
AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis
Bin Dong
dbin@lbl.gov

Lawrence Berkeley National
Laboratory

Berkeley, CA, USA

Jean Luca Bez
jlbez@lbl.gov

Lawrence Berkeley National
Laboratory

Berkeley, CA, USA

Suren Byna
byna.1@osu.edu

The Ohio State University
Columbus, OH, USA

Lawrence Berkeley National
Laboratory

Berkeley, CA, USA

ABSTRACT
Manually diagnosing the I/O performance bottleneck for a single
application (hereinafter referred to as the “job level”) is a tedious
and error-prone procedure requiring domain scientists to have deep
knowledge of complex storage systems. However, existing auto-
matic methods for I/O performance bottleneck diagnosis have one
major issue: the granularity of the analysis is at the platform or
group level and the diagnosis results cannot be applied to the indi-
vidual application. To address this issue, we designed and developed
a method named “Artificial Intelligence for I/O” (AIIO), which uses
AI and its interpretation technology to diagnose I/O performance
bottlenecks at the job level automatically. By considering the spar-
sity of I/O log files, employing multiple AI models for performance
prediction, merging diagnosis results across multiple models, and
generalizing its performance prediction and diagnosis functions,
AIIO can accurately and robustly identify the bottleneck of an even
unseen application. Experimental results show that real and unseen
applications can use the diagnosis results from AIIO to improve
their I/O performance by at most 146×.

CCS CONCEPTS
• Information systems → Information storage systems; • Com-
puting methodologies→ Causal reasoning and diagnostics.

KEYWORDS
I/O Bottleneck, Job-Level, Diagnosis, Artificial Intelligence, Ma-
chine Learning, AI Interpretation, Prediction, Darshan
ACM Reference Format:
Bin Dong, Jean Luca Bez, and Suren Byna. 2023. AIIO: Using Artificial Intelli-
gence for Job-Level and Automatic I/O Performance Bottleneck Diagnosis. In
Proceedings of the 32nd International Symposium on High-Performance Paral-
lel and Distributed Computing (HPDC ’23), June 16–23, 2023, Orlando, FL, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3588195.3592986

1 INTRODUCTION
When executing data-intensive applications, high performance com-
puting (HPC) faces constant challenges because data access from

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0155-9/23/06.
https://doi.org/10.1145/3588195.3592986

slow storage devices still takes longer than the computing pro-
cess [45]. Identifying the causes of slow I/O performance is the very
first and most important step to reducing the I/O cost. This paper
explores novel methods using Artificial Intelligence (AI) and its in-
terpretation technologies to diagnose I/O performance bottlenecks
(also called I/O bottlenecks) for HPC applications.

The I/O bottleneck diagnosis can be performed manually, but
this is a tedious and error-prone procedure [10, 12, 36]. Automatic
methods for I/O bottleneck diagnosis can be realized by utilizing
large-scale I/O trace logs that contain abundant performance factors
(generally known as I/O counters, e.g., data access sizes and his-
tograms) [11, 12]. Existing I/O bottleneck diagnosis can happen at
the platform, group, or job level. The platform-level methods [5, 48–
51] identify the cumulative distribution functions (CDF) of various
performance factors and therefore infer “good” and “bad” I/O pat-
terns. The group-level methods [3, 14–16, 25, 26] use clustering
methods, e.g., HDBSCAN [26] and KNN [3], to group I/O trace logs
and then perform diagnosis for each group. Both platform-level and
group-level I/O approaches have the same limitation: the statistical
consensus of a group or the whole system can differ from that of
its group members [21].

The job-level1 and automatic bottleneck diagnosis can avoid
this limitation by providing a diagnosis for an individual job. But,
to realize the method of automatic and job-level I/O bottleneck
diagnosis, we need to address the following issues:

• How to develop an accurate performance prediction function
(also called a performance function) for a job. This function
maps I/O counters to the performance of a job. Each job
has unique I/O counters and varying performance, making
finding an accurate prediction function difficult.

• How to develop an accurate and robust diagnosis function
for a job. Based on the performance function, a diagnosis
function should calculate the impact of each performance
factor on the performance. The diagnosis function is im-
pacted by its sampling methods [33, 38] and the variance of
the performance functions.

• How to integrate the sparsity of the I/O log into the perfor-
mance and diagnosis functions. I/O counters in one job’s log
file may not exist in another, resulting in sparse input when
developing performance and diagnosis functions. Taking
data sparsity into account could improve the robustness of
the diagnosis. Robustness refers to whether a diagnosis result

1A job is defined as a single run of an application. For a SLURM or PBS script file with
more than one “srun” or “mpirun”, each is viewed as a distinct job.

https://orcid.org/0000-0002-0725-0833
https://orcid.org/0000-0002-3915-1135
https://orcid.org/0000-0003-3048-3448
https://doi.org/10.1145/3588195.3592986
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3588195.3592986

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Bin Dong, Jean Luca Bez, & Suren Byna

only contains the I/O counters that an application uses. Take
an application that only reads data as an example; if a diag-
nosis function finds only read-related counters as potential
bottlenecks, this function is robust. If a diagnosis function
finds write-related counters to be potential bottlenecks, this
function is non-robust.

• How to generalize the performance and diagnosis functions
for unseen job logs from applications. Existing I/O diagnosis
methods [3, 14–16, 25, 26] usually require either rebuilding
their models by combining the new data with existing ones
or may have a high error rate in classifying the new data
into existing groups, both of which limit their applications
to processing an unseen I/O log. In processing an unseen
I/O log, generalizing performance and diagnosis functions
in a job-level method can avoid the high classification error
and the time-consuming rebuilding step.

To address these issues of realizing job-level I/O bottleneck di-
agnosis, this work explores how to use AI prediction-based perfor-
mance functions combined with new AI interpretation technologies
to calculate the impact of various factors on I/O performance. To
the best of our knowledge, this is the first work to incorporate AI to
automatically diagnose I/O bottlenecks at the job level. Our work
identified the following key insights and contributions:

• We designed and developed an approach called “Artificial
Intelligence for IO” (AIIO2) to diagnose I/O performance
bottlenecks at the job level. AIIO includes an AI prediction-
based performance function and an AI interpretation-based
diagnosis function;

• We used multiple AI prediction models as I/O performance
functions for an individual job. We explored five AI mod-
els, including XGBoost[13], MLP [37], TabNet [1], Light-
BGM [27], and CatBoost [19], to reduce the error in predict-
ing the I/O performance of a single job. When compared to a
single model, our multiple model-based method can reduce
prediction error by up to 3.11×;

• For each AI prediction model tested, we used the AI inter-
pretation method SHAP [33] as the diagnosis function. We
also devised two methods to combine the results of multiple
models to improve the accuracy of the diagnosis. When com-
pared to a single model, our combining method can reduce
the error of the diagnosis function by at most 2.19×;

• We incorporated the sparsity of I/O counters into the perfor-
mance and diagnosis functions of AIIO to provide a robust
diagnosis. We also incorporated early stop training into AIIO
to improve its ability to handle unseen job logs;

• We evaluated our method with both synthetic workloads
(by simulating different I/O access patterns) and real applica-
tion workloads from diverse domains. Experimental results
demonstrate that AIIO can accurately capture these I/O ac-
cess patterns, and more importantly, AIIO can help improve
application I/O performance by up to 146×.

As almost all scientific contributions have some limitations, we
describe ours and the scope for improvement in the following items:

2The code repository of AIIO is available at: https://github.com/hpc-io/aiio, which
also includes the Darshan log files used in the evaluation section and the link to the
web service of AIIO.

• Portability of the proposed approach: Our AI models are
based on analyzing a large number of I/O logs on a single
system. While the AI model-building approach is portable
and able to be used on another system’s I/O logs, the models
of a system themselves are not portable to another system.

• High-level I/O counters: This work only considers POSIX-IO
counters in I/O logs. Our experimental results show that the
performance bottleneck identified at the POSIX-IO level can
still help applications with HDF5 and MPI-IO interfaces. One
may use I/O counters from MPI-IO [22] and HDF5 [8] in AI
models; however, we did not attempt that in this effort.

• Automatically fixing I/O issues: We have manually removed
diagnosed I/O performance bottlenecks. Further effort is
needed to automatically map these bottlenecks to perfor-
mance tuning techniques.

Further details on the work are presented in the following sec-
tions. Section 2 covers the background. Section 3 introduces AIIO
and its major components. We report the evaluation results in Sec-
tion 4. Section 5 concludes the paper and discusses future work.

2 BACKGROUND
2.1 I/O Logs of Applications on HPC Systems
A popular method to capture I/O behaviors is to record the data
access operations from applications. These recording results can be
organized as a list of I/O counters of operations for each job. Given
the diversity of applications, these I/O counters provide a common
space to which different applications can be mapped. Various tools
(e.g., Darshan [11, 12], STAT [2], mpiP [46], and TAU [42]) and I/O
log databases (Charisma [35], HPCT-IO[41], and IOT [39]) have
been created. Darshan is a de facto standard at an extreme scale.
It is used by the National Energy Research Scientific Computing
Center (NERSC), Argonne Leadership Computing Facility (ALCF),
and other supercomputing centers to collect I/O profiling logs of
applications. In this work, we used the Darshan I/O logs from
NERSC to demonstrate the efficiency of our methods in diagnosing
I/O performance bottlenecks. Details of the Darshan I/O logs used
in this work will be presented in Section 3.1.

2.2 Related Work
The I/O bottleneck diagnosis can happen at different levels, includ-
ing platform, group, and job. We briefly discuss each approach and
highlight its benefits and limitations.

Platform-level I/O bottleneck diagnosis: A platform-level
I/O bottleneck diagnosis takes the whole storage (or all available
applications’ logs) as a study target and finds the I/O access patterns
for the whole system. Recently, cumulative distribution functions
(CDF) for data access size and other parameters were studied on the
Cori and Summit supercomputers [5]. Machine learning models can
also be used to find metadata load and load skew, which can impact
the writing performance of a job [50, 51]. The number of processes
strongly correlates with job bandwidth at the platform level [48, 49].
The performance variability of the whole system has also been
studied [25, 30]. These platform-level findings provide essential
guidelines for system administrators to optimize the whole system,
but these methods ignore the diversity of individual applications.

https://github.com/hpc-io/aiio

AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Counter Value

0.00

0.02

0.05

0.00

0.50

0.00

0.94

0.00

0.97

0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2
SHAP value (impact on model output)

Sum of 41 other features

POSIX_SEQ_WRITES_PERC

POSIX_SIZE_READ_1K_10K_PERC

POSIX_SIZE_READ_10K_100K_PERC

POSIX_unique_bytes_perc

POSIX_SIZE_READ_0_100_PERC

POSIX_SIZE_WRITE_100K_1M_PERC

POSIX_write_only_bytes_perc

POSIX_MEM_NOT_ALIGNED_PERC

POSIX_FILE_NOT_ALIGNED_PERC

Low

High

Fe
at

ur
e

va
lu

e

0.02 0.00 0.02 0.04 0.06 0.08
SHAP value

POSIX_SIZE_READ_1K_10K_PERC

POSIX_SIZE_WRITE_100K_1M_PERC

POSIX_MEM_NOT_ALIGNED_PERC

POSIX_unique_bytes_perc

POSIX_write_only_bytes_perc

POSIX_SIZE_READ_0_100_PERC

POSIX_FILE_NOT_ALIGNED_PERC

POSIX_SIZE_READ_10K_100K_PERC

POSIX_SEQ_WRITES_PERC

Sum of 41 other features

POSIX_SIZE_READ_1K_10K_PERC

POSIX_SIZE_WRITE_100K_1M_PERC

POSIX_MEM_NOT_ALIGNED_PERC

POSIX_unique_bytes_perc

POSIX_write_only_bytes_perc

POSIX_SIZE_READ_0_100_PERC

POSIX_FILE_NOT_ALIGNED_PERC

POSIX_SIZE_READ_10K_100K_PERC

POSIX_SEQ_WRITES_PERC

Sum of 41 other features

+0.08

+0.04

+0.02

0.02

0.02

0.01

+0

0

0

0

(b) (d)(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Job ID
0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 D
iff

er
en

ce

Average

(a)

Figure 1: Comparison of prediction and feature importance for a cluster named 𝐺𝑎𝑚𝑚𝑎 and its member with Gauge and its
open-sourced data [16]. The cluster is created with HDBSCAN. (a) Prediction error for the whole cluster (denoted as “average”)
and its members; (b) Counter importance for the whole cluster; (c) Counter importance for the 204th member in the cluster; (d)
Counter values for the 204th member in the cluster.

Group-level I/O bottleneck diagnosis: The group-level I/O
bottleneck diagnosis has arisen recently. The naive way is to manu-
ally group jobs in the same domain for analysis, such as in the work
by Paul et al. [36], which focuses on studying I/O access patterns
for machine learning applications. A more generic way is to use
clustering algorithms, such as HDBSCAN [16, 25, 26], KNN [3], and
agglomerative hierarchical clustering [14, 15] to group jobs for anal-
ysis. Based on Gauge and its dataset [16, 25, 26], we demonstrate
four major issues with group-level bottleneck analysis below:
• The I/O performance prediction model selected by Gauge is based
on the statistical average of a group. As shown by Fig. 1 (a), the
prediction error of the whole group is significantly different from
that of an individual job. Selecting a single prediction model for
the whole group could cause large errors for an individual job.

• The impact of I/O counters (i.e., the likelihood of bottlenecks
for performance) for the whole group is different from that for a
single job. As shown by Fig. 1 (b) and Fig. 1 (c), the most impacted
factor for the group is POSIX_FILE_NOT_ALLIGENED_PERC but the
most impacted factor for the job is POSIX_SIZE_READ_1K_10K_PERF.

• The I/O counters with zero values (shown in Fig. 1 (d)) are as-
signed impact values by the Gaugemethod, which is referred to as
non-robust in this work. These zero I/O counters can lead to false
diagnoses. Fig. 1 (d) shows that the POSIX_unique_bytes_perc is
assigned a −0.02 impact value, but its actual value is zero, which
means there is no unique read or write in the application.

• The I/O bottleneck analysis by Gauge only focuses on its train-
ing data. It does not provide a method to work on an unseen
I/O log from an application. Processing an unseen I/O log may
require either classifying an unseen job into an existing cluster
or rerunning clustering algorithms by combining the new one
with existing ones. The former may face high error rates, and
the latter may be time- and resource-consuming.
Job-level I/O bottleneck diagnosis: As illustrated by Fig. 2,

manually [10, 12] identifying I/O performance bottlenecks via in-
teractive exploration [6] works for a single job. But, it needs the
involvement of a human at the diagnosis step. Also, the diagnosis
may need to be repeated 𝑁 (𝑁 ≥ 1) times for multiple counters. For
𝑀 applications, the interactive exploration step may be repeated
by𝑀 (𝑀 ≥ 1) times. The human involvement, 𝑁 repetitions for a

Figure 2: Comparison of the interactive method (a) and the
AI-based method (b) for I/O bottleneck analysis.

single application and 𝑀 repetitions for multiple applications in
interactive exploration, can be avoided using the AI-based method
developed in this work. Diagnosis can be fully automated. Bez et
at. [4] and ongoing work DigIO [52] have the initial target of pro-
viding a semi-automatic way for I/O bottleneck analysis for an
individual application. But, those are not fully automatic because
they may depend on static rules that must be defined manually.
To the best of our knowledge, generic methods to perform fully
automatic and job-level I/O performance bottleneck diagnosis are
still missing. Hence, this work fills this gap by introducing AI and
its AI interpretation technologies for I/O performance bottleneck
diagnosis in a fully automatic way.

3 ARTIFICIAL INTELLIGENCE FOR I/O (AIIO)

I/O Log Database AI Prediction-based Performance Functions
Train

A single log file

Feature Engineering

AI Interpretation-based Diagnosis Functions Diagnosis Result

Estimate Performance

Figure 3: A high-level overview of our AIIO approach to ap-
plying Artificial Intelligence (AI) and its interpretation tech-
nologies to diagnose I/O performance bottlenecks for a job.

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Bin Dong, Jean Luca Bez, & Suren Byna

To automatically diagnose the I/O performance bottleneck at
the job level, we show our AI for IO (or shorted for AIIO) method,
as presented in Fig 3. AIIO contains multiple AI prediction-based
performance functions trained from a historical I/O log database.
These performance functions map the values of I/O counters to the
performance of a job. Another major component of AIIO is the AI
interpretation-based diagnosis functions. Based on the prediction
capability of the performance functions, the diagnosis functions
provide the diagnosis result for a single log file. The diagnosis
result can be merged with multiple AI-based performance functions.
Following diagnosis results, users can change their code to get better
I/O performance if their codes have I/O issues. In the following
subsections, we introduce the I/O log database and then each major
component of the AIIO. At the end of this section, we introduce
the AIIO Web Service, which puts AIIO into real-world practice.

Table 1: Total 825 GB Darshan logs with 6, 647, 219 jobs are
used in this study.

Year Size # of Jobs

2019 182GB 3,013,293
2020 157GB 1,554,827
2021 387GB 2,854,583
2022 102GB 963,035
SUM 825GB 6,647,219

3.1 I/O Log Database and Feature Engineering
Jobs running at major HPC centers by default produce log files
containing their I/O behaviors, such as how much data to write or
read. After accumulating over time, these I/O logs have become
a large I/O log database. In this study, we use one of the most
recent and largest I/O log databases as the foundation to diagnose
application I/O performance bottlenecks. Specifically, we use the
Darshan I/O log database from the Cori supercomputer at NERSC.
This Darshan I/O log database comprises logs collected from 2019
through the first four months of 2022 (40 months). Details of the
logs for each year are presented in Table 1.

A Darshan log file collects the I/O operations of an application
issued using different APIs, such as MPI-IO, HDF5, and STDIO.
We choose to use POSIX I/O counters because it is a popular I/O
method that supports MPI-IO and HDF5 too. A Darshan log has
90 I/O counters3 for the POSIX-IO interface. Among them, 25 are
time-related counters and 65 are not. These time-related counters
capture the cost of the I/O operation itself, the interference of other
applications, and the system noise. We use time-related counters
to generate the tag (i.e., performance) for the job. The tag is used
to build a performance prediction function, as presented in the
following paragraph and Section 3.2. Then, we drop these time-
related counters because they are the “effects” but not the “causes”
of I/O performance. We drop non-Lustre file-based data accesses,
such as the GPFS file system, which usually supports users’ HOME
directories or archiving systems with small I/O workloads on the
3Full counter list can be found at https://www.mcs.anl.gov/research/projects/darshan/
docs/darshan-util.html

0 2 4
Value 1e6

0

2

4

6

Co
un

t

1e6

0 2 4 6
Value of Log(x + 1)

0.0

0.5

1.0

1.5

Co
un

t

1e6

Figure 4: Performance of all jobs before (left) and after (right)
the 𝑙𝑜𝑔(𝑥 + 1) data transformation.

Cori supercomputer. The Lustre file system is a high-performance
production storage system used on Cori. We also drop nearly empty
I/O counters (such as POSIX_DUPS and POSIX_RENAME_SOURCES) across
all six million jobs because they don’t contain any useful informa-
tion. In summary, we use 45 Darshan I/O counters in our work,
which are listed in Table 4 of the Appendix.

Finding the ground truth (tag) for each job’s performance:
Darshan has time-related counters that record the time of most I/O
operations. Darshan uses these time-related counters to estimate the
performance of each job with high accuracy [16, 24, 26]. Our work
uses the estimated performance as the tag duringmodel training and
accuracy measurement. The idea behind the estimated performance
for a job is:

𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑏𝑦𝑡𝑒𝑠 𝑜 𝑓 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑟𝑒𝑑 𝑑𝑎𝑡𝑎

𝑡𝑖𝑚𝑒 𝑜 𝑓 𝑡ℎ𝑒 𝑠𝑙𝑜𝑤𝑒𝑠𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
(1)

The total bytes of transferred data are the aggregated data sizes of
all processes involved in I/O and the time of the slowest process is
the time required by the last process to complete its I/O. Unless
specifically noted, our work sticks to the performance estimated
by Darshan with the megabyte per second (MiB/s) unit.

Feature engineering: The feature engineering method pre-
sented below is applied to process a large-scale I/O log database
and a single I/O job log from users. As stated in Section 2, each
application has unique data access behaviors. The I/O counters
in one job may not exist in another. For example, an application
that only reads data will not have counters for applications that
write data. Our feature engineering method handles all counters
listed in Table 4 for all job logs, but fills the missing value for I/O
counters from an application with 0. Since the goal of this work
is to find the I/O performance bottleneck (i.e., I/O counters with a
negative impact on the performance) and provide hints for users to
tune the I/O performance of their applications, we tried to keep I/O
counters as original as possible without merging them, as was done
in previous work [16, 25, 26]. On all I/O counters, we performed a
𝑙𝑜𝑔(𝑋 + 1) transform:

𝑥𝑛𝑒𝑤 = 𝑙𝑜𝑔10 (𝑥𝑜𝑟𝑖𝑔𝑛𝑎𝑙 + 1) (2)

𝑥𝑜𝑟𝑖𝑔𝑛𝑎𝑙 is the value of the original counters, and 𝑥𝑛𝑒𝑤 is the trans-
formed one. Two-fold benefits come with this transformation: 1)
The 𝑙𝑜𝑔10-based transformation scales wide-scope values into small
ranges. The 𝑙𝑜𝑔10 (𝑥 + 1), as illustrated in Fig. 4, reduces the perfor-
mance value from the range (1, 6309573) to (0.3, 6.8). All features
are narrowed into similar ranges, which improves the accuracy
of the performance prediction function [21]. 2) The 𝑙𝑜𝑔10 (𝑥 + 1)
transforms the original 0 values of I/O counters to 0, representing

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html
https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html

AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Figure 5: A scatter plot of the performance and total data
transfer size of all Darshan logs.

the missing values (sparsity) in the original Darshan log. Consider-
ing the sparsity of a Darshan I/O log improves the accuracy and
robustness of performance diagnosis at the job level.

Sparsity in our Darshan log database: We use the following
formula to measure the average sparsity of jobs in our database:
𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1

𝑅

∑𝑅
𝑟

𝑐𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑧𝑒𝑟𝑜𝑠 𝑜 𝑓 𝑗𝑜𝑏 𝑟

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 𝑜 𝑓 𝑗𝑜𝑏 𝑟
, where the total counters

of job r are 45. The average 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 of all jobs in our Darshan log
database is 0.2379, which indicates that, on average, each job has
around 10 I/O counters with zero values. As a result, consideration
of the sparsity of a Darshan log is required.

Implications for performance and diagnosis functions:
Visually inspecting the performance bottleneck is difficult. Taking
data transfer size (Fig. 5) as an example, the relationship between
performance and data transfer size is neither linear nor nonlinear.
This is only in 2D space. Given the 45 dimensions (i.e., features) in
our Darshan logs, more sophisticated performance and diagnosis
functions need to be developed.

3.2 AI Prediction-Based Performance Function
The performance function captures the relationship between the
I/O counters and the I/O performance of a job. By changing the in-
puts, i.e., the counters of I/O, the performance function also changes
its output, i.e., predicted performance. This can be used to replace
the simulation of expensive runs during the manual performance
bottleneck diagnosis. As discussed in Section 3.3, we used the di-
agnosis function to measure the impact of these changes. This
subsection focuses on how to find the performance function. The
error between real performance and predicted performance should
be as small as possible for the performance function.

Modeling the performance of any I/O system is a difficult task
because of the complexity of these systems. Traditional analytical
modeling methods [17, 28, 40] have been developed. However, these
analytical models are limited because they only consider a few
factors, such as access size and the count of I/O servers in a file
system. Instead, we explored AI-based performance functions to
capture the relationship between the value of Darshan I/O counters
and the performance of a job.

To reduce the error of the performance function for a single job,
AIIO uses multiple AI models as the performance function. Based
on the latest research [7] on comparing different AI models for
a regression problem, we selected three models with the highest
accuracy for this work. These three models include LightGBM,
CatBoost, and XGBoost. All the models are based on a tree structure.
AI models have evolved quickly in recent years [44]. Therefore, we

also chose MLP and TabNet. MLP represents a neural network-
based method. TabNet uses the latest idea of transformer networks
in modeling data. In summary, we investigated five AI models as
performance functions and expanded our methods to include more
AI models. Different models capture different features or patterns
from a job’s I/O counters, reducing errors. The explanations for how
these AI models work and why they have different performances on
regression is detailed in the references [7, 44]. The five AI models
we investigated are briefly described in the following text:
• MLP: We developed a MLP (multilayer perceptron) model [21] as
the performance function. The MLPmodel uses a fully-connected
neural network. Its architecture is presented in Table 5 in the
Appendix. We used the “Relu” function as the activation function
and added the Batch Normalization (BN) and Dropout layers to
the network. These are typical optimization methods used to
improve the model’s accuracy.

• XGBoost: XGBoost [13] is based on gradient boosting, a well-
proven method for building machine learning models. In XG-
Boost, gradient boosting makes predictions from multiple deci-
sion trees. XGBoost has high accuracy in the regression of tabular
data. Moreover, XGBoost supports sparse data input, as required
by our Darshan I/O logs. XGBoost has a well-optimized cache
access pattern and scale well on large-scale training data.

• LightGBM: LightGBM [27] is also a machine learning model
that uses the gradient boosting decision tree. Unlike XGBoost,
which uses a level-wise growing tree, LightGBM uses a leaf-
wise growing tree. LightGBM has a one-sided sampling method
and exclusive feature bundling methods to speed up its training.
LightGBM has high accuracy and a fast convergence speed when
modeling tabular data like our Darshan logs.

• CatBoost: CatBoost [19] uses a symmetric (balanced) decision
tree for weak learners in gradient boosting. The balanced tree
structure in CatBoost has efficient execution on modern comput-
ers. CatBoost also uses ordered boosting, a permutation-driven
alternative to the classic algorithm for solving the prediction
shift problem. With ordered boosting, CatBoost uses different
datasets to train and calculate gradients and avoids prediction
shifts to produce more general models.

• TabNet: TabNet [1] is a deep neural network model for tabular
datasets like our Darshan I/O database. Specifically, TabNet uses
sequential attention to choose different features for prediction.
TabNet also has batch normalization, allowing it to process the
original dataset.
How to choose the performance metrics in model training.

We chose the root-mean-square deviation (RMSE) to measure the
loss of an AI model during training:

𝑅𝑀𝑆𝐸 =

√√
(1
𝑛
)

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 . (3)

The 𝑦𝑖 is the transferred performance with Eq. 2 and 𝑦𝑖 is the
predicted performance.

How to train the model and avoid overfitting. During the
training of each model, we shuffled the training data and split it
into two parts: one half for training and the other for evaluations.
We also used early stopping rounds (= 10) across all models to
avoid overfitting, improving our models’ generalization to handle

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Bin Dong, Jean Luca Bez, & Suren Byna

Table 2: RMSE of the prediction function and diagnosis func-
tion. The RMSE for the prediction function is calculated with
Eq. 3. TheRMSE for the diagnosis function is calculated using
Eq. 5. The Closest Method and Average Method are discussed
in Section 3.3.

Prediction Func. Diagnosis Func.

CatBoost 0.2686 0.2637
LightGBM 0.2632 0.2599
XGBoost 0.5634 0.2604
MLP 0.5416 0.4611
TabNet 0.3078 0.3077
Closest Method 0.1860 0.2130
Average Method 0.2405 0.2471

unseen data. Since each model has many parameters to tune, we
kept all their default values. The convergence plot for the loss of
these models is presented in Fig. 16 in the Appendix.

How to use multiple AI models for an individual job. Our
goal with this work is to provide a job-level diagnosis for I/O perfor-
mance bottlenecks. We assumed that the Darshan log file, on which
these performance models work, contains unseen data. As a result,
the predicted error for some of these models could be higher than
expected. To reduce error, we fed each model the same Darshan
log file to perform independent predictions. Then, as presented
in Section 3.3, we ran the diagnosis models on each of them inde-
pendently. The diagnosis results from these multiple models were
merged to reduce error. The AI-based performance functions are
trained with all Darshan logs, which contain information about all
these job logs. In the following section, we present how to focus
on the diagnosis of a single job with locality in mind.

How to handle sparsity in AI models. AI models naturally
accept zero-based sparse input (e.g., SciPy sparse matrices), but
some software (e.g., pytorch-tabnet 4 for TabNet) built for these AI
models only accepts dense input. For these I/O models, we trained
the models with dense input and later used the diagnosis function
(explained in the following section) to handle the sparsity.

Experimental results of different models on performance.
We evaluated multiple AI models as the performance function on
half of our I/O log database. The RMSE results are presented in
Table 2. We provide two methods, namely Closest Method and Av-
erage Method, to merge the results of different models. Merging
results from different models helps reduce the error in predicting
the performance of a single job. The RMSE for the Closest Method
is calculated by replacing the 𝑦𝑖 of a single job with the closest
predicted performance among all models. The RMSE for the Aver-
age Method is calculated by replacing the 𝑦𝑖 of a single job with
weighted predicted performance among all models. The idea for
the Closest Method and the Average Method is presented in Eq. 6
and Eq. 7, respectively. For the performance function, the RMSE is
reduced at most by 3.11×. In other words, multiple models reduce
the RMSE of the performance prediction for a single job. In the fol-
lowing section, we present our methods to use these performance
prediction functions to diagnose the I/O performance bottleneck.
4https://pypi.org/project/pytorch-tabnet/

3.3 AI Interpretation-Based Diagnosis Function
The performance function presented in the previous section con-
nects the I/O counters with the I/O performance of an application.
By utilizing AI interpretation technologies, the diagnosis function
presented in this section calculates the contribution (𝐶) of these
I/O counters to the performance. The 𝐶 is either a negative or posi-
tive value. The negative 𝐶 means that the corresponding counter
decreases the I/O performance; the positive 𝐶 means the corre-
sponding I/O counter increases the performance. The I/O counters
with negative 𝐶 are bottlenecks of I/O performance. The larger the
absolute value of 𝐶 of an I/O counter, the larger the impact the I/O
counter has on the I/O performance.

How to find the diagnosis functions. Various methods can be
used for the diagnosis. Traditional methods, such as linear regres-
sion and the partial dependence plot (PDP) [20], may have atypical
results for tabular data like our Darshan log file. Recent advances
in AI have brought more accurate interpretation methods, such as
SHAP [33] and LIME [38], which are used in this work. The SHAP
provides a job-level diagnosis by perturbing the data around the
input log and then fitting a regression model with the perturba-
tion results. The SHAP is based on game theory to allocate the
performance contribution for all I/O counters. SHAP unifies other
methods, such as LIME, PDP, and DeepLIFT [43]. Although our
AIIO supports different interpretation methods, we mostly focused
on discussing SHAP. The SHAP value, i.e., the contribution 𝐶 in
our work, for an IO counter 𝑗 can be expressed by

𝐶 𝑗 =
∑︁

𝑠∈𝐼−𝑗

|𝑆 |!(|𝐼 | − |𝑆 | − 1)!
|𝐼 |! (𝑦𝑆+𝑗 − 𝑦𝑆−𝑗). (4)

The 𝐼 is the set of I/O counters, 𝑆 is a subset of 𝐼 without I/O counter
𝑗 , 𝑦𝑆+𝑗 is the predicted performance with I/O counter subset 𝑆
with I/O counter 𝑗 and 𝑦𝑆−𝑗 is the predicted performance without
I/O counter subset with I/O counter 𝑗 . Our work uses the SHAP
package5 to compute SHAP values for each I/O counter. The SHAP
uses local accuracy [32] to measure how well the SHAP works.
Based on the local accuracy and RMSE for regression, we defined
RMSE for the diagnosis functions to measure their precision:

𝑅𝑀𝑆𝐸 𝑓 𝑜𝑟 𝑆𝐻𝐴𝑃 =

√√√√
(1
𝑛
)

𝑛∑︁
𝑖=1

(𝐸𝑖 +
|𝐼 |∑︁
𝑗=1

𝐶 𝑗 − 𝑦𝑖)2, (5)

where 𝐸𝑖 is the expected performance of the job 𝑖 from SHAP. The
sum of

∑ |𝑆 |
𝑗=1𝐶 𝑗 and 𝐸𝑖 should provide the prediction for the 𝑦𝑖

that is the real performance of a job. By calculating the RMSE for
SHAP, we know how accurately SHAP understands the impact of
I/O counters on performance.

The locality awareness in SHAP allows AIIO to use global
performance functions for job-level diagnosis. In Section 3.2,
we reported our performance functions, which are trained with
all I/O logs. Therefore, we call them globally-trained performance
functions. As shown here, SHAP uses locality-aware samplingmeth-
ods [33, 38] to create a set of synthetic samples that are “neighbors”
to a job. The neighborhood is measured in this context using cosine
distance or Euclidean distance. The impact of each I/O counter can
be calculated based on the set of synthetic samples.
5https://github.com/slundberg/shap

https://pypi.org/project/pytorch-tabnet/
https://github.com/slundberg/shap

AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis HPDC ’23, June 16–23, 2023, Orlando, FL, USA

Sparse Darshan log input is required for diagnosis func-
tions. The SHAP package takes a performance function as input
and runs perturbations on an input Darshan log. The sparse data
in the Darshan log needs specific consideration here. We used the
SHAP Kernel Explainer from the SHAP package to calculate the
SHAP values to be model agnostic. The SHAP Kernel Explainer
accepts sparse data as input as well as a background filter against
which to sample. Hence, we initialized the background filter of the
SHAP Kernel Explainer as zero, then provided I/O counters (sparse
list) from a Darshan log as the input of the SHAP Kernel Explainer.
The SHAP Kernel Explainer calculates the SHAP value for the I/O
counters with values that are not zero. For the I/O counters with
zero values, SHAP Kernel Explainer skips the sampling data around
them and assigns zero contribution to them.

Merge diagnosis results from multiple performance func-
tions. As stated in Section 3.2, we used multiple AI models as the
performance function to connect the I/O counters with their perfor-
mance. Using multiple models reduces the RMSE of the prediction
of a single job. Here, we used these performance models to inde-
pendently build different diagnosis functions. For each AI-based
performance model, we built SHAP and LIME diagnosis models sep-
arately. Now the question becomes, “How do we utilize all of these
different interpretation results from different diagnosis functions?”
We consider the following two methods:
• Closest Method: Pick the diagnosis results from the most
accuratemodel. Thismethod picks the diagnosis function that is
built from the performance function with a minimum difference
from the real performance (from Eq. 1). This can be presented as:

𝑚∗ = argmin
𝑚

(𝑦𝑥𝑚 − 𝑦𝑥𝑚), (6)

where the 𝑦𝑥𝑚 is the predicted value from model𝑚 and 𝑦𝑥𝑚 is the
estimated value by Darshan for 𝑥 . The𝑚∗ is the model selected
with a minimum difference between the predicted and estimated
values. Hence, we choose the diagnosis function built from𝑚∗.

• AverageMethod: Average diagnosis results from all models
with sophisticated weights. This method merges the results
across diagnosis functions. Specifically, we obtained diagnosis
results (for the same Darshan log) independently from different
diagnosis functions, then we merged their diagnostic results. We
did not merge results for diagnosis functions built from different
interpretation technologies, such as SHAP and LIME, because
their results are on different scales and are difficult to merge.
For the diagnosis functions built with the same interpretation
technology, we used Eq. 7 to merge results:

𝐶 𝑗 =

𝑀∑︁
𝑚

𝑤𝑚𝐶
𝑗
𝑚 (7)

where 𝐶 𝑗
𝑚 is the impact of I/O counter 𝑗 . The effect on perfor-

mance can be either positive or negative. The negative impact
means the current I/O counters degrade the whole performance,
and the positive impact means the current I/O counters improve
the performance. Specifically, we used Eq. 8 to calculate the ra-
tio (𝑟𝑚) of a model among all models and then normalized it
to get the final weight 𝑤𝑚 . The calculation of 𝑟𝑚 is based on
the difference between the predicted performance 𝑦𝑚 and the
estimated performance 𝑦𝑚 from Darshan. The more accurately

that the model predicts the job’s performance, the larger weight
this performance model becomes.

𝑤𝑚 =
𝑟𝑚∑𝑀

𝑚=1 𝑟𝑚
where 𝑟𝑚 =

∑𝑀
𝑚=1 (𝑦𝑚 − 𝑦𝑚)
𝑦𝑚 − 𝑦𝑚

(8)

Comparison of the two methods mentioned above. Us-
ing the RMSE defined in Eq. 5 for SHAP, we calculated the RMSE
for individual models and used the results from our two methods
to merge them, as reported in Table 2. Both of our methods out-
perform individual models. The Closest Method and the Average
Method have very similar results. Based on our experimental stud-
ies, we intended to use the Average Method. As previously stated,
SHAP samples data points surrounding the input data with locality
awareness. These data points are used to build a linear regression
function and obtain the impact of each factor. Different AI-based
performance functions have different accuracy for both the input
and sampled data points. One possibility is that a model has a large
error on the input data but high accuracy on the sampled data. This
possibility can be inversely proportional to the difference between
its performance and real performance: the larger the difference, the
lower the possibility of an accurate prediction. Hence, merging the
diagnosis results with the weight, based on performance difference,
can take advantage of different models with different ways to model
the data, thus increasing the possibility of finding I/O bottlenecks.
An example is shown in Fig. 6 and Fig. 8a (in the following sec-
tion). Fig. 6 contains the results of five models and Fig. 8a contains
the merged results from the average method. The Closest Method
will select the CatBoost diagnosis results with the POSIX_SEQ_READS

as the negative contribution. The most negative impact factor for
the Average Method is POSIX_SEEKS. As demonstrated in the fol-
lowing section, POSIX_SEEKS is proven to be one negative factor
for the performance. This diagnosis result, on the other hand, is
for a sequential reading where the POSIX_SEQ_READS should have
less impact on the performance. POSIX_SEEKS is ranked as the fifth
negative factor by CatBoost. By considering the contributions of
other models, POSIX_SEEKS becomes the first negative factor.

Robustness in our diagnosis methods. As presented above,
we integrated the sparsity of the Darshan I/O log into both perfor-
mance and diagnosis functions. As a result, the sampling method
in SHAP and LIME voids the sampling and impact calculation for
I/O counters with zeros. Our experimental results in Fig. 6 and all
the following results show that our method only assigns impact
values to I/O counters with non-zero values. By contrast to the
results from Gauge in Fig. 1, which assigns impact to I/O counters
with zeros, our method for job-level and automatic I/O bottleneck
diagnosis is robust.

3.4 AIIO in Action
So far, we have presented the details of AIIO, which diagnoses
the I/O bottleneck of a job by analyzing its I/O log file. Here, we
describe the different ways to put our approach into practice. The
first is to extend the tool like darshan-util, which generates the
report for Darshan I/O logs. The second is to build a web service for
users. The first method faces the difficulty of model management, as
darshan-util may be installed by different users at different places.
In this case, we decided to create an AIIO web service that allows

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Bin Dong, Jean Luca Bez, & Suren Byna

(a) CatBoost 395MiB/s (b) TabNet 370MiB/s (c) LightGBM 199MiB/s (d) MLP 125MiB/s (e) XGBoost 1591MiB/s

Figure 6: Diagnosis results of five models in AIIO. The real performance of the job is 412MiB/s. The configurations of the
workload and weighted diagnosis results of these five models are presented in Fig. 8a in the following section.

users to obtain diagnosis results while also allowing us to manage
its AI models easily. In the AIIO web service, all AI models are
pre-trained and saved in files. Since AI models evolve quickly, our
AIIO web service may accept new models from users. The web
server loads these pre-trained models to provide diagnosis results,
as shown in Fig. 17 in the Appendix.

4 EVALUATION
Our experiments aim to evaluate if AIIO can accurately identify
the I/O bottlenecks of HPC applications. We manually tuned the
application and measured its performance to see if the diagnosis
result was accurate. Our experiments were performed on the Cori
supercomputer6 at NERSC. Cori is a Cray XC40 system with at
least 2, 388 Intel Xeon Haswell processor nodes and a Luster file
system. Our tests only used the Luster file system with its default
settings, e.g., 1 OST and 1 MB stripe size.

Our analysis mostly focuses on the most negative impact factors
from AIIO, and we tuned the applications to address these factors.
In reality, this is an iterative process with multiple rounds. We
combine different experiments to show how this iterative process
works. We also used the performance estimated by Darshan as
the metric. We tested AIIO with both synthetic I/O workloads and
real applications. Details of these experiments and their results
are presented in the following parts of this section. Our AIIO Web
Service produced all the plot results.

6Cori: https://docs.nersc.gov/systems/cori/

Table 3: Summary of the IOR Configuration

IOR Configuration
Fig. 7 (a) ior -w -t 1k -b 1m -Y

Fig. 7 (b) ior -w -k 1m -b 1m -Y

Fig. 8 (a) ior -r -t 1k -b 1m

Fig. 8 (b) ior -r -t 1k -b 1m

with a seek for the first read
Fig. 9 ior -w -t 1k -b 1k -s 1024 -Y

Fig. 10 ior -w -t 1k -b 1k -s 1024 -Y

Fig. 11 ior -w -t 1k -b 1m -z -Y

Fig. 12 ior -a POSIX -r -t 1k -b 1m -z

(a) Performance: 1.55 MiB/s
Transfer size: 1K

(b) Performance: 162.01 MiB/s
Transfer size: 1M

Figure 7: Results of IOR that writes sequentially.

4.1 Synthetic I/O workloads from IOR
We executed the latest IOR (version 3.3.0)7 to simulate six low-
performing I/O access patterns identified by previous research [12,
17, 34, 47]. These access patterns included sequential reading and
writing with small request sizes, stride reading and writing, and
reading and writing with random offsets. Then, we saw whether
AIIO captures these I/O access patterns and provides hints to im-
prove their performance. All tests in this subsection were run with
256 MPI processes using the POSIX API. The configurations of IOR
are summarized in Table. 3.

4.1.1 Pattern 1: Sequential Writing with Small I/O Requests.
This test used the IOR with small write sizes. Our test used IOR’s -Y
option to perform fsync after each POSIXwrite, which can avoid the
impact of the cache. The experimental results and configurations
are presented in Fig. 7. First, we run the IOR with a write size
of one kilobyte (i.e., -t 1K), which results in a performance of
1.55 MiB/s. According to Fig. 7a, AIIO reports that a large number
of small writes (i.e., POSIX_SIZE_WRITE_100_1K and POSIX_WRITES)
have the greatest negative impact on the performance. Then, we
increase the size of each write in IOR to one megabyte (i.e., -t
1M). The writing performance increases to 162.01MiB/s, which is
104× faster. According to Fig. 7b, this large size of each write (i.e.,
POSIX_SIZE_WRITE_100k_1M) has a positive impact here. Clearly, AIIO
can capture this small I/O request pattern in the sequential writing
workload from IOR.
7https://github.com/hpc/ior

https://docs.nersc.gov/systems/cori/
https://github.com/hpc/ior

AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis HPDC ’23, June 16–23, 2023, Orlando, FL, USA

(a) Performance: 412.70 MiB/s (b) Performance: 644.67 MiB/s

Figure 8: Results for IOR that reads sequentially. The (a) uses
the original IOR code that calls seek for read every time, but
the (b) only calls seek once for the first read.

4.1.2 Pattern 2: Sequential Reading with Small Requests.
This experiment tests the sequential reading of IOR with small
I/O request sizes. The experimental configurations and results are
reported in Fig. 8. From Fig. 8a, we can see that the IOR only has
412 MiB/s of performance because there are lots of POSIX_SEEKS.
After studying the IOR benchmark, we found that IOR enforces
seek for each read operation, even though it is a sequential read.
Hence, we changed IOR’s code by only seeking once each time
for the first read. With this change, we re-ran the same code and
found its performance had increased to 644.47 MiB/s (in Fig. 8b).
Also, based on the new diagnosis results of AIIO on this run, the
POSIX_SEEKS is not a negative impact factor. Hence, AIIO can find
the cause of this pattern of sequential reading with small requests.

4.1.3 Pattern 3: Noncontiguous Writing with a Fixed Stride.
By setting the transfer size to be equal to the block size in IOR
and the segment number (-s) to 1024, we simulate noncontiguous
writing with a fixed stride size. Experimental results are presented
in Fig 9. This configuration attains 1.46 MiB/s. With the exception
of the POSIX_SIZE_WRITE_100_1K, the AIIO reports two counters (i.e,
POSIX_STRIDE1_COUNT and POSIX_STRIDE1_COUNT) as the most nega-
tive impact factors for the performance. As stated in Section 4.1.1,
the POSIX_SIZE_WRITE_100_1K is one major negative factor for per-
formance. Now the stride pattern becomes the second negative
factor. Our AIIO accurately captures this pattern. To improve the
performance, we converted the stride pattern into sequential writ-
ing (like one for 8a) and had a large write size (like one for 8b). The
latter can have a performance of 162MiB/s, as stated in Section 4.1.1.

4.1.4 Pattern 4: Noncontiguous Reading with a Fixed Stride.
Using the same idea as the previous experiment, we tested the
pattern of noncontiguous reading with a fixed stride size. Experi-
mental results are presented in Fig. 10. The diagnosis results from
the AIIO say that POSIX_SEEKS and POSIX_FILE_ALIGMENT are the
two factors with the largest negative impact8. For noncontiguous
reading, many POSIX_SEEKS are required to jump to the next posi-
tion to read. Hence, POSIX_SEEKS dominates the performance. Since
our request size is 1K and POSIX_FILE_ALIGMENT is 1M, this makes
POSIX_FILE_ALIGMENT the top negative factor. To optimize this pat-
tern’s performance (65.33MiB/s), we easily convert the noncontigu-
ous reading into a contiguous one, as shown in Fig. 8a, which has a
8We ignore the POSIX_MEM_ALIGMENT since we focus on the I/O operation.

performance of 412.70MiB/s. The contiguous access can be further
diagnosed by AIIO to improve its performance to 644.67MiB/S, as
shown in Fig. 8a.

4.1.5 Pattern 5: Writing with a Random Offset. Experimental
results of writing at random offset are presented in Fig. 11. Except
for small writes and their amounts (i.e., POSIX_SIZE_WRITE_100_1K
and POSIX_WRITES), the two I/O counters (i.e., POSXI_FILE_NOT_ALIGNED
and I/O counter POSIX_STRIDE1_COUNT) are the top negative factors.
These two factors are caused by the I/O writing pattern with ran-
dom offset. Clearly, AIIO can capture this pattern. The performance
of this pattern is 1.43MiB/s. The performance of this pattern can be
improved by converting it to a contiguous pattern (shown in Fig. 7a)
with 1.55MiB/s and further by using a large write size (shown in
Fig. 7b) with 162.01MiB/s.

4.1.6 Pattern 6: Reading with RandomOffset. The experimen-
tal results of IOR, which reads with a random offset, are reported in
Fig. 12. The POSIX_STRIDE3_STRIDE and POSIX_STRIDE4_STRIDE are
all selected as the negative factors, produced by this random read-
ing pattern. Other I/O counters, e.g. POSIX_SIZE_READ_100_1K and
POSIX_SEQ_READS, are identified bottlenecks from the previous tests.
The performance for this pattern is 94.52MiB/s. The performance
can be improved by converting this random reading into a con-
tiguous reading (as shown in Fig. 8a) to 412.70MiB/s. Then, the
performance can be improved again to 644.67MiB/s by using a
large read size (as shown in Fig. 8b)

In summary, we tested the AIIO with six different I/O
patterns usually viewed as patterns with bad performance.
Experimental resultsmanifest that AIIO accurately identifies
these patterns and also helps to improve their performance.
As shown by the experiments with noncontiguous access
(§4.1.3, §4.1.4, §4.1.5, §4.1.5), contiguous but small access size
(Fig. 7a and Fig. 8a), and contiguous and large access size
(Fig. 7b and Fig. 8b)", AIIO can identify the cause of the I/O
performance bottleneck as the optimization moves on.

4.2 Real Applications
4.2.1 E2E. E2E [31] contains the I/O kernels of the Chimera Su-
pernova code and Pixie3D. This test used write_3d_nc4.c of the E2E
to evaluate AIIO. The function accepts six parameters, where (𝑛𝑝𝑥 ,
𝑛𝑝𝑦 , 𝑛𝑝𝑧) defines the points per block and (𝑛𝑑𝑥 , 𝑛𝑑𝑦 , 𝑛𝑑𝑧) defines
the number of blocks. The (𝑛𝑝𝑥 × 𝑛𝑑𝑥 , 𝑛𝑝𝑦 × 𝑛𝑑𝑦 , 𝑛𝑝𝑧 × 𝑛𝑑𝑧) is the
size of the data. Following the recommendations of Bez et al. [6],
we disabled filling the default value before the run. Furthermore,
we set (𝑛𝑝𝑥 , 𝑛𝑝𝑦 , 𝑛𝑝𝑧) = (32, 32, 16) and (𝑛𝑑𝑥 , 𝑛𝑑𝑦 , 𝑛𝑑𝑧) = (32, 32,
32), which write 3D data of size (1024, 1024, 512). Our test used 64
processes, where each process writes a cubic (subset) based on its
rank in the MPI communicator.

Experimental results of E2E are presented in Fig. 13. The initial
run of E2E has a performance of 3.28 MiB/s. The results of the
diagnosis show that a large number of small writes, which can
be revealed by POSIX_SIZE_WRITE_100_1K and POSIX_WRITES, have a
significant negative impact on its performance. After we studied
the code and parameters of write_3d_nc4.c, we found it only writes
a subset of the whole 3D space based on this configuration. Because
of this, even though it already uses the collective I/O inside, these

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Bin Dong, Jean Luca Bez, & Suren Byna

Figure 9: Results for IOR
which writes with a stride
size. Performance: 1.46 MiB/s

Figure 10: Results for the IOR
which reads with a stride size.
Performance: 65.33 MiB/s

Figure 11: Results for the IOR
which writes with random off-
set. Performance: 1.43 MiB/s

Figure 12: Results of IOR
which reads with random off-
set. Performance: 94.52 MiB/s

(a) Performance: 3.28 MiB/s (b) Performance: 482.22 MiB/s

Figure 13: Performance and AIIO diagnosis for E2E.

small writes can not be merged because they are not contiguous
at their physical offsets. As a result, the E2E has very low I/O
performance. To evaluate if our diagnosis was correct, we set the
3D data size to (1024, 64, 32), matching the exact size of the writes
of all processes. With this setting, the collective I/O merges small
writes into large ones. As shown by Fig. 13b, the performance
of E2E with the changed 3D data size increases to 482.22 MiB/s
(146× faster than the previous one). These results prove that our
AIIO can find the bottleneck in the E2E. Note that here we only
focus on evaluating our diagnostic results and changing the data
size to prove our idea. In reality, the application stakeholder may
insist on the previous size. So, in reality, the I/O strategy of E2E
can be implemented in a way that the 3D data can be stored in
multiple files. Each file contains a logically contiguous subset, e.g.,
(1024, 64, 32) in this case. Another possible optimization method is
subfiling [9], which splits a large file into smaller files. Incorporating
these changes is outside the scope of this paper.

4.2.2 OpenPMD. OpenPMD [23] defines methods to store and
exchange particle- and mesh-based data from scientific simulations
and experiments. OpenPMD supports ADIOS BP, HDF5, netCDF,
and other file formats. In this experiment, we used the I/O kernel
of OpenPMD from h5bench [29] as the representative application
for accessing particle and mesh data. We ran OpenPMD with 1024
processes with the following configuration: dim=3, balanced=true,

ratio=1, steps=1, minBlock=64 32 32, and grid=1024 8 8. Ex-
perimental results are shown in Fig. 14a. The AIIO diagnosis in
Fig. 14a reveals that the stripe size and small writes are the major
bottlenecks (i.e., POSIX_SIZE_WRITE_100_1K), resulting in a perfor-
mance of 713.65MiB/s. As a result of the diagnosis, we increased

(a) Performance: 713.65 MiB/s (b) Performance: 1303.27 MiB/s

Figure 14: Performance and AIIO diagnosis for OpenPMD.

the stripe size to 4M and also disabled the independent option of
the OpenPMD (i.e., OPENPMD_HDF5_INDEPENDENT) to turn off its inde-
pendent I/O calls (i.e., small writes). We used the collective I/O
to merge these small writes and create large ones. As shown by
Fig. 14b, we obtained higher I/O performance at 1303.27 MiB/s
(1.82× faster than the original code). The results of the diagnosis
in Fig. 14b also show that the stripe size and the small writes (i.e.,
POSIX_SIZE_WRITE_100_1K) are not negative factors. This proves that
AIIO can identify I/O bottlenecks in OpenPMD and improve its
performance.

4.2.3 DASSA. DASSA [18] is an open framework with various
analysis functions for distributed acoustic sensing (DAS) data. It
supports large-scale DAS data analysis on HPC via data partition
methods. In this experiment, we used the earthquake search func-
tion with the cross-correlation (xcorr) method as the study object
for our AIIO method. The earthquake search task partitions the
data equally among nodes and independently calculates the xcorr.
Each partition contains𝑚 1-minute files and 𝑛 template files. These
template files contain identified seismic waves. We ran DASSA with
a single node (which uses multiple threads inside for computing).
The code accesses 21 1-minute files and 𝑜𝑛𝑒 template. Since DASSA
balances the workload very well, large-scale runs should have the
same pattern as this small setting. Fig. 15a reports the AIIO di-
agnosis of the original DASSA run with a performance of 695.91
MiB/s. POSIX_OPENS has the most negative impact on performance.
POSIX_OPENS means that each process opens too many files here (at
least 21 1-minute files). Based on this diagnosis, we merged these
21 files and then changed the DASSA code to work on a single file.
These changes delivered 1482.06 MiB/s (2.1× faster than the one

AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis HPDC ’23, June 16–23, 2023, Orlando, FL, USA

(a) Performance: 695.91 MiB/s (b) Performance: 1482.06 MiB/s

Figure 15: Performance and AIIO results of DASSA.

without merging 21 files). The new diagnosis results are shown in
Fig. 15b, where POSIX_OPENS has no negative impact. The results
show that our AIIO helps DASSA improve its performance. In real-
ity, this merging operation may take extra time, but the DAS data
analysis is meant to be repeated many times. Thus, merging small
DAS files into large ones is practically useful.

In summary, we have demonstrated through experimen-
tation how AIIO can be used to diagnose I/O bottlenecks in
three real applications. The results show that AIIO identifies
the I/O bottlenecks in each of these applications. By address-
ing these bottlenecks, we improved the I/O performance of
these applications by 1.8×,. 2.1×, and 146×, respectively.

5 CONCLUSIONS
Identifying the cause of I/O performance bottlenecks for HPC ap-
plications can significantly reduce I/O costs and eventually shorten
the runtime of the whole application. A user-centric and automatic
method for I/O performance bottleneck diagnosis is possible be-
cause of the accumulated I/O logs from large-scale supercomputers
and recent advances in AI techniques.

However, the existing methods for I/O bottleneck diagnosis only
work at the group or platform level. The results from group- and
platform-level methods are based on statistical consensus and can
be significantly different from the results of an individual job. To
realize a job-level and automatic I/O performance bottleneck diag-
nosis method, this work resolves a few issues, including 1) how to
improve the performance prediction accuracy for a single job; 2)
how to merge the diagnosis results of multiple models; 3) how to
consider the sparsity of the I/O log, and 4) how to generalize our
method for an unseen job log. With these solutions, we designed a
method, namely AIIO, for job-level and automatic I/O performance
bottleneck diagnosis.

AIIO is evaluated extensively with synthetic workloads of differ-
ent I/O patterns and three real scientific applications. AIIO can help
improve the performance of applications by up to 146×. This work
can be extended to work on I/O logs frommultiple platforms as well
as directly supporting HDF5 and MPI-IO interfaces. Automating
the map from diagnosis results to code tuning can reduce resource
consumption in I/O performance tuning. Our work views it as a
regression problem. Another direction to further improve our work
is by viewing the I/O diagnosis as a classification problem. With the
classification problem, a dataset with accurately tagged bottlenecks
can help train the classification models. The recall and precision for

diagnosis can be calculated with the availability of the classification
models and the tagged dataset.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.
This effort was supported by the U.S. Department of Energy (DOE),
Office of Science, Office of Advanced Scientific Computing Research
under contract number DE-AC02-05CH11231. This research used
the resources of the National Energy Research Scientific Computing
Center (NERSC), a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

A APPENDIX

Table 4 details the I/O counters collected by Darshan that were
used in the context of this research. Table 5 sums up MLP used
to predict I/O performance. Figure 16 presents the loss plot of
training XGBoost. Figure 17 presents the architecture of our AIIO
web service to put AIIO into practice.

Table 4: Darshan I/O counters used in this research.

Counter Description

nprocs count of MPI ranks
LUSTRE_STRIPE_SIZE stripe size
LUSTRE_STRIPE_WIDTH count of OSTs
POSIX_OPENS count of POSIX opens
POSIX_FILENOS count of POSIX fileno operations
POSIX_MEM_ALIGNMENT memory alignment size
POSIX_FILE_ALIGNMENT file alignment size
POSIX_MEM_NOT_ALIGNED count of accesses not memory aligned
POSIX_FILE_NOT_ALIGNED count of accesses not file aligned
POSIX_READS count of writes
POSIX_WRITES count of writes
POSIX_SEEKS count of seeks
POSIX_STATS count of stat/lstat/fstats
POSIX_BYTES_READ total bytes read
POSIX_BYTES_WRITTEN total bytes written
POSIX_CONSEC_READS count of consecutive reads
POSIX_CONSEC_WRITES count of consecutive writes
POSIX_SEQ_READS count of sequential reads
POSIX_SEQ_WRITES count of sequential writes
POSIX_RW_SWITCHES count of switch between read and write
POSIX_SIZE_READ_* read sizes: 0_100,100_1K,1K_10K,10K_100K,100K_1M
POSIX_SIZE_WRITE_* write sizes: 0_100,100_1K,1K_10K,10K_100K,100K_1M
POSIX_STRIDE[1,2,3,4]_STRIDE the four most frequently appearing strides
POSIX_STRIDE[1,2,3,4]_COUNT count of each of the most frequent strides
POSIX_ACCESS[1,2,3,4]_ACCESS the four most frequently appearing access sizes
POSIX_ACCESS[1,2,3,4]_COUNT count of each of the most frequent access sizes

HPDC ’23, June 16–23, 2023, Orlando, FL, USA Bin Dong, Jean Luca Bez, & Suren Byna

Table 5: Model summary for MLP.

Layer (Type) Output Shape Param #
dense_35 (Dense) (None, 90) 4140
dense_36 (Dense) (None, 89) 8099
batch_norm_25 (BN) (None, 89) 356
dropout_25 (Dropout) (None, 89) 0
dense_37 (Dense) (None, 69) 6210
batch_norm_26 (BN) (None, 69) 276
dropout_26 (Dropout) (None, 69) 0
dense_38 (Dense) (None, 49) 3430
batch_norm_27 (BN) (None, 49) 196
dropout_27 (Dropout) (None, 49) 0
dense_39 (Dense) (None, 29) 1450
batch_norm_28 (BN) (None, 29) 116
dropout_28 (Dropout) (None, 29) 0
dense_40 (Dense) (None, 9) 270
batch_norm_29 (BN) (None, 9) 36
dropout_29 (Dropout) (None, 9) 0
dense_41 (Dense) (None, 1) 10

0 500 1000 1500 2000 2500 3000 3500
Iteration

0.4

0.6

0.8

1.0

1.2

Lo
ss

Figure 16: Plot for the loss for XGBoost during its training.
The 𝑦-axis is the loss, which is defined as RMSE. The 𝑥-axis
is the number of iterations. We observed similar plots for
other models used in this paper.

Figure 17: Architecture of web service for our AIIO, which
loads pre-trained models to identify I/O bottleneck for users.

REFERENCES
[1] Sercan Ömer Arik and Tomas Pfister. 2019. TabNet: Attentive Interpretable

Tabular Learning. CoRR abs/1908.07442 (2019). arXiv:1908.07442 http://arxiv.
org/abs/1908.07442

[2] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P.
Miller, and Martin Schulz. 2007. Stack Trace Analysis for Large Scale Debugging.
In IPDPS. 1–10. https://doi.org/10.1109/IPDPS.2007.370254

[3] Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Hanul Sung,
and Hyeonsang Eom. 2021. An In-Depth I/O Pattern Analysis in HPC Systems.
In HiPC. 400–405. https://doi.org/10.1109/HiPC53243.2021.00056

[4] Jean Luca Bez, Hammad Ather, and Suren Byna. 2022. Drishti: Guiding End-Users
in the I/O Optimization Journey. In 2022 IEEE/ACM International Parallel Data
Systems Workshop (PDSW). 1–6. https://doi.org/10.1109/PDSW56643.2022.00006

[5] Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna,
Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley. 2022. Access Patterns and
Performance Behaviors of Multi-Layer Supercomputer I/O Subsystems under
Production Load. In Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing (Minneapolis, MN, USA) (HPDC
’22). Association for Computing Machinery, New York, NY, USA, 43–55. https:
//doi.org/10.1145/3502181.3531461

[6] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob
Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck Detection and Tuning:
Connecting the Dots using Interactive Log Analysis. In 2021 IEEE/ACM Sixth
International Parallel Data Systems Workshop (PDSW). 15–22. https://doi.org/10.
1109/PDSW54622.2021.00008

[7] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawel-
czyk, and Gjergji Kasneci. 2021. Deep Neural Networks and Tabular Data: A
Survey. CoRR abs/2110.01889 (2021). arXiv:2110.01889 https://arxiv.org/abs/2110.
01889

[8] Suren Byna, M Scot Breitenfeld, Bin Dong, Quincey Koziol, Elena Pourmal, Dana
Robinson, Jerome Soumagne, Houjun Tang, Venkatram Vishwanath, and Richard
Warren. 2020. Exahdf5: delivering efficient parallel i/o on exascale computing
systems. Journal of Computer Science and Technology 35, 1 (2020), 145–160.

[9] Suren Byna, Mohamad Chaarawi, Quincey Koziol, John Mainzer, and Frank
Willmore. 2017. Tuning HDF5 subfiling performance on parallel file systems. (5
2017). https://www.osti.gov/biblio/1398484

[10] Surendra Byna, Jerry Chou, Oliver Rubel, Prabhat, Homa Karimabadi, William S.
Daughter, Vadim Roytershteyn, E. Wes Bethel, Mark Howison, Ke-Jou Hsu, Kuan-
Wu Lin, Arie Shoshani, Andrew Uselton, and Kesheng Wu. 2012. Parallel I/O,
analysis, and visualization of a trillion particle simulation. In SC ’12: Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis. 1–12. https://doi.org/10.1109/SC.2012.92

[11] P Carns, K Harms, R Latham, and R Ross. 2012. Performance analysis of Darshan
2.2. 3 on the Cray XE6 platform. Technical Report. Argonne National Lab.(ANL),
Argonne, IL (United States).

[12] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 2009. 24/7 Char-
acterization of petascale I/O workloads. In 2009 IEEE International Conference
on Cluster Computing and Workshops (CLUSTER). IEEE Computer Society, Los
Alamitos, CA, USA, 1–10. https://doi.org/10.1109/CLUSTR.2009.5289150

[13] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. CoRR abs/1603.02754 (2016). arXiv:1603.02754 http://arxiv.org/abs/1603.
02754

[14] Emily Costa, Tirthak Patel, Benjamin Schwaller, James Brandt, and Devesh Tiwari.
2021. Lessons From Examining Repetitive Job Behavior and I/O Performance
Variability on a Production HPC System Emily Costa Northeastern University,
USA Tirthak Patel Northeastern University, USA Benjamin Schwaller. "OSTI" (8
2021). https://www.osti.gov/biblio/1884199

[15] Emily Costa, Tirthak Patel, Benjamin Schwaller, Jim M. Brandt, and Devesh
Tiwari. 2021. Systematically Inferring I/O Performance Variability by Examining
Repetitive Job Behavior. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri)
(SC ’21). Association for Computing Machinery, New York, NY, USA, Article 33,
15 pages. https://doi.org/10.1145/3458817.3476186

[16] Eliakin Del Rosario, Mikaela Currier, Mihailo Isakov, Sandeep Madireddy,
Prasanna Balaprakash, Philip Carns, Robert B Ross, Kevin Harms, Shane Snyder,
andMichel A Kinsy. 2020. Gauge: An interactive data-driven visualization tool for
HPC application I/O performance analysis. In 2020 IEEE/ACM Fifth International
Parallel Data Systems Workshop (PDSW). IEEE, 15–21.

[17] Bin Dong, Xiuqiao Li, Limin Xiao, and Li Ruan. 2012. A New File-Specific Stripe
Size Selection Method for Highly Concurrent Data Access. In 2012 ACM/IEEE
13th International Conference on Grid Computing. 22–30. https://doi.org/10.1109/
Grid.2012.11

https://arxiv.org/abs/1908.07442
http://arxiv.org/abs/1908.07442
http://arxiv.org/abs/1908.07442
https://doi.org/10.1109/IPDPS.2007.370254
https://doi.org/10.1109/HiPC53243.2021.00056
https://doi.org/10.1109/PDSW56643.2022.00006
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
https://arxiv.org/abs/2110.01889
https://www.osti.gov/biblio/1398484
https://doi.org/10.1109/SC.2012.92
https://doi.org/10.1109/CLUSTR.2009.5289150
https://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://www.osti.gov/biblio/1884199
https://doi.org/10.1145/3458817.3476186
https://doi.org/10.1109/Grid.2012.11
https://doi.org/10.1109/Grid.2012.11

AIIO: Using Artificial Intelligence for Job-Level and
Automatic I/O Performance Bottleneck Diagnosis HPDC ’23, June 16–23, 2023, Orlando, FL, USA

[18] Bin Dong, Verónica Rodríguez Tribaldos, Xin Xing, Suren Byna, Jonathan Ajo-
Franklin, and KeshengWu. 2020. DASSA: Parallel DAS Data Storage and Analysis
for Subsurface Event Detection. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 254–263. https://doi.org/10.1109/IPDPS47924.
2020.00035

[19] Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liud-
mila Ostroumova Prokhorenkova, and Aleksandr Vorobev. 2017. Fighting bi-
ases with dynamic boosting. CoRR abs/1706.09516 (2017). arXiv:1706.09516
http://arxiv.org/abs/1706.09516

[20] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29, 5 (2001), 1189 – 1232. https://doi.org/10.
1214/aos/1013203451

[21] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of
Statistical Learning. Springer New York Inc., New York, NY, USA.

[22] Dean Hildebrand, Arifa Nisar, and Roger Haskin. 2009. pNFS, POSIX, and MPI-IO:
a tale of three semantics. In Proceedings of the 4th Annual Workshop on Petascale
Data Storage. 32–36.

[23] Axel Huebl, Rémi Lehe, Jean-Luc Vay, David P. Grote, Ivo F. Sbalzarini, Stephan
Kuschel, and Michael Bussmann. 2017. Open Science with openPMD. https:
//doi.org/10.5281/zenodo.822396

[24] M. Isakov, M. Currier, E. Rosario, S. Madireddy, P. Balaprakash, P. Carns, R. B. Ross,
G. K. Lockwood, and M. A. Kinsy. 2022. A Taxonomy of Error Sources in HPC I/O
Machine Learning Models. In 2022 SC22: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC) (SC). IEEE Computer
Society, Los Alamitos, CA, USA, 205–218. https://doi.ieeecomputersociety.org/

[25] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash,
Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. Toward Generalizable
Models of I/O Throughput. In 2020 IEEE/ACM International Workshop on Runtime
and Operating Systems for Supercomputers (ROSS). 41–49. https://doi.org/10.1109/
ROSS51935.2020.00010

[26] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash,
Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. HPC I/O Throughput
Bottleneck Analysis with Explainable Local Models. In SC20: International Con-
ference for High Performance Computing, Networking, Storage and Analysis. 1–13.
https://doi.org/10.1109/SC41405.2020.00037

[27] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, I. Guyon,
U. Von Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[28] Edward K Lee and Randy H Katz. 1993. An analytic performance model of disk
arrays. In Proceedings of the 1993 ACM SIGMETRICS conference on Measurement
and modeling of computer systems. 98–109.

[29] Tonglin Li, Suren Byna, Quincey Koziol, Houjun Tang, Jean Luca Bez, and Qiao
Kang. 2021. h5bench: HDF5 I/O Kernel Suite for Exercising HPC I/O Patterns. In
Proceedings of Cray User Group Meeting, CUG 2021.

[30] Glenn K. Lockwood, Shane Snyder, Teng Wang, Suren Byna, Philip Carns, and
Nicholas J. Wright. 2019. A Year in the Life of a Parallel File System. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press, Article 74, 13 pages.
https://doi.org/10.1109/SC.2018.00077

[31] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan, Ron Old-
field, Matthew Wolf, and Qing Liu. 2011. Six Degrees of Scientific Data: Reading
Patterns for Extreme Scale Science IO. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing (San Jose, California,
USA) (HPDC ’11). Association for Computing Machinery, New York, NY, USA,
49–60. https://doi.org/10.1145/1996130.1996139

[32] Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M.
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee.
2019. Explainable AI for Trees: From Local Explanations to Global Understanding.
CoRR abs/1905.04610 (2019). arXiv:1905.04610 http://arxiv.org/abs/1905.04610

[33] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
Predictions. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 4765–4774. http://papers.nips.cc/paper/7062-a-
unified-approach-to-interpreting-model-predictions.pdf

[34] T.M. Madhyastha and D.A. Reed. 2002. Learning to classify parallel input/output
access patterns. TPDS 13, 8 (2002), 802–813. https://doi.org/10.1109/TPDS.2002.
1028437

[35] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Sclatter Ellis, andM.L. Best. 1996. File-
access characteristics of parallel scientificworkloads. IEEE Transactions on Parallel
and Distributed Systems 7, 10 (1996), 1075–1089. https://doi.org/10.1109/71.539739

[36] Arnab K. Paul, Ahmad Maroof Karimi, and Feiyi Wang. 2021. Characterizing
Machine Learning I/O Workloads on Leadership Scale HPC Systems. In 2021
29th International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). 1–8. https://doi.org/10.1109/
MASCOTS53633.2021.9614303

[37] Allan Pinkus. 1999. Approximation theory of the MLP model in neural networks.
Acta numerica 8 (1999), 143–195.

[38] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016. 1135–1144.

[39] Philip C. Roth. 2007. Characterizing the I/O Behavior of Scientific Applications
on the Cray XT. In Proceedings of the 2nd International Workshop on Petascale
Data Storage: Held in Conjunction with Supercomputing ’07 (Reno, Nevada) (PDSW
’07). Association for Computing Machinery, New York, NY, USA, 50–55. https:
//doi.org/10.1145/1374596.1374609

[40] Peter Scheuermann, GerhardWeikum, and Peter Zabback. 1998. Data partitioning
and load balancing in parallel disk systems. The VLDB Journal 7, 1 (1998), 48–66.

[41] Seetharami Seelam, I-Hsin Chung, Ding-Yong Hong, Hui-Fang Wen, and Hao Yu.
2008. Early experiences in application level I/O tracing on blue gene systems. In
IPDPS. 1–8. https://doi.org/10.1109/IPDPS.2008.4536550

[42] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance
System. Int. J. High Perform. Comput. Appl. 20, 2 (may 2006), 287–311. https:
//doi.org/10.1177/1094342006064482

[43] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Impor-
tant Features Through Propagating Activation Differences. CoRR abs/1704.02685
(2017). arXiv:1704.02685 http://arxiv.org/abs/1704.02685

[44] Ravid Shwartz-Ziv and Amitai Armon. 2021. Tabular Data: Deep Learning
is Not All You Need. CoRR abs/2106.03253 (2021). arXiv:2106.03253 https:
//arxiv.org/abs/2106.03253

[45] Mukund Subramaniyan, Anders Skoogh, Jon Bokrantz, Muhammad Azam Sheikh,
Matthias Thürer, and Qing Chang. 2021. Artificial intelligence for throughput bot-
tleneck analysis – State-of-the-art and future directions. Journal of Manufacturing
Systems 60 (2021), 734–751. https://doi.org/10.1016/j.jmsy.2021.07.021

[46] Jeffrey S. Vetter and Michael O. McCracken. 2001. Statistical Scalability Analysis
of Communication Operations in Distributed Applications. SIGPLAN Not. 36, 7
(jun 2001), 123–132. https://doi.org/10.1145/568014.379590

[47] Feng Wang, Qin Xin, Bo Hong, Scott A Brandt, Ethan L Miller, and Darrell
Long. 2004. File system workload analysis for large scale scientific computing
applications. (2004).

[48] Teng Wang, Suren Byna, Glenn K. Lockwood, Shane Snyder, Philip Carns,
Sunggon Kim, and Nicholas J. Wright. 2019. A Zoom-in Analysis of I/O Logs
to Detect Root Causes of I/O Performance Bottlenecks. In CCGRID. 102–111.
https://doi.org/10.1109/CCGRID.2019.00021

[49] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas Wright, and
Suren Byna. 2018. IOMiner: Large-Scale Analytics Framework for Gaining Knowl-
edge from I/O Logs. In 2018 IEEE International Conference on Cluster Computing
(CLUSTER). 466–476. https://doi.org/10.1109/CLUSTER.2018.00062

[50] Bing Xie, Zilong Tan, Philip Carns, Jeff Chase, Kevin Harms, Jay Lofstead, Sarp
Oral, Sudharshan S. Vazhkudai, and Feiyi Wang. 2019. Applying Machine Learn-
ing to Understand Write Performance of Large-scale Parallel Filesystems. In
PDSW. 30–39. https://doi.org/10.1109/PDSW49588.2019.00008

[51] Bing Xie, Zilong Tan, Philip Carns, Jeff Chase, Kevin Harms, Jay Lofstead, Sarp
Oral, Sudharshan S. Vazhkudai, and Feiyi Wang. 2021. Interpreting Write Per-
formance of Supercomputer I/O Systems with Regression Models. In 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 557–566.
https://doi.org/10.1109/IPDPS49936.2021.00064

[52] Izzet Yildirim, Hariharan Devarajan, Anthony Kougkas, Xian-He Sun, and
Kathryn Mohror. 2022. A Multifaceted Approach to Automated I/O Bottleneck
Detection for HPC Workloads. https://sc22.supercomputing.org/proceedings/
tech_poster/tech_poster_pages/rpost186.html

https://doi.org/10.1109/IPDPS47924.2020.00035
https://doi.org/10.1109/IPDPS47924.2020.00035
https://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1706.09516
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.5281/zenodo.822396
https://doi.org/10.5281/zenodo.822396
https://doi.ieeecomputersociety.org/
https://doi.org/10.1109/ROSS51935.2020.00010
https://doi.org/10.1109/ROSS51935.2020.00010
https://doi.org/10.1109/SC41405.2020.00037
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1109/SC.2018.00077
https://doi.org/10.1145/1996130.1996139
https://arxiv.org/abs/1905.04610
http://arxiv.org/abs/1905.04610
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1109/TPDS.2002.1028437
https://doi.org/10.1109/TPDS.2002.1028437
https://doi.org/10.1109/71.539739
https://doi.org/10.1109/MASCOTS53633.2021.9614303
https://doi.org/10.1109/MASCOTS53633.2021.9614303
https://doi.org/10.1145/1374596.1374609
https://doi.org/10.1145/1374596.1374609
https://doi.org/10.1109/IPDPS.2008.4536550
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
https://arxiv.org/abs/2106.03253
https://arxiv.org/abs/2106.03253
https://arxiv.org/abs/2106.03253
https://doi.org/10.1016/j.jmsy.2021.07.021
https://doi.org/10.1145/568014.379590
https://doi.org/10.1109/CCGRID.2019.00021
https://doi.org/10.1109/CLUSTER.2018.00062
https://doi.org/10.1109/PDSW49588.2019.00008
https://doi.org/10.1109/IPDPS49936.2021.00064
https://sc22.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost186.html
https://sc22.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost186.html

	Abstract
	1 Introduction
	2 Background
	2.1 I/O Logs of Applications on HPC Systems
	2.2 Related Work

	3 Artificial Intelligence for I/O (AIIO)
	3.1 I/O Log Database and Feature Engineering
	3.2 AI Prediction-Based Performance Function
	3.3 AI Interpretation-Based Diagnosis Function
	3.4 AIIO in Action

	4 Evaluation
	4.1 Synthetic I/O workloads from IOR
	4.2 Real Applications

	5 Conclusions
	Acknowledgments
	A Appendix
	References

