPARSE
in the paper.

E. Programmer Productivity and Portability

Application developers often find it burdensome to maintain
several codebases for different architectures. While the base-

10

GPU Count (Node Coynt)

Speedup
500

Variant 3

Variant 4 Speedup
500

2

243
231
2.96
3.48

oy,

450

%

>

2.55
2.67
22

2.57
29
2.93

)
%

400

%
7y Ty Ry

%,
%

222 2.1/1

NN
% %y % % %,

350

oy
o 0 T % % %

GPU Count (Node Coynt)

K 244 233 Lo 309 298 3.35

o 300 o 300

& 232 25 e 3 319

& 45 3 250 o I 343 250

K o

1329 1224 200 1888 304 200

3 3

o287 150 W1 34 150

1278 w0 1331 oo
& & o 4;7“ & & o &,\o‘

Problem Size

Problem Size

line MPI/OpenACC has a relatively good portability across
architectures, it suffers from poor performance.

The MPI/CUDA implementation requires the most coding
effort among the three optimization schemes. For example, it
requires completely re-writing the OpenACC code in CUDA.
However, thanks to emerging code development tools, such
as HIPify [20], which automatically translates CUDA source
code into HIP, and oneAPI [21], which converts CUDA into
SYCL, MPI/CUDA option can be portable via those tools on
AMD and Intel GPUs.

Starting with the MPI/CUDA version, P2P/CUDA version
is a straightforward implementation task. In addition, the
GPU-aware MPI has good portability across architectures.
RCCL [22] and HCCL [23] can be considered replacements
for NCCL on AMD and Intel clusters for inter-GPU collective
communications.

Ultimately, with the help of the existing tools, the NC-
CL/CUDA (highest performance implementation) has the po-
tential to be portable to other architectures, allowing a single
code base that can be executed on different architectures with
relatively low maintenance efforts.

VI. CONCLUSION

We presented several techniques to improve the performance
the distributed SpMV used in the MFDn software for perform-
ing large-scale nuclear configuration interaction calculations
on NVIDIA GPUs. We showed that, on problem sizes with up
to 1.3 trillion nonzeros, we could obtain up to 2.0x improve-
ment in the overall solver time by switching from OpenACC to
a hand-optimized CUDA implementation across 1540 GPUs.
Additionally, when combined with asynchronous P2P message
passing and NCCL, we observed performance boosts of 2.9x
(P2P) and 4.9x (NCCL). All these improvements resulted
from using alternative programming models that involved us-
ing CUDA in place of OpenACC, asynchronous P2P message
passaging in place of standard MPI collectives, and NCCL in
place of CUDA-aware MPI. The relative large performance
gap between the baseline MPI/OpenACC implementation and
the NCCL/CUDA implementation suggests that the currently
used directive based programming model and the standard MPI
library, while providing a portable solution with a relatively
small amount development effort, can severely limit the per-
formance of SpMV.

To achieve higher performance on a single GPU, lower level
programming protocals (such as CUDA) that give the devel-

oper a fine-grained control over shared memory as software
cache. For large-scale problems solved on a large number of
GPUs, the SpMV used in MFDn is communication bound.
Therefore, optimizing the communication among different
GPUs becomes more important at a large scale. To achieve bet-
ter performance on distributed GPU nodes, we must make sure
that the arithmetic operations in collective communications
are executed on the device. Vendor developed communication
libraries such as NCCL appear to offer additional features
and functionalities that can reduce communication overhead.
However, to fully take advantage of these features, we need
to use such libraries judiciously by including appropriate
synchronization points, maximizing the overlap between com-
munication and computation, as well as choosing the optimal
number of thread blocks for certain communications.

While the primary focus of this work is on optimizing the
performance of MFDn, the insights and solutions we provide
are likely to be relevant to a broad range of applications.

REFERENCES

[1] B. R. Barrett, P. Navratil, and J. P. Vary, “Ab initio no
core shell model,” Prog. Part. Nucl. Phys., vol. 69, pp.
131-181, 2013.
P. Sternberg, E. G. Ng, C. Yang, P. Maris, J. P. Vary,
M. Sosonkina, and H. V. Le, “Accelerating configuration
interaction calculations for nuclear structure,” in SC’08:
Proceedings of the 2008 ACM/IEEE Conference on Su-
percomputing. 1EEE, 2008, pp. 1-12.
C. Lanczos, “An iteration method for the solution of
the eigenvalue problem of linear differential and integral
operators,” J. Res. Nat’l Bur. Std., vol. 45, no. 4, pp.
255-282, 1950.
M. Shao, H. M. Aktulga, C. Yang, E. G.
Ng, P. Maris, and J. P. Vary, “Accelerating
nuclear configuration interaction calculations through a
preconditioned block iterative eigensolver,” Computer
Physics Communications, vol. 222, pp. 1-13, 2018.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010465517302904
H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P.
Vary, “Topology-aware mappings for large-scale eigen-
value problems,” in European Conference on Parallel
Processing. Springer, 2012, pp. 830-842.
H. M. Aktulga, A. Bulug, S. Williams, and C. Yang,
“Optimizing sparse matrix-multiple vectors multiplica-
tion for nuclear configuration interaction calculations,”
in Parallel and Distributed Processing Symposium, 2014
IEEE 28th International. 1EEE, 2014, pp. 1213-1222.
H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P.
Vary, “Improving the scalability of a symmetric iterative
eigensolver for multi-core platforms,” Concurrency
and Computation: Practice and Experience, vol. 260,
no. 16, pp. 2631-2651, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3129
[8] D. Oryspayev, H. M. Aktulga, M. Sosonkina,
P. Maris, and J. P. Vary, “Performance analysis of

(2]

(3]

(4]

(5]

(6]

(7]

11

(9]

[10]

distributed symmetric sparse matrix vector multiplication
algorithm for multi-core architectures,” Concurrency
and Computation: Practice and Experience, vol. 27,
no. 17, pp. 5019-5036, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3499
B. Cook, P. Maris, M. Shao, N. Wichmann, M. Wagner,
J. O’Neill, T. Phung, and G. Bansal, “High performance
optimizations for nuclear physics code mfdn on knl,” in
International Conference on High Performance Comput-
ing. Springer, 2016, pp. 366-377.

B. Cook, P. J. Fasano, P. Maris, C. Yang, and D. Orys-
payev, “Accelerating quantum many-body configuration
interaction with directives,” in International Workshop on
Accelerator Programming Using Directives. Springer,
2021, pp. 112-132.

P. Maris, C. Yang, D. Oryspayev, and B. Cook, “Acceler-
ating an iterative eigensolver for nuclear structure config-
uration interaction calculations on gpus using openacc,’
Journal of Computational Science, vol. 59, p. 101554,
2022.

NERSC, “Perlmutter Node Specifications,” https:
/ldocs.nersc.gov/systems/perlmutter/architecture/#node-
specifications, 2024, accessed: 2024-08-28. [Online].
Available: https://docs.nersc.gov/systems/perlmutter/
architecture/#node-specifications

T. Hoefler and M. Snir, “Generic topology mapping
strategies for large-scale parallel architectures,” in Pro-
ceedings of the international conference on Supercom-
puting, 2011, pp. 75-84.

K. Z. Ibrahim, C. Yang, and P. Maris, ‘“Performance
portability of sparse block diagonal matrix multiple
vector multiplications on gpus,” in 2022 IEEE/ACM
International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2022, pp. 58-67.

N. Ding, M. Haseeb, T. Groves, and S. Williams, “Eval-
uating the performance of one-sided communication on
cpus and gpus,” in Proceedings of the SC’23 Workshops
of The International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023, pp.
1059-1069.

N. Ding, S. Williams, H. A. Nam, T. Groves, M. G.
Awan, L. Lindsey, C. Daley, O. Selvitopi, L. Oliker, and
N. Wright, “Methodology for evaluating the potential
of disaggregated memory systems,” in 2022 IEEE/ACM
International Workshop on Resource Disaggregation in
High-Performance Computing (REDIS). 1EEE, 2022,
pp. 1-11.

G. Chu, Y. He, L. Dong, Z. Ding, D. Chen, H. Bai,
X. Wang, and C. Hu, “Efficient algorithm design of
optimizing spmv on gpu,” in Proceedings of the 32nd
International Symposium on High-Performance Parallel
and Distributed Computing, 2023, pp. 115-128.

H. Cui, N. Wang, Y. Wang, Q. Han, and Y. Xu, “An
effective spmv based on block strategy and hybrid com-
pression on gpu,” The Journal of Supercomputing, pp.
1-22, 2022.

https://www.sciencedirect.com/science/article/pii/S0010465517302904
https://www.sciencedirect.com/science/article/pii/S0010465517302904
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3129
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3499
https://docs.nersc.gov/systems/perlmutter/architecture/#node-specifications
https://docs.nersc.gov/systems/perlmutter/architecture/#node-specifications
https://docs.nersc.gov/systems/perlmutter/architecture/#node-specifications
https://docs.nersc.gov/systems/perlmutter/architecture/#node-specifications
https://docs.nersc.gov/systems/perlmutter/architecture/#node-specifications

[19]

[20]

[21]

[22]

[23]

J. Gao, W. Ji, and Y. Wang, “Optimization of large-
scale sparse matrix-vector multiplication on multi-gpu
systems,” ACM Transactions on Architecture and Code
Optimization, vol. 21, no. 4, pp. 1-24, 2024.

AMD, “HIPIFY,” https://github.com/ROCm/HIPIFY.git,
2024, accessed: 2024-10-09. [Online]. Available: https:
//github.com/ROCm/HIPIFY.git

INTEL, “Migrate from CUDA to C++ with SYCL,”
https://www.intel.com/content/www/us/en/developer/
tools/oneapi/training/migrate- from- cuda- to- cpp- with-
sycL.html#gs.gfvfnb, 2024, accessed: 2024-10-09. [On-
line]. Available: https://www.intel.com/content/www/us/
en/developer/tools/oneapi/training/migrate- from- cuda-
to-cpp-with-sycl.html#gs.gfvfnb

AMD, “RCCL documentation,” https://rocm.docs.amd.
com/projects/rccl/en/latest/, 2024, accessed: 2024-10-09.
[Online]. Available: https://rocm.docs.amd.com/projects/
rccl/en/latest/

INTEL, “Habana Collective Communications Library
(HCCL) API Reference,” https://docs.habana.ai/en/latest/
API_Reference_Guides/HCCL_APIs/index.html, 2024,
accessed: 2024-10-09. [Online]. Available: https://docs.
habana.ai/en/latest/API_Reference_Guides/HCCL_APIs/
index.html

12

https://github.com/ROCm/HIPIFY.git
https://github.com/ROCm/HIPIFY.git
https://github.com/ROCm/HIPIFY.git
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html#gs.gfvfnb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html#gs.gfvfnb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html#gs.gfvfnb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html#gs.gfvfnb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html#gs.gfvfnb
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html#gs.gfvfnb
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://rocm.docs.amd.com/projects/rccl/en/latest/
https://docs.habana.ai/en/latest/API_Reference_Guides/HCCL_APIs/index.html
https://docs.habana.ai/en/latest/API_Reference_Guides/HCCL_APIs/index.html
https://docs.habana.ai/en/latest/API_Reference_Guides/HCCL_APIs/index.html
https://docs.habana.ai/en/latest/API_Reference_Guides/HCCL_APIs/index.html
https://docs.habana.ai/en/latest/API_Reference_Guides/HCCL_APIs/index.html

	Introduction
	MFDn's Algorithm and Implementation
	Data Distribution
	Distributed-memory SpMV
	Task-to-Process Mapping
	Current MPI/OpenACC implementation

	Performance Optimization Methodologies
	Improving Local SpMV with CUDA (MPI/CUDA)
	Improving Communication with P2P (P2P/CUDA)
	Improving Communication with NCCL (NCCL/CUDA)

	Experimental Setup
	Results
	Strong Scaling
	Parallel Efficiency
	NCCL/CUDA variants
	Comparison with other work
	Programmer Productivity and Portability

	Conclusion

