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ABSTRACT

The end-to-end performance of deep learning model inference is
often limited by excess data movement on GPUs. To reduce data
movement, existing deep learning frameworks apply graph-level
optimizations such as operator fusion to exploit data reuse across op-
erators in deep learning graphs. Such optimizations are limited and
cannot optimize arbitrary chains of compute- and time-intensive
operations, including convolutions. To address these limitations,
this paper presents BrickDL, a deep learning inference library
that implements merged execution of a sequence of layers as an or-
thogonal approach to existing graph-level optimizations. BrickDL
additionally employs fine-grain blocking using a brick data layout
that further optimizes data locality on GPUs. We implement merged
execution with the abstraction of bricks using two approaches –
padded bricks and memoized bricks, and develop a performance
model to choose between them using static analysis. Merged exe-
cution with bricks demonstrates performance gains on well-known
deep learning models as compared to PyTorch JIT, TensorFlow XLA,
and cuDNN baselines on NVIDIA A100 GPU. We also characterize
the performance of the proposed optimizations with microbench-
marks and gain insights into their applicability and tradeoffs.
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1 INTRODUCTION

Modern GPUs have evolved with phenomenal throughput, but
their memory performance lags behind their exceptional computa-
tional efficiency. Thus, the end-to-end performance of deep learning
models, with the ever-increasing number of layers, is significantly
bottlenecked by data movement across the memory subsystem. It is
quite challenging to achieve proper memory bandwidth utilization
and high on-chip data locality in GPUs for deep neural networks
(DNN) due to the complex memory access patterns of DNN com-
putations and high-dimensional tensors they operate on (e.g., 5D
tensor for a 3D convolution operation). Performance is further im-
peded by suboptimal data layouts and inefficient scheduling of the
order of execution on the compute elements of GPUs, which miss
data reuse opportunities.

The computational pattern of a DNN can be modeled as a data
flow graph, with each node denoting an operator and the edge rep-
resenting the dependence between operators. Existing deep learn-
ing frameworks (e.g., TensorFlow, PyTorch), compilers (TVM [6],
XLA [29], Triton[36]), and libraries (cuDNN, TensorRT [1]) primar-
ily focus on optimizing the performance of standalone operators in
DNN graphs. While operator-level optimizations improve computa-
tional efficiency, it is necessary to utilize spatial and temporal data
reuse across layers to improve memory performance. Specialized
graph compilers [20, 24, 27, 43, 49, 56] perform graph rewriting and
operator/kernel/loop fusion based on a restricted set of rules and a
limited number of patterns that can be combined together. Due to
complex data dependences between operators, operator fusion is
not applicable to arbitrary chains of compute-intensive operations
involving convolutions, which constitute most of the execution
time of a DNN pipeline, affecting the overall performance.

In this paper, we present BrickDL, a graph-level optimizing
library and runtime for DNN inference. In contrast to existing
frameworks, BrickDL performs merged execution of a sequence of
DNN layers, including chains of compute-intensive convolution
operations.BrickDL employs fine-grained data blockingwith bricks
– a data layout of small, fixed-sized blocks of contiguously-packed
data that represent logically adjacentmulti-dimensional data. Bricks
enhance on-chip data residency on GPUs by reducing access strides
and avoiding extraneous address streams. Using merged execution
with bricks, BrickDL thereby optimizes the end-to-end memory
performance of DNN pipelines.

BrickDL uses the abstraction of bricks as a unit of data and
parallelism for applying inter-layer optimizations on DNN graphs.
BrickDL partitions DNN graphs into subgraphs, and layers within
the subgraphs are decomposed into bricks. With merged execu-
tion, bricks within subgraphs are executed asynchronously in a
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modified order so that the output brick from one layer is still res-
ident in cache for the next layer’s computation. The presence of
data-dependent boundaries in DNN computations, such as halo
regions in convolutions similar to stencils, complicates the merged
execution of layers. We develop two optimizations — padded bricks
and recursive memoized bricks, to facilitate inter-layer merged exe-
cution by avoiding data dependences. The former performs data
copies of halo regions in bricks, while the latter involves a recursive
approach with memoization to keep track of data-dependent bricks.

Our approach to merged execution for DNN workloads is related
to well-known space-time tiling, cache-oblivious, wavefront, time
skewing approaches for stencil computations [13, 25, 35, 38]. How-
ever, these techniques are not directly applicable to DNN graphs
since computations vary across layers, as opposed to stencil applica-
tions that involve identical operations between time steps. BrickDL,
on the other hand, combines the concepts of execution reordering
and data reorganization to facilitate inter-layer merged execution
with bricks, and memoization using dynamic runtime.

The performance of BrickDL is assessed with seven prominent
DNN models on NVIDIA A100 GPUs, demonstrating speedups over
PyTorch JIT, TensorFlow XLA, and cuDNN baselines. We believe it
makes a strong case to integrate the brick data layout and merged
execution optimizations into state-of-the-art deep learning frame-
works, compilers, and libraries for improved performance.

The contributions of this paper are the following:

• We present the BrickDL library that applies fine-grain data
layouts and graph-level optimizations for DNN inference.

• We propose the padded bricks and memoized bricks optimiza-
tions for the merged execution of layers, along with perfor-
mance models to guide optimizations at compile time.

• Usingmicrobenchmarks, we perform a comprehensive evalu-
ation of the applicability and tradeoffs associated with these
optimizations and gain insights.

• We demonstrate the efficacy of the proposed optimizations
on well-known deep learning models on NVIDIA GPUs.

2 MOTIVATION: DATA MOVEMENT

Convolutions are inherently compute-intensive operations, and
generally, over 80% of the computation time of convolutional neural
network (CNN) pipelines is spent performing convolutions. Convo-
lutions are most commonly implemented using the sliding window
approach in which a kernel or filter slides over the input data to
perform localized element-wise multiplications, and the output is
written to a feature map.

Existing deep learning frameworks typically store data in mem-
ory in canonical row-major order. Convolutions thus access logi-
cally neighboring but physically distant data along the non-contiguous
dimensions, involving long reuse distances. The accessed data is
hence spread across multiple address streams, causing large mem-
ory access strides that place enormous pressure on register files,
cache, TLB, and hardware prefetchers. Optimizations such as tiling
enable reuse in cache but do not alleviate and may even exacerbate
the immense strain on the number of cache lines and TLB entries.
Convolutions are thus often affected by vertical data movement,
even though they are typically compute-bound.

The end-to-end CNN performance is often bottlenecked by data
movement on GPUs. Deep learning frameworks apply graph-level
optimizations to utilize data reuse across CNN layers. Operator
fusion is one such common optimization that combines multiple
elementary operations or computational kernels in a graph into
a single, large, complex optimized kernel. This could be fusion of
a chain of a compute-intensive operation (e.g., convolution, ma-
trix multiplication) and a memory-intensive operation (e.g., ReLU,
pooling, softmax), or fusion of a chain of memory-intensive opera-
tions [6, 11, 24, 27, 37, 49, 56].

However, research on the fusion of back-to-back compute-intensive
operations is limited, due to strict dependences between such op-
erations. There exists loop-carried dependences along the input
and output channel dimensions, and operator fusion requires the
spatial dimensions and kernel size of the operators in the chain to
be the same. The pseudocode in Figure 2(b) demonstrates operator
fusion of two convolutions from Figure 2(a) under these conditions,
with the ability to fuse only along the batch dimension n. Tiled
execution of convolutions produces data-dependent halo regions
surrounding each tile, which requires synchronization of tiles with
a reduction after each operation’s execution before proceeding to
the next, impeding fusion.
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. . .
. . .

. . .
. . .

Data Accessed by
   Thread Block A
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Layer 1

Conv 1D
Layer 2

Figure 1: A subgraph with two 1D convolution operations

demonstrating the redundant computation of dependent

chunks of data in two thread blocks.

Performance is further hampered by inefficient scheduling of
the execution of convolutions on GPUs, causing redundant com-
putation of halo regions. Consider a simple subgraph with two 1D
convolutions as shown in Figure 1 tiled along the spatial dimension.
The two different thread blocks A and B respectively produce two
tiles shaded red and blue from the second convolutional layer. Each
thread block would redundantly compute the neighboring tiles in
the first convolutional layer to cover halo regions (three tiles in this
simple example). There would be an even more significant duplica-
tion of computations for deeper subgraphs with multidimensional
convolutions and large filters.
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for n,c1,h1,w1,x1,y1,m1 
//Tiled 7D Loop
{ //Compute First Conv2D } 
for n,c2,h2,w2,x2,y2,m2
//Tiled 7D Loop 
{ //Compute Second Conv2D } 

for n { //fuse batch dimension 
  for c1,h1,w1,x1,y1,m1 { //Tiled
  { //Compute First Conv2D} 
  for c2,h2,w2,x2,y2,m2 { //Tiled
  { //Compute Second Conv2D}
} 

for Bh, Bw { //each brick in parallel
  for nlayer{ //each subgraph layer 

//bricks padded with halo: px, py 
    for n, c, Bh+px, Bw+py, r, s, m    
    {//Compute conv2D}}}
reduce() //Aggregate all bricks

compConv2D (layers, bricks) {
  for Bh, Bw { //each brick

getStatus() //Check brick status
//recursively compute bricks
compConv2D(nlayer, brick)

  } reduce() //aggregate bricks
}

(a) Naive (b) Operator Fusion (c) Merged Execution: Padded (d) Merged Execution: Memoized

Figure 2: Comparison of naive version, operator fusion, and merged execution with padded and memoized bricks for two

convolutions. The naive version is tiled and sequentially computes both convolutions. Operator fusion fuses along the batch (𝑛)

dimension. Padded bricks and memoized versions copy halo regions and recursively backtrack between layers, respectively.

3 BRICKDL: MERGED EXECUTIONWITH

FINE-GRAINED DATA BLOCKING

This section describes how BrickDL supports graph-level opti-
mizations that span a sequence of compute-intensive convolutional
layers sidestepping the limitations of operator fusion. BrickDL is a
library that combines: (1) brick data layout for representing data; (2)
a dynamic runtime that supports merged execution; and, (3) static
analysis to guide optimizations.

3.1 Brick Data Layout

To address the challenges associated with suboptimal memory ac-
cesses for convolutions, we apply the fine-grain blocked brick data
layout to computations on DNN graphs. Prior work on optimizing
computations on higher-order stencils applied this approach to
improve data locality on CPUs and GPUs [50, 52]. The brick data
layout decomposes high-dimensional input data and feature maps
into small, fixed-size multi-dimensional blocks stored contiguously
in memory. Each brick represents a unit of data moving through
the memory hierarchy as well as an aggregate unit of parallelism.

While a cache line naturally captures spatial locality in only one
dimension of a structured grid, bricks can exploit spatial locality
in three or more dimensions. Fine-grained blocking reduces the
number of strides necessary when accessing neighboring elements.
By comparison, tiling in the non-contiguous dimension significantly
increases the number of strides taken within the tile. The brick data
layout thus achieves high performance by exploiting data reuse
across multiple axes using a single address stream, reducing TLB
pressure, minimizing cache line and register reuse distances, and
improving memory bandwidth utilization.

3.2 Inter-Layer Merged Execution With Bricks

We now describe merged execution of layers as a graph-level opti-
mization for chains of compute-intensive operations using bricks.
Figure 3(b), a three-operator subgraph, depicts the merged execu-
tion of bricks marked red that perfectly overlap with the execution
of other bricks and hence need not synchronize after each opera-
tion. This approach merges the execution of computations asyn-
chronously on fine-grained bricks across operations in a subgraph
partitioned from a given DNN graph. Instead of generating fused
kernel code, we invoke each operator’s kernel at the fine-grained
granularity of bricks and reschedule their order of execution, in
contrast to the standard execution order of operators. This opti-
mization is aimed at exploiting data reuse across operators and
improving data locality at the higher levels of the GPU memory
hierarchy. Merged execution accomplishes this by eliminating data

dependence between operators across layers, thus minimizing re-
dundant sweeps over large, multi-dimensional activation layers for
the execution of each operation (Figure 3(a)). The BrickDL library
implements merged execution by applying bricks with fine-grained
blocking along the batch and spatial dimensions of activations
(height, width, depth), avoiding the channel dimension.

Beyond a sequence of convolutions, merged execution is appli-
cable to any operation for which a block of the input data of size
𝑋𝑖 along dimension 𝑖 yields an output data block with size of the
form 𝛼𝑖𝑋𝑖 + 𝛽𝑖 , for constants 𝛼 and 𝛽 . Operations compatible with
this form include localized operations such as non-linear functions
(e.g., ReLU, softmax, sigmoid), linear activation functions, and dif-
ferent types of convolutions (strided, dilated, depthwise/spatially
separable, deconvolution, etc.).

(b) Merged Execution of Bricks

Operator 1 Operator 2 Operator 3

Operator 1 Operator 2 Operator 3

(a) A Subgraph

Sync Sync

SyncSync

Sync Sync
…

…

…

…

Figure 3: Comparing graph optimizations for conventional

and brick data layouts: (a) is a subgraph of 3 layers partitioned

from a graph, requiring synchronization of tiles after each

operation; (b) shows fine-grained blocking into bricks and

merged execution, with bricks synchronized only at the end.

To address cross-layer data dependences of halo regions between
bricks, we implement merged execution using (i) padded bricks,
that copies halo regions from neighboring bricks (section 3.2.1),
and (ii) memoized bricks, that recursively tracks and computes de-
pendent bricks at runtime, avoiding redundancies (section 3.2.2).
Figure 2-(c),(d) demonstrates merged execution of bricks with these
approaches, perfectly overlapping computations between layers,
with a reduction across bricks only at the end of the subgraph.
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3.2.1 Padded Bricks. BrickDL enables merged execution of layers
in operation chains by expanding the boundaries of bricks; it makes
copies of data-dependent halo regions from neighboring bricks from
the same operation. This approach is complementary to padding in
convolutions, where the boundaries of featuremaps are paddedwith
extra data before performing the convolution operation to preserve
spatial dimensions and enable access to boundary artifacts.

Figure 4 demonstrates merged execution with padded bricks for
two convolution operations and their corresponding feature maps.
In merged execution, computation on each 2D brick yields a fine-
grained 2D block of the entire activation (assuming blocking along
height and weight dimensions only). To produce a 𝐵ℎ × 𝐵𝑤 brick
as an output for the second convolution operation (shaded green in
Figure 4), it requires an enlarged brick of size (𝐵ℎ+2𝑝𝑥 )×(𝐵𝑤+2𝑝𝑦)
as input (green and red shaded regions) with padded halo region
𝑝𝑥 = 𝑋−1

2 and 𝑝𝑦 = 𝑌−1
2 along the height and width dimensions

of the brick, respectively, for an 𝑋 × 𝑌 kernel. Correspondingly, to
output a (𝐵ℎ + 2𝑝𝑥 ) × (𝐵𝑤 + 2𝑝𝑦) brick from the first convolution
operation, a (𝐵ℎ + 4𝑝𝑥 ) × (𝐵𝑤 + 4𝑝𝑦) (blue, green and red shaded
area) is needed as an input. For ReLU, softmax, and other element-
wise operations, no padding is required (𝑝𝑥 , 𝑝𝑦 = 0). For a max
pool operation, the padding factor is the pooling stride 𝑆𝑝 , which
is multiplied by the brick dimension (i.e., 𝐵ℎ × 𝑝𝑥 , where 𝑝𝑥 = 𝑆𝑝 ).

BrickDL employs a static analysis algorithm to determine the
size of bricks with padding in a given subgraph of operations. The
subgraph is traversed in reverse order, and the padding factor is
computed and added to the size of each brick, corresponding to
each node in the subgraph, tracked using a queue data structure.
The padding factor varies depending on the position of bricks in the
data grid (i.e., corner, edge, and central position in a 2D activation).

conv2D #1 

Bh  4px+

conv2D #2

Intermediate 
Feature Map

Output  
Feature Map

Input  
Feature Map

Bw  4py+ Bw  2py+

Bh  2px+

Figure 4: Padding for the merged execution of bricks in a

subgraph with 3 layers. Padding factors are 𝑝𝑥 = 𝑋−1
2 and

𝑝𝑦 = 𝑌−1
2 for brickwith height 𝐵ℎ , width 𝐵𝑤 , and kernel𝑋×𝑌 .

3.2.2 Memoized Bricks with Recursion. Memoized bricks is a second
approach for merged execution in BrickDL. Memoized bricks is a re-
cursive, dynamic runtime approach inspired by top-down dynamic
programming with memoization. Instead of redundantly comput-
ing data-dependent bricks entirely or padding the corresponding
bricks with halo regions, this approach recursively computes those
bricks with an asynchronous order of execution. This forms a data
dependency chain between bricks across layers, eliminating con-
flicts between thread blocks and avoiding duplicate computation
of dependent bricks. For the example in Figure 1, consider the
data chunks shaded blue and red as bricks. With the memoized
bricks approach, the execution of blue-shaded bricks is merged

by backtracking the dependent blue bricks from previous layers
and executing them in a modified order in thread block A. Simi-
larly for red bricks with thread block B, thus averting redundant
computations of bricks in thread blocks A and B.

To avoid duplicate computation of dependent bricks, bricks cor-
responding to the operators in a subgraph are memoized or cached
for fast lookup. This is facilitated by tagging each brick with an
auxiliary data structure based on three states shown in figure 5: (0)
Not started – the brick has not been computed yet, (1) In progress –
the brick is being computed, and (2) Complete – the brick has been
computed. A thread computing a brick turns its status from 0 to
1. When it backtracks and accesses a dependent brick tagged (1),
it yields to the other thread to complete its execution, and stalls
until the status updates to (2) by issuing an atomic CAS (Compare-
and-Swap) operation. In another case, when a thread encounters a
dependent brick tagged (0), it moves on to accessing other bricks
and revisits this brick later instead of stalling until it turns to (2).
The best case scenario is when a brick tagged (2) is accessed in
the first attempt without requiring additional atomic operations.
In any case, accessing each brick involves two compulsory atomic
operations – one to acquire the thread lock and the other to re-
lease the lock. It may incur additional conflicting atomic operations
depending on the state of the brick. The overhead due to atomic
operations is minimal – the time for each atomic operation is mod-
eled as 87.45𝑛𝑠 on NVIDIA A100 GPU using the method described
in section 4.5. With the point of synchronization typically being L2
cache on NVIDIA GPUs, it enables high bandwidth access to the
memoized bricks written to and read from atomically by different
threads.

Conv1D  
Layer 1

…
…

…
…

…
…

0 1 2
CAS

CAS

CAS

Not 
Started

In 
Progress Complete

(a) Recursion Computation of Bricks for 1D Convolutions

(b) Three-State System for Tagging Bricks
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Thread Block A
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Input  
Feature 

Map

Intermediate  
Feature 

Map

Output  
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Map

Figure 5: Three-state system for tagging bricks in the memo-

ized bricks approach.

3.3 Performance Modeling and Implementation

BrickDL uses static analysis to generate subgraphs and to iden-
tify the optimal brick size and the best merged execution strategy
among padded and memoized bricks, using performance models.

3.3.1 DNN Graph Partitioning. BrickDL performs static analysis
to partition an input DNN graph into subgraphs, with all operators
within a subgraph merged for execution with bricks. During this
analysis, a reverse traversal of the entire graph is performed, com-
puting the data footprint associated with the sequence of operators
for the padded and memoized bricks approaches, factoring in the
additional data from padding and the auxiliary data structures in
memoized bricks. Based on this, operators are grouped together, and
the graph is partitioned to obtain subgraphs. The analysis ensures
that the data footprint associated with a subgraph from merged
execution can be resident on chip in a GPU, e.g., 40 MB L2 cache
on an NVIDIA A100 GPU.
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The analysis typically places the last node in a subgraph as a
reduction operation (e.g., pooling) or global operations (e.g., batch
normalization). The former case is to reduce the overhead from
excess padded data and atomic operations as the layer size shrinks
within a subgraph due to, for example, reduction with large pooling
strides. The latter case is to minimize the number of synchroniza-
tions between bricks for global operations.

3.3.2 Modeling Merged Execution Approaches. The padded bricks
approach performs additional computations on the padded halo
regions of bricks and, in turn, reduces the necessity of extrane-
ous, expensive synchronization points in DNN graphs. For deeper
subgraphs and smaller layer sizes, padded data and redundant com-
putations cause overhead and affect performance. In those cases, we
employ the memoized bricks approach, which avoids redundancies
at the expense of atomic operations. For large layers, atomics cause
excess overhead, in which cases padded bricks is preferred since
the overhead of padding is minimal.

BrickDL chooses between the padded and memoized bricks
approaches during the static analysis for DNN graph partitioning,
which analyzes the cost of padded data for each subgraph. When
the percentage of data growth due to padding (Δ) exceeds a certain
threshold for a given subgraph, memoized bricks is used, avoiding
the excess overhead of padding bricks. So when Δ > 15% for a
subgraph, BrickDL chooses to apply memoized bricks instead of
padded bricks. This value of Δ has been validated on multiple
NVIDIA and AMD GPU architectures.

3.3.3 Modeling Brick Size. We choose the most performant brick
size for each subgraph using a performance model based on the
amount of parallelism obtained for a given activation layer. For 𝑛
number of blocked dimensions of feature maps of size𝐷1, 𝐷2, ..., 𝐷𝑛 ,
the amount of parallelism with 𝜌 threads is given by 𝜌 = (𝐷1 ×
𝐷2 × .... × 𝐷𝑛)/𝐵𝑛,∀𝐵 ∈ {4, 8, 16, 32}. While maximum 𝜌 can offer
high performance theoretically, performance deteriorates beyond a
certain threshold 𝜏 = 212. The model thus picks 𝐵 for a maximum
value of 𝜌 such that 𝜌 ≤ 𝜏 .

Towards the end of a DNN graph, tiny layer sizes do not benefit
from merged execution with fine-grained blocking due to insuffi-
cient parallelism. For those few cases, when 𝜌 < 𝐵𝑛 , we leverage
cuDNN library instead of merged execution with bricks.

3.3.4 Implementation. BrickDL is implemented as a C++ tem-
plate library. It uses three primary data structures to represent the
brick data layout: Brick, BrickMap, and BrickInfo. Each Brick is
a small, fixed-size block of data, and elements within each Brick are
contiguously stored in the conventional row-majormulti-dimensional
data layout. Brick is the access interface that overloads operators
with brick indices such that values can be retrieved from individual
elements within a brick using array-based accesses.

The second data structure BrickMapmaps the logical location of
a brick to its physical location in memory. It contains the allocation
information to manage memory regions accessed by a Brick. Even
though elements within each brick are contiguously packed in
memory, the blocks of bricks need not be physically stored in the
conventional row-major/column-major order. Instead, the logical
ordering of bricks is preserved using adjacency information that
allows flexibility in how bricks are organized in memory. The third

data structure BrickInfo is an array of adjacency lists that provides
adjacency information for each Brick with the indices of its logical
neighbors and their direction on a single data stream.

6 7 8 9

5 0 1 10

4 3 2 11

15 14 13 12

6,6 6,7 6,8 6,9

7,6 7,7 7,8 7,9

8,6 8,7 8,8 8,9

9,6 9,7 9,8 9,9

(a) Brick (b) BrickMap
0 1 2 ... 15Brick 
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i

j

∆𝒊 -1 -1 -1 0 0 1 1 1

∆𝒋 -1 0 1 -1 1 -1 0 1

𝜼 6 7 8 5 1 4 3 2

0 1 2 ... 𝟏𝟓
Adjacency 

List

(c) BrickInfo

Figure 6: Representation of a 4 × 4 brick from a 16 × 16 array
with the three corresponding data structures in BrickDL.

Figure 6 shows the representation of a 4 × 4 brick data layout
from a 16×16 2D array. Figure 6(a) shows the array elements stored
in the Brick structure at index 0. Figure 6(b) is BrickMap, a layer of
indirection, mapping the Brick at logical index (1, 1) to its physical
location at index 0. Figure 6(c) shows BrickInfo, an adjacency list
storing the physical indices of neighbors 𝜂 to the brick at index 0.
BrickDL expresses DNN operations using templates and operator
loading to automatically translate [𝐵𝑟𝑖𝑐𝑘 𝐼𝑛𝑑𝑒𝑥, 𝐼𝑛𝑑𝑒𝑥 𝐼𝑛 𝐵𝑟𝑖𝑐𝑘]
tuples to the corresponding offset in memory, leveraging the adja-
cency list to access neighboring bricks.

BrickDL performs fine-grained blocking of activation layers
along all spatial and sample dimensions. Brick size is kept constant
for operators in a subgraph, while brick size can vary between
subgraphs. A brick’s size is set greater than the kernel/filter size for
a given operation. A brick is masked accordingly with zero-valued
elements when the layer size is not a multiple of the brick size.

Each brick makes a fine-grained invocation to the cuDNN library
API for the corresponding operations. CUDA kernels are launched
from the device using dynamic parallelism and CUDA graphs with
the CUDA runtime API. BrickDL also leverages the operator fusion
capabilities of cuDNN to fuse DNN primitives (e.g., convolution)
with point-wise operations (e.g., ReLU, softmax). This is done with
the NVIDIA cuDNN Backend API by configuring an engine with
operation graphs of fused operators.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup

All experiments are run on the LBNL NERSC Perlmutter supercom-
puter. Each Perlmutter GPU node has one AMD EPYC 7763 GPU
and four NVIDIA A100 GPUs. Each GPU includes 108 streaming
multiprocessors (SM), and each SM contains 192 KB shared memory
and shares a 40 MB L2 and 40 GB of HBM accessible at 1.5 TB/s.
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The BrickDL code is compiled with CUDA 12.1.10 and we used
PyTorch 1.12, TensorFlow 2.14.1, Python 3.8.8, cuDNN v8.8.2. The
performance metrics are collected from NVIDIA Nsight Compute
2023.2.1. The fundamental kernels in BrickDL and baselines use
single-precision floating point types. Each experiment is run 20
times, and the mean is reported.

4.2 End-to-End Model Inference Performance

Evaluated Models. The efficacy of BrickDL is evaluated with seven
well-known CNN models with varying depth, convolution types,
and model architectures: (i) VGG-16 [32], (ii) ResNet-50 (with iden-
tity and projection skip connections) [16], (iii) DarkNet-53 from
YOLOv3 [28], (iv) 3D ResNet-34 with 3D convolutions [15], (v) DRN-
26 (DRN-C) [48] with residual blocks involving 2D dilated, strided
convolutions. (vi) DeepCAM [22], based on encoder-decoder ar-
chitecture with deconvolutions and asymmetric spatial pyramid
pooling (ASPP) layers, and (vii) InceptionNet-v4 [33].

Baselines. The achieved performance of these models with BrickDL
is compared against three baselines: (i) cuDNN, (ii) TorchScript,
and (iii) TensorFlow+XLA. The cuDNN baseline is a set of C++
benchmarks implemented with tiled cuDNN API calls for the eval-
uated models. This comparison analyzes the benefits of merged
execution with bricks in BrickDL, which also calls cuDNN at the
brick level. Additionally, BrickDL is compared against the PyTorch
and TensorFlow implementations of these models, which are re-
spectively optimized for end-to-end inference with the TorchScript
PyTorch JIT compiler and the XLA compiler. Graph-level optimiza-
tions including operator fusion are enabled in both of them. Torch-
Script and TensorFlow XLA are used as baselines for BrickDL
to form a comparison against highly optimized versions of these
models with these frameworks.

TensorFlow XLATorchScriptcuDNN BrickDL Memory
Compute & Other

End-to-End Model Inference Performance – NVIDIA A100 GPU
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Figure 7: Performance of BrickDL relative to cuDNN, Torch-

Script, and TensorFlow XLA for the seven models. BrickDL

attains a 9-17% speedup over the cuDNN baseline. The verti-

cal bar for BrickDL is partitioned into fraction of time spent

on compute and data movement.

Performance Evaluation. Figure 7 shows the execution time of BrickDL
compared to TorchScript and TensorFlow XLA, relative to the
cuDNN baseline. The performance of BrickDL is plotted for the

best merged execution strategy among padded andmemoized bricks
for all subgraphs in each model, guided by the performance model.
It also factors in the cost of creating bricks, which is minimal. The
vertical bars of cuDNN and BrickDL are partitioned into the frac-
tion of execution time for DRAM transfers, and compute and other
tasks. The DRAM transfer time is calculated using the memory
bandwidth and the number of DRAM transactions measured from
Nsight. The execution rate for DRAM transactions (𝑡𝑥𝑛) is given by

𝑅𝑡𝑥𝑛 =
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝑇𝐵/𝑠 )

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 (𝐵/𝑡𝑥𝑛) 𝑡𝑥𝑛/𝑠
where𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ is themeasuredHBMbandwidth.𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒
is 32 bytes for DRAM read and write transactions on NVIDIA
A100 GPU. The total time for DRAM transactions is calculated
as𝑇𝐷𝑅𝐴𝑀 = 𝑁𝑡𝑥𝑛/𝑅𝑡𝑥𝑛 where 𝑁𝑡𝑥𝑛 is the number of DRAM trans-
actions collected from the hardware counter, and an 𝑅𝑡𝑥𝑛 of 46M
txn/s. The Compute & Other time in Figure 7 is calculated as the
difference of 𝑇𝐷𝑅𝐴𝑀 from the total execution time.

For all seven models evaluated, BrickDL consistently outper-
forms the cuDNN baseline and, in most cases, TorchScript and
TensorFlow XLA. All models present reduced DRAM movement
with BrickDL compared to cuDNN, which primarily contributes
to the observed speedups. Deeper models benefit even better from
BrickDL, with the ability to merge layers in more subgraphs. The
highest performance gains are observed with DarkNet-53, with a
speedup of 17.4% over cuDNN, 5.2% against TorchScript, and 6.7%
versus TensorFlow XLA. BrickDL reduces DRAM transfer time by
16.5% from cuDNN, for DarkNet-53. The results demonstrate the
benefits and applicability of merged execution with bricks across a
breadth of CNNmodels with different types of convolutions (2D, 3D,
dilated, strided, transposed), and diverse model structures (residual
blocks, Inception modules, encoder-decoder layers).

4.3 Modeling Atomics and Compute Time

To isolate the cost of atomic operations and computation of bricks
from the total execution time in Figures 8, 10, and 11, we model
them using synthetic microbenchmarks.

4.3.1 Modeling Atomic Execution Time. Nsight Compute does not
include the metric for the execution time of atomic operations.
It only has a counter for the number of atomic transactions. We
hence implement a simple synthetic microbenchmark to estimate
the execution time of atomic transactions. This microbenchmark
creates a 32×64𝐾 sized array (i.e., 64𝐾 number of 32-byte sized cache
lines), which is partitioned into thread blocks, and each individual
thread per word in a cache line executes a Compare-and-Swap
(CAS) atomic operation. The reason for allocating each thread to
different cache lines is to ensure there are no conflicts, assuming
that the GPU hardware does not automatically optimize for atomic
operation coalescing. This allocation creates a large one-to-one
mapping between the threads in the kernel and cache lines in this
array. A loop executes, where every thread performs 106 atomic
operations, each to its own private cache line. The total execution
time 𝑇 of this loop structure is measured. For a number of threads
𝑁 , the rate of execution of atomic operations is given by 𝑅 =
𝑁×106

𝑇
atomics per second. The time per atomic can be deduced from

this as 𝑇𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑅−1 seconds per atomic. The number of atomic
transactions 𝑁𝑎𝑡𝑜𝑚𝑖𝑐 is obtained from the hardware counter, and
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the total execution time for the atomic operations is calculated as
𝑁𝑎𝑡𝑜𝑚𝑖𝑐 ×𝑇𝑎𝑡𝑜𝑚𝑖𝑐 . For the A100 GPU, the benchmark suggests the
time for one atomic operation to be 𝑇𝑎𝑡𝑜𝑚𝑖𝑐 = 87.45 𝑛𝑠 .

4.3.2 Modeling Compute Time. We implement a second synthetic
microbenchmark to determine the time required for computing
a brick, assuming perfect overlap with DRAM transactions. This
microbenchmark creates an array of independent bricks allocated
in shared memory. In the CUDA kernel, every thread block gets
one brick, and it does 106 3D convolution cuDNN calls to this array,
iterated over 1000 times in a loop (so a total of 109 cuDNN calls).
The execution time of this benchmark is measured, which yields
the execution rate for 109 cuDNN invocations per second. This
metric is inverted to obtain the time per cuDNN call (𝑇𝑏𝑟𝑖𝑐𝑘 ). The
total number of bricks called is multiplied by 𝑇𝑏𝑟𝑖𝑐𝑘 to get the total
compute time, assuming the DRAM transfer time is hidden. Using
this benchmark, we obtain 𝑇𝑏𝑟𝑖𝑐𝑘 = 6.72 𝜇𝑠 as the execution time
for an 8 × 8 × 8 brick with a 3 × 3 × 3 convolution filter.

4.4 Case Study: ResNet-50

Figure 8 shows the execution time of seven subgraphs from ResNet-
50 with merged execution using padded bricks andmemoized bricks,
relative to cuDNN. The analysis for these subgraphs is performed
with a consideration that compute time perfectly overlaps with
DRAM transfers. Hence, memory and computation time are plotted
side-by-side for each case. Idle time (shaded pink) is the time the
memory subsystem is idle, calculated as the difference between the
total execution time and the measured DRAM time (as described in
Section 4.2). The compute and atomic execution time (modeled as
in Section 4.3), are stacked on bars for computation in each case.
The Other time (shaded gray) is the difference between the total
execution time and the modeled compute + atomic time, which
denotes time spent on tasks such as recursion, synchronization,
data manipulation, stalls waiting for memory, etc. Inspired by the
3C’s cache model [18], the atomic time is further split based on the
number of compulsory atomic operations and conflicting atomic
operations. Two compulsory atomics are required per brick, and the
number of conflicting (failed) atomics is the difference between total
atomics executed and compulsory atomics. The cuDNN baselines
in Figures 8–11 are implemented with tiled calls to cuDNN, and the
time to compute each tile is modeled using the same methodology
as for bricks described in Section 4.3.2.

In Figure 8, we observe both padded and memoized bricks out-
performing the cuDNN baseline for each subgraph. Both merged
execution approaches considerably cut down DRAM movement
compared to cuDNN in all subgraphs. Merged execution is more
profitable in initial subgraphs with large layers, which offer oppor-
tunities to improve data locality on GPUs. Padded bricks performs
better than memoized bricks in subgraphs 1 and 2, due to extra
overhead from atomic operations on large layers in those subgraphs.
However, in the subsequent subgraphs 3-7, the growth in net data
due to padding, Δ > 15%, and it is favorable to use memoized bricks
for those cases where a lesser fraction of time is spent on atomics.

To understand the data movement effects in Figure 8, Figure 9
compares the number of global memory, L2 cache, and DRAM trans-
actions for padded andmemoized bricks relative to cuDNN, for each
subgraph. Merged bricks with padded bricks in subgraph 1 reduces
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Figure 8: Comparing the speedup of padded bricks and re-

cursive memoized bricks over the cuDNN baseline for the 7

subgraphs from ResNet-50. Padded bricks outperformsmem-

oized bricks for Subgraphs 1-2, while memoized bricks per-

forms better in the other subgraphs. All versions assume

perfect overlap between memory and compute.

DRAM transactions the most, by 21%. Global memory transactions
are a proxy for L1 cache transactions. Generally, techniques that
improve data locality should decrease DRAM transactions at the
cost of increased L2 transactions. Ideally, L1 transactions should
remain constant, assuming there is no redundancy or overfetch.
We observe merged execution decreases DRAM transactions and
increases L2 transactions as expected, but also tends to increase L1
transactions due to overfetch from padding bricks — unlikely to
be a performance impediment as L1 bandwidth is far greater than
DRAM bandwidth on GPUs. Reduction in the net number of DRAM
transactions at the expense of increased L1 and L2 transactions
yields performance gains with merged execution of bricks.
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Figure 9: Comparing the data movement metrics of differ-

ent subgraphs for ResNet-50. Both padded and memoized

bricks show reduced DRAM transactions by trading them

with faster L1 and L2 transactions.

In many cases, the ratio between the three data movement met-
rics for the different subgraphs shown in Figure 9 are of comparable
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magnitude (one reads as much data fromDRAM as the L2). This sug-
gests that these implementations basically stream the data through
the memory hierarchy – from global memory → L2 cache → L1
cache→ register files, which gives the benefit of reduced latency
but at the cost of bandwidth filtering. This implies there is more
scope for improving L1 and L2 cache locality.

4.5 Microbenchmarking Merged Execution

Optimizations with Bricks

To analyze the performance characteristics (DRAM data movement,
atomic operations, and compute time) that can incentivize or penal-
ize padding and memoization, we construct two microbenchmarks
to evaluate the effect of varying graph partitions and brick sizes.

4.5.1 Performance With Varying Subgraph Size. Partitioning DNN
graphs into subgraphs of different sizes can have a considerable ef-
fect on the performance of padded andmemoized bricks approaches.
We characterize this with a six-layer microbenchmark as a proxy for
a CNN graph with a chain of six convolution operations. The first
layer is a 112×112×112 3D convolution operation with 64 channels
and stride = 0, padding = 0, dilation rate = 1, and the subsequent
five layers are computed accordingly. We use 8 × 8 × 8 bricks and
block only along the spatial dimensions. We implement both the
padded bricks and memoized bricks optimizations by merging a
sequence of 2, 3, 4, and 6 layers in this microbenchmark.
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Figure 10: Breaking down the execution time of the differ-

ent merged execution configurations for the six-layer proxy

benchmark. For example, 2+ 2+ 2 denotes the six-layer graph
partitioned into 3 subgraphs, each with 2 merged layers; 6

implies that all the six layers are merged. The dotted hori-

zontal line indicates execution time of the cuDNN baseline.

Figure 10 compares with cuDNN baseline the performance of
different graph sizes partitioned from the 6-layer CNN graph. Us-
ing the same methodology described in Section 4.4, we measure
DRAM time and model atomic and compute time. Among all merge
configurations, 3 + 3 with memoized bricks optimizations performs
the best with a 12% speedup over the cuDNN baseline, reducing
DRAM transfer time by 16.2%. Merged execution with all six layers
(or more) leads to a significant slowdown with both padded bricks

and memoized bricks due to excess data movement with padding
and the overhead from many atomic operations in a large merged
region of six layers. Merged execution in a subgraph of 2 layers is
not beneficial due to frequent synchronizations and reduced par-
allelism. The compute time for padded bricks is higher than that
for memoized bricks due to additional computations performed
on the enlarged halo regions. The overhead from padded data, as
well as compulsory and conflict atomic operations, increases with
more layers in the subgraph, which could be due to clustered thread
blocks that get totally overlapped with more merged layers.

4.5.2 Performance with Varying Brick Size. The microbenchmark
in section 4.5 was implemented with a fixed brick size of 83. How-
ever, brick size is adjustable and can impact performance based
on varying parallelism, additional data movement due to padding,
and the overhead of atomic operations. To characterize this effect,
we implement a CNN proxy microbenchmark with three back-to-
back convolutional layers. The first layer is a 224 × 224 × 224 3D
convolution operation with 64 channels, and the subsequent layers
are computed accordingly. We evaluate this microbenchmark with
brick sizes of 43, 83, 163, and 323 for padded bricks and memoized
bricks, and we block along the spatial dimensions only. The three
convolutional layers are always merged in each of these cases.

Figure 11 shows the execution time breakdown of the three-layer
microbenchmark for varying brick sizes with padded andmemoized
bricks. Implementations with bricks of size 43 perform the worst
due to the overhead of additional padded data and increased atomic
operations for padded bricks andmemoized bricks, respectively. The
323 bricks perform poorly due to coarse-grained parallelism with
large bricks, which are unsuitable for GPUs. The most performant
version is with 163 bricks for memoized bricks, providing a speedup
of 13.5% over the cuDNN baseline. This implementation reduces
the DRAM transaction time by 17.8% compared to cuDNN.
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Figure 11: Breaking down the execution time of the different

merged executions for the three-layer proxy benchmark as

a function of brick size.

For the above microbenchmarks, though subgraphs of 3 layers
and 163 bricks with memoized bricks perform the best, choosing the
optimal subgraph and brick sizes, and merged execution approach
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depends on the problem specifications and hardware characteristics,
which motivates the performance models in Section 3.3.

5 RELATEDWORK

In this section, we discuss prior work in optimizing deep learning
workloads, including libraries, compilers, and graph-level optimiz-
ing frameworks. We also discuss related optimizations for HPC
applications. These are compared to BrickDL.

5.1 DNN Libraries and Compilers

Vendor libraries such as NVIDIA cuDNN, CUTLASS, AMDMIOpen,
and Intel OneDNN provide highly tuned, optimized implementa-
tions for DNN primitives. Popular deep learning frameworks Ten-
sorFlow, PyTorch, and JAX leverage these off-the-shelf libraries
along with hand-crafted kernels for commonly used DNN opera-
tions. NVIDIA’s TensorRT SDK [1] and Meta’s AITemplate Frame-
work [44] provide manually-optimized routines for deep learning
inference.

Given the recent explosion in diverse AI accelerators and modu-
larization of DNN models, several domain-specific compilers have
been developed, targeted at performance portability and produc-
tivity that generate high-performance kernels for individual oper-
ators in DNN graphs [6, 10, 31, 34, 36, 55, 57]. TorchScript [2], a
component of the PyTorch JIT compiler, transforms DNN models
into optimized and serialized format for inference through Python
introspection or tracing. TensorFlow XLA [29] is a framework-
agnostic JIT compiler that generates optimized code specific to the
underlying hardware. The TVM compiler [6] uses the Ansor [54]
auto-scheduler to generate optimized schedules representing dif-
ferent implementations, employing an autotuning search over a
vast configuration space of kernels. Similar to BrickDL, Triton [36],
Graphene [14], and FreeTensor [34] express and analyze operators
at a finer granularity. In contrast to these systems, BrickDL em-
ploys the fine-grain blocked brick data layout that is better suited
to DNN workloads, optimizing their data residency on GPUs.

5.2 Graph-Level Optimizations for DNN

Graph compilers perform inter-operator optimization of DNNgraphs
such as operator fusion, using graph rewriting rules that substi-
tute subgraphs with pattern matching, and by using global passes
that optimize the entire graph, for e.g., efficient memory schedul-
ing. TASO [20], PET [37], and TENSAT [46] automatically generate
graph substitutions using pre-defined rules and operator sets to per-
form graph-level optimizations. Rammer [24] and IOS [11] exploit
parallelism between independent operations at the graph level and
perform efficient inter-operator scheduling, in addition to optimiz-
ing individual operators. Astitch [56] performs fusion of memory-
intensive operators to optimize data movement. Apollo [49] and
DNNFusion [27] fuse memory-bound and compute-bound oper-
ations using rule-based algorithms but cannot fuse a chain of
compute-intensive operations. Other compilers (TVM, XLA [29],
TorchScript) and libraries (TensorRT, cuDNN) enable the kernel
fusion of DNN primitives (e.g., convolution) with element-wise op-
erations (e.g., ReLU). Bolt [43] can fuse back-to-back convolutions
but requires subsequent convolutions in the chain to be unit-strided
and point-wise (1 × 1 filter) without padding. BrickDL overcomes

the limitations of operator fusion with an alternate approach of
inter-layer merged execution of convolutions. Merged execution,
when coupled with these existing graph-level optimizations, can
further optimize the performance of deep learning frameworks.

Pertinent to merged execution in BrickDL, Xu et al. [45] parti-
tion CNN layers to fit large activations in a single GPU’s memory for
model training with checkpointing. Approaches similar to merged
execution have also been applied to design accelerators for DNN in-
ference [3, 53]. Related to our work, DistDL [17] and DistConv [12]
implement efficient halo exchanges with spatial model parallelism
for training CNN models. While BrickDL currently supports infer-
ence only, merged execution can be extended to enable fine-grained
hybrid model parallelism for distributed DNN training.

5.3 Locality and Parallelism for Stencils

The convolution operators in deep learning exhibit a stencil pat-
tern, where an output point is calculated as a weighted sum of
neighboring input points. Stencil computations also appear in the
solution of partial differential equations, for which there is signifi-
cant prior work. Stencils are memory-intensive, yet often exhibit
nearest neighbor data reuse. So, achieving data locality is imperative
in minimizing data movement and maximizing performance.

Many optimizations for stencils achieve data locality by restruc-
turing execution order so that data reuse occurs temporally while
data resides in fast memory. In space-time tiling [8, 25, 26], the
N+1-dimensional space (array dimensions plus time) hyperspace
is tiled into hyper-parallelpipeds or trapezoids. By constraining
execution to proceed from one parallelpiped to the next, cache
working sets can be tailored to be less than cache capacity, thereby
maximizing data locality. In recursive space-time tiling (also known
as cache oblivious algorithms) [13, 21], the N+1-dimensional space
is recursively cut in either space or time until a cutoff is reached at
which point execution can proceed.Wavefronts [5, 9, 40] create a
pipeline of execution. Effectively, one can tile the iteration space
into 2.5D planes that proceeds through the remaining dimensions
of space and time. One can choose to parallelize within the spatial
dimension of the wavefront [39] or in the time dimension of the
wavefront [38] or both. Cache oblivious wavefronts attempt to ex-
tract the both of best worlds [7, 35]. In essence, they perturb the
cache oblivious recursion algorithm, incentivizing the execution
of temporally concurrent independent tiles. These approaches to
execution order transformations for stencils achieve locality by
restructuring the computation to operate on logically neighbor-
ing data in chunk sizes that better utilize the memory hierarchy.
Recursive approaches exhibit significant overhead from global syn-
chronizations, and other approaches result in complex code. All
require careful tuning of the sizes of data chunks to maximize reuse
and parallelism in a deep and tapered cache hierarchy.

An alternative approach is to reorganize data into a blocked phys-
ical representation, such that logically neighboring data is stored
contiguously in memory. Stencil optimization that uses such fine-
grain data blocking include YASK [47], Briquettes [19], RTM on
the Cell processor [4], and optimized code generation by Zhao et
al. [50–52] that target large, higher-order, compute-intensive sten-
cils. This concept has also been applied to optimize stencils and FFT
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in a 6D phase-space tokomak simulation fusion code [30]. As com-
pared to execution reordering, with fine-grained data blocking, the
logically neighboring data chunks are part of the same or adjacent
address streams, reducing unnecessary data movement associated
with long strides that span multiple vectors, cache lines, or pages.
Fine-grained data blocks also reap benefits from hardware features
that favor spatial reuse, e.g., prefetchers.

BrickDL incorporates both execution reordering and data reorga-
nization for inter-layer merged execution with bricks in DNNs. This
approach can also be extended to optimize reuse along spatial and
temporal dimensions of stencil computations.

6 DISCUSSION AND CONCLUSIONS

This paper has presented BrickDL, which to the best of our knowl-
edge is the first optimization system for DNNs that exploits reuse
across arbitrary chains of convolutions, with merged execution
of layers on fine-grained data blocks. Instead of generating fused
kernel code, BrickDL invokes each operator’s kernel at the fine-
grained granularity of bricks and reschedules their order of execu-
tion. We explored two approaches to mitigating data dependences
in parallel execution — padded bricks (halo regions or ghost zones
in HPC parlance) and memoization with dynamic runtime (locks on
blocks of the activation layers) — both of which demonstrated im-
proved performance and reduced data movement on GPUs. As com-
pared to prior work on optimizing stencil optimizations, BrickDL’s
merged execution uniquely combines data reorganization with
execution order and parallelization optimizations tailored to fine-
grained blocks and addresses the changing problem size associated
with operators in DNN graphs.

While we do not propose BrickDL as a replacement for state-
of-the-art DNN systems, BrickDL’s optimizations are beneficial
and make a firm case for integrating them with these deep learning
systems for better performance. In general, the bricks can be inte-
grated with compilers that support domain-specific frameworks
and expose data layouts as abstractions, e.g., LLVM MLIR compiler
infrastructure [23] at the DLTI dialect.

Analysis with the microbenchmarks points to more opportuni-
ties for data movement reduction: replacing cuDNN library calls
with code generation for DNN primitives along with optimizations
such as wavefront parallelization [41] and performing skewed cuts
across layers [42]. Similarly, there should be hardware-software
opportunities to accelerate memoization via non-blocking compu-
tations and locality aware ordering.

BrickDL’s optimizations also apply to the sequences of compu-
tations on structured grids found in HPC codes, including layered
computations such as multi-grid and adaptive mesh refinement.
Indeed, we believe optimizations such as these centered around
data layouts will play an increasingly important role in future HPC
and AI systems, where managing data movement is paramount.
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