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Abstract—The adoption of a programming language is posi-
tively influenced by the breadth of its software libraries. Chapel
is a modern and relatively young parallel programming language.
Consequently, not many domain-specific software libraries exist
that are written for Chapel. Graph processing is an important
domain with many applications in cyber security, energy, social
networking, and health. Implementing graph algorithms in the
language of linear algebra enables many advantages including
rapid development, flexibility, high-performance, and scalability.
The GraphBLAS initiative aims to standardize an interface for
linear-algebraic primitives for graph computations. This paper
presents initial experiences and findings of implementing a subset
of important GraphBLAS operations in Chapel. We analyzed
the bottlenecks in both shared and distributed memory. We
also provided alternative implementations whenever the default
implementation lacked performance or scaling.

I. INTRODUCTION

Chapel is a high-performance programming language de-
veloped by Cray [1]. Supporting a multithreaded execution
model, Chapel provides a different model of programming
than the Single Program, Multiple Data (SPMD) paradigm that
is prevalent in many of the HPC languages and libraries.

GraphBLAS [2] is a community effort to standardize linear-
algebraic building blocks for graph computations (hence the
suffix -BLAS in its name). In GraphBLAS, the graph itself
is represented as a matrix, which is often sparse, and the
operations on graphs are expressed in basic linear algebra
operations such as matrix-vector multiplication or generalized
matrix indexing [3]. Chapel provides support for index sets
as first class citizens, hence making it an interesting and po-
tentially productive language to implement distributed sparse
matrices.

In this work, we report on our early experiences in imple-
menting a sizable set of GraphBLAS operations in Chapel.
Our experience so far suggests that built-in implementations
of many sparse matrix operations are not scalable enough to
be used for large scale distributed computing. For some of
these operations, we provide alternative implementations that
improve the scalability substantially.

In many cases, we have found that adhering to a stricter
SPMD programming style provides better performance than
relying on the recommended Chapel multithreaded program-
ming style. According to our preliminary analysis, this is
due to the thread creation and communication costs involved
in spawning threads in distributed memory, especially when
the data size is not large enough to create work that would
amortize the parallelization overheads. This problem, often

called burdened parallelism in literature [4], is not specific to
Chapel and it manifests in many parallel programming plat-
forms such as OpenMP. However, the problem is exacerbated
in distributed memory due to increased thread creation and
communication costs. The primary goal in implementing a
GraphBLAS-compliant library is performance. Consequently,
we believe that divergence from the recommended program-
ming style is justified as the library backend is rarely inspected
by users and might not even be available for inspection.

II. BACKGROUND

A. Matrix and vector notations

A matrix A ∈ Rm×n is said to be sparse when it is
computationally advantageous to treat it differently from a
dense matrix. In our experiments, we only use square matrices
and denote the number of rows/columns of the matrix by
n. The capacity of a vector x ∈ Rn×1 is the number of
entries it can store. The nnz () function computes the number
of nonzeros in its input, e.g., nnz (x) returns the number of
nonzeros in x. For a sparse vector x, nnz (x) is less than or
equal to capacity(x).

Our algorithms work for all inputs with different sparsity
structures of the matrices and vectors. However, for simplicity,
we only experimented with randomly generated matrices and
vectors. Randomly generated matrices give us precise control
over the nonzero distribution. Therefore, they are very useful
in evaluating our prototype library. In the Erdős-Rényi random
graph model G(n, p), each edge is present with probability p
independently from each other. For p = d/m where d � m,
in expectation d nonzeros are uniformly distributed in each
column. We use f as shorthand of nnz (x)/capacity(x), which
is the density of a sparse vector.

In this paper we only considered the Compressed Sparse
Rows (CSR) format to store a sparse matrix because this is
supported in Chapel. CSR has three arrays: rowptrs is an
integer array of length n+1 that effectively stores pointers to
the start and end positions of the nonzeros for each row, colids
is an integer array of length nnz that stores the col ids for
nonzeros, and values is an array of length nnz that stores the
numerical values for nonzeros. CSR supports random access
to the start of a row in constant time. In Chapel, CSR matrices
keep the column ids of nonzeros within each row sorted.
In Chapel, the indices of sparse vectors are kept sorted and
stored in an array. This format is space efficient, requiring only
O(nnz ) space.



Listing 1: Creating a block-distributed sparse array
1 var n = 6
2 var D = {0..#n, 0..#n} dmapped Block({0..#n

,0..#n}, sparseLayoutType=CSR));
3 var spD: sparse subdomain(D); // sparse

domain
4 spD = ((0,0), (2,3)); // adding indices
5 var A = [spD] int; // sparse array

B. Chapel notations

A locale is a Chapel abstraction for a piece of a target archi-
tecture that has processing and storage capabilities. Therefore,
a locale is often used to represent a node of a distributed-
memory system.

In this paper we only used 2-D block-distributed partitions
of sparse matrices and vectors [5], since they have been
shown to be more scalable than 1-D block distributions
of matrices and vectors. In 2-D block-distribution, locales
are organized in a two dimensional grid and array indices
are are partitioned ”evenly” across the target locales.
An example of creating a 2-D block-distributed sparse
matrix is shown in Listing 1. A 2-D block-distributed
array relies on four classes: (a) SparseBlockDom, (b)
LocSparseBlockDom, (c) SparseBlockArr and
(d) LocSparseBlockArr. SparseBlockDom and
SparseBlockArr describe the distributed domains
and arrays, respectively. LocSparseBlockDom and
LocSparseBlockArr describe non-distributed domain
and arrays placed on individual locales. SparseBlockDom
class defines locDoms: a non-distributed array of local
domain classes. Similarly, SparseBlockArr class defines
locArr: a non-distributed array of local array classes.
For efficiency, we directly manipulate local domains and
arrays via _value field of classes. The actual local domains
and arrays in SparseBlockDom and SparseBlockArr
classes can be accessed by mySparseBlock and myElems,
respectively.

C. Experimental platform

We evaluate the performance of our implementations on
Edison, a Cray XC30 supercomputer at NERSC. In Edison,
nodes are interconnected with the Cray Aries network using
a Dragonfly topology. Each compute node is equipped with
64 GB RAM and two 12-core 2.4 GHz Intel Ivy Bridge
processors, each with 30 MB L3 cache. We built Chapel
version 1.14.0 from source using gcc 6.1.0. We built Chapel
from source because the Cray-provided compiler on Edison
is much older and does not have several latest sparse array
functionalities. We used aries conduit for GASNet and slurm-
srun launcher. Finally, qthreads threading package [6] from
Sandia National Labs was used for threading.

III. GRAPHBLAS OPERATIONS

The upcoming GraphBLAS specification and the C lan-
guage API contains approximately ten distinct functions, not

Listing 2: apply() - version 1
1 // Implementing apply() using forall loop
2 proc Apply1(spArr, unaryOp)
3 {
4 forall a in spArr do
5 a = unaryOp(a);
6 }

Listing 3: apply() - version 2
1 // Implementing apply() with local arrays
2 proc Apply2(spArr, unaryOp){
3 var locArrs = spArr._value.locArr;
4 coforall locArr in locArrs do
5 on locArr {
6 forall a in locArr.myElems do
7 a = unaryOp(a);
8 }
9 }

accounting for overloads for different objects [7]. The API
does not differentiate matrices as sparse or dense. Instead,
it leaves it to the runtime to fetch the most appropriate
implementation. Consequently, it also does not differentiate
operations based on the sparsity of its operands. For example,
the MXV operation can be used to multiply a dense matrix with
a dense vector, a sparse matrix with a sparse vector, or a sparse
matrix with a dense vector. Efficient backend implementations,
however, has to specialize their implementations based on
sparsity for optimal performance.

In this work, we target a sizable subset of the GraphBLAS
specification. Our operations are chosen such that they can
be composed to implement an efficient breadth-first search
algorithm, which is often the “hello world” example of Graph-
BLAS. Since we are illustrating an efficient backend, we
also specialize our operations based on the sparsity of their
operands. Below is the list of operations we focus in this paper:

• Apply operation applies a unary operator to only the
nonzeros of a matrix or a vector.

• Assign operation assigns a matrix (vector) to a subset of
indices of a another matrix (vector).

• eWiseMult can be used to perform element-wise multi-
plication of two matrices (vectors).

• SpMSpV multiplies a sparse matrix with a sparse vector
on a semiring.

A powerful aspect of GraphBLAS is its ability to work
on arbitrary semirings, monoids, and functions. In layman’s
terms, a GraphBLAS semiring allows overloading the scalar
multiplication and addition with user defined binary operators.
A semiring also has to contain an additive identity element. A
GraphBLAS monoid is a semiring with only one binary oper-
ator and an identity element. Finally, a GraphBLAS function
is simply a binary operator and is allowed in operations that
do not require an identify element (e.g. eWiseMult).



Listing 4: Assign() - version 1
1 proc Assign1(A: [?DA], B: [?DB]) {
2 {
3 //------ Assign domain -------
4 DA.clear(); // destroy A
5 DA += DB;
6 // ------- Assign array -------
7 forall i in DA do
8 A[i] = B[i];
9 }

A. Apply: Applying a unary operator to a matrix or vector

Apply takes a unary operator and a matrix (or a vector)
as its input. It applies the unary operator to every nonzero of
the matrix (vector). The computation complexity of Apply is
O(nnz ) and it does not require any communication.

Chapel implementation. Listing 2 and Listing 3 provide
two implementations of Apply operating on a sparse array.
The function Apply1 in Listing 2 uses a data parallel forall
loop to iterate over the nonzero entries of the array and applies
the supplied unary operation on each entry. By contrast, the
function Apply2 in Listing 3 follows an explicit SIMD model
where one task is created and run on each locale using
a coforall loop. Within each locale, local array entries are
updated without incurring any communication.

Performance of Apply. Figure 1 shows the shared-memory
and distributed-memory performance of two implementations
of Apply on Edison. Both Apply1 and Apply2 show near-
perfect scaling (20× speedup on 24 cores) on a single node of
Edison, as expected. However, Apply1 does not perform well
on the distributed-memory setting. Even though it is expected
that a forall loop over a block-distributed domain or array
executes each iteration on the locale where that iteration’s
index is mapped to, it is not implemented for sparse arrays yet.
Hence, Apply1 requires lots of fine-grained communication,
translating into the poor performance of Apply1. By contrast,
Apply2 operates directly on the local array in each locale and
shows good scaling as we increase the number of nodes in the
right subfigure of Figure 1.

B. Assign: Assigning a matrix/vector into another

Assign operation can be used to assign a matrix (vector)
to a submatrix (subvector) of another matrix (vector). For
example, this can be accomplished with the Matlab notation
A(I, J) = B where I and J signifies row and column indices
(respectively) of A into which the function assigns B. In
general, assign is a very powerful primitive that can require
O((nnz (A)+nnz (B))/

√
p) communication [8]. In this work,

we implement a restrictive version of Assign that requires the
domains of A and B to match. The computation complexity
of this simplified Assign is O(nnz (A)) and it does not require
any communication.

Chapel implementation. Listing 4 and Listing 5 provide
two implementations of Assign. Here we assume that both
A and B use the same 2-D distribution (i.e., the same index

Listing 5: Assign() - version 2
1 proc Assign2(A: [?DA], B: [?DB]) {
2 DA.clear(); // destroy A
3 if(DB.size == 0) then return;
4 //------ Assign domain -------
5 var locDAs = DA._value.locDoms;
6 var locDBs = DB._value.locDoms;
7 coforall (locDA,locDB) in zip(locDAs, locD

Bs) do
8 on locDA {
9 locDA.mySparseBlock += locDB.mySparseB

lock;
10 }
11 // update global nnz of DA

13 // ------- Assign array -------
14 var locAs = A._value.locArr;
15 var locBs = B._value.locArr;
16 coforall (locA, locB) in zip(locAs, locBs)

do
17 on locA {
18 forall (a,b) in zip(locA.myElems._value

.data, locB.myElems._value.data) do
19 a = b;
20 }
21 }

from their domains is always mapped to the same locale).
The function Assign1 in Listing 4 clears the domain of A and
then adds the indices from the domain of B. Next, Assign1
uses a data parallel forall loop to iterate over the nonzero
entries of B and copy them to the corresponding locations
of A. Here, we have to iterate over a domain because two
sparse arrays are not allowed to iterate together (i.e., zipper
iteration is not implemented for sparse arrays yet). By contrast,
the function Assign2 in Listing 5 follows an explicit SIMD
model where one task is created and run on each locale
using a coforall loop. Within each locale, local domain and
array entries are copied without incurring any communication.
Notice that dense arrays stored in each locale can be zippered
as shown in Line 18 of Listing 5.

Performance of Assign. Figure 2 shows the shared-memory
and distributed-memory performance of two implementations
of Assign on Edison. Here, Apply2 is an order of magnitude
faster than Apply1. This is due to the fact that accessing the ith
entry A[i] of the sparse array A requires logarithmic time to
find the entry from a compact representation of A. In Apply 2,
we iterate over all nonzero entries which eliminates searching
for each entry individually. Both Assign1 and Assign2 show
reasonable scaling (5-8× speedup on 24 cores) on a single
node of Edison. Similar to Apply, Assign1 does not perform
well on distributed-memory. The reason is again the fine
grained communication needed to access array entries.

C. eWiseMult: Element-wise multiplication

eWiseMult performs an element-wise multiplication of two
matrices or vectors. The input matrices (vectors) should have
the same domain or the output is not well defined. The
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Fig. 1: Shared-memory (left subfigure) and distributed-memory (right subfigure) performance of two implementations of Apply
on Edison. Input sparse vectors are randomly generated with 10M nonzeros.
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Fig. 2: Shared-memory (left subfigure) and distributed-memory (right subfigure) performance of two implementations of Assign
on Edison. Input sparse vectors are randomly generated with 1M nonzeros.
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Fig. 3: The performance of the distributed-memory Assign
operation (Assign2) on Edison. 24 threads are used on each
node. Input sparse vectors are randomly generated 1M and
100M nonzeros.

name eWiseMult is a throwback to the mathematical roots of
GraphBLAS. In practice, eWiseMult returns an object whose
indices are the “intersection” of the indices of the inputs.
The values in this intersection set are “multiplied” using the
binary operator that is passed as a parameter. The computation
complexity of eWiseMult is O(nnz (A)+nnz (B)) and it does

not require any communication.
Chapel implementation. In this work, we focus only on the

case where the multiplication is between a sparse vector and a
dense vector. Listing 6 shows this specialized implementation.
Listing 6 takes a sparse vector x, a dense vector y and a binary
operator op() and returns a sparse vector z. The ith entry x[i]
of x is kept in z if f(x[i],y[i]) is satisfied. Similar to our
implementation of Assign in Listing 5, we directly access local
domains and arrays in each locale and create the local domains
and arrays of z. In contrast to Assign and Apply, we do not
know the index set of z in advanced for eWiseMult. Hence, we
use an atomic variable (Line 17 and 21 of Listing 6) to create a
temporary dense array keepInd in each locale and then add
these indices to the output vector using the “+=” operator.
In practice, we can avoid the atomic variable by keeping a
thread-private array in each thread and merge these thread-
private arrays via a prefix sum operation.

Performance of eWiseMult. In our experiments, the dense
vector y is simply a Boolean vector and the binary function
f(x[i],y[i]) returns true when y[i] is true. We initialize y in
a way that half the entries in x are kept in the output vector z.
Figure 4 shows the shared-memory performance of EwiseMult
on a single node of Edison. In this experiment, 10K, 1M and
100M nonzeros of x are used. Going from 1 thread to 24
threads, we observe 13× speedup when nnz(x) is 100M. This



Listing 6: eWiseMult : sparse-dense case.
1 proc eWiseMult(x: [?xDom], y, op)
2 {
3 //Inputs. x: a sparse vector, y: a dense

vector, op: a binary operator
4 // Access local domains and arrays
5 var lxDoms = xDom._value.locDoms;
6 var lzDoms = zDom._value.locDoms;
7 var lxArrs = x._value.locArr;
8 var lyArrs = y._value.locArr;
9 // Create the new domain

10 const pDom = {xDom.low..xDom.high}
11 dmapped Block({xDom.low..xDom.high});
12 var zDom: sparse subdomain(pDom);
13 coforall (lxDom,lzDom,lxArr,lyArr) in

zip(lxDoms,lzDoms,lxArrs,lyArrs) do
14 on lxDom {
15 var nnz = lxDom.mySparseBlock.size;
16 var keepInd:[0..#nnz] lxDom.idxType;
17 var k : atomic int; k.write(0);
18 forall (ind,val) in zip(lxDom.myS

parseBlock, lxArr.myElems) do
19 //keep indices if the binary

function is satisfied
20 if(!op(val, lyArr[ind])) then
21 keepInd[k.fetchAdd(1)]=ind;
22 keepInd.remove(k.read(), nnz-k.read

());
23 lzDom.mySparseBlock += keepInd;
24 }
25 //update global nnz of zDom
26 var z: [zDom] x.eltType;
27 //update values of z (not shown)
28 return z;
29 }

performance is reasonable and can be further improved by
avoiding atomic operations. Figure 5 shows the distributed-
memory performance of eWiseMult on Edison with (a) 1
thread per node and (b) 24 threads per node. When nnz (x)
is 100M, we see more than 16× speedup when we go from
1 node to 32 nodes. We do not see good performance for 1M
nonzeros (and beyond 32 nodes for 100M nonzeros) because
of insufficient work for each thread (64×24 = 1536 threads
in the right subfigure of Figure 5).

D. Sparse matrix-sparse vector multiplication (SpMSpV)

Sparse matrix-sparse vector multiplication is the operation
y← xA where a sparse matrix A ∈ Rm×n is multiplied by a
sparse vector x ∈ R1×m to produce a sparse vector y ∈ R1×n.

SpMSpV is the most complex operation we have imple-
mented on Chapel for this paper. We provide a simple but
reasonably efficient implementation using a sparse accumula-
tor or SPA. The algorithm iterates of the nonzeros of the input
vector x and fetches rows of A[i, :] for which x[i] 6= 0. The
nonzeros in those rows are merged using the SPA, which is
a data structure that consists of a dense vector of values of
the same type as the output y, a dense vector of Booleans
(isthere) for marking whether that entry in y has been
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Fig. 4: The performance of shared-memory eWiseMult with a
sparse and a dense vector on a single node of Edison. Nonzeros
in the input sparse vectors are shown in the legend. Input
sparse vectors are randomly generated with different number
of nonzeros. About half of the nonzero entries are deleted after
the eWiseMult operation.

initialized, and a list (or vector) of indices (nzinds) for
which isthere has been set to “true”. We note that there
exists more efficient but complex algorithms for SpMSpV in
the literature [9]. Figure 6 shows an example of the sparse
matrix-sparse vector multiplication using a sparse accumulator.

Chapel implementation. Considering the complexity of
SpMSpV, we provide separate shared- and distributed-
memory implementations. Function SpMSpV_shm in List-
ing 7 shows the shared-memory implementation of SpMSpV.
SpMSpV_shm has three steps: (a) merge necessary rows of
the matrix based on the nonzero entries of the input vector x
via SPA (b) sort indices of the merged entries, and (c) create
the output vector y from SPA. For the SPA-based merging, the
Boolean vector isthere keeps track of entries visited in the
selected rows of the matrix. Since multiple threads can visit
the same column in different rows, isthere is made atomic.
nzinds stores the unique columns visited by all threads and
localy stores the row indices where the stored columnes
are discovered. In the second step, we sort unique columns
identified by all threads stored in nzinds. In the final step,
we create the output vector from the sorted indices and other
SPA data structures.

Function SpMSpV_dist in Listing 8 shows the distributed-
memory implementation of SpMSpV that uses SpMSpV_shm
as a subroutine in each locale. We divide SpMSpV_dist into
three steps: (a) gather parts of x along the processor row, (b)
perform local multiply using SpMSpV_shm, and (c) scatter the
output vector across processor columns via a shared SPA. The
first and third steps require communication, while the second
step performs bulk of the computation.

Performance of the shared-memory SpMSpV. Figure 7
demonstrates the performance of the shared-memory SpM-
SpV algorithm on a single node of Edison. For SpMSpV
experiments, we generated Erdős-Rényi matrices with different
sparsity patterns. Here n denotes the number of rows/columns
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Fig. 5: The performance of distributed-memory eWiseMult with a sparse and a dense vector on Edison with (a) 1 thread per node
and (b) 24 threads per node. Nonzeros in the input sparse vectors are shown in the legend. Input sparse vectors are randomly
generated with different number of nonzeros. About half of the nonzero entries are deleted after the eWiseMultoperation

Listing 7: SpMSpV : shared-memory implementation.
1 proc SpMSpV_shm(A: [?ADom], x: [?xDom])
2 {
3 //Inputs. A: sparse matrix (CSR format), x:

sparse vector
4 var ciLow = ADom.dim(2).low;
5 var ciHigh = ADom.dim(2).high;
6 var ncol = ADom.dim(2).size;
7 //allocate SPA data structures
8 var isthere : [ciLow..ciHigh] atomic bool;
9 var localy : [ciLow..ciHigh] int;

10 var nzinds : [0..#ncol] int;
11 var k : atomic int; k.write(0);
12 // Step1: SPA
13 forall (rid,inval) in zip(xDom,x){
14 var rstart = ADom._value.rowStart(rid);
15 var rend = ADom._value.rowStop(rid);
16 if(rend>=rstart){
17 // for each nonzero of the selected row
18 for i in rstart..rend {
19 var colid = ADom._value.colIdx(i);
20 // only keeping the first index
21 if(!isthere[colid].read()){
22 nzinds[ k.fetchAdd(1)] = colid;
23 isthere[colid].write(true);
24 // keep row index as value
25 localy[colid] = rid;
26 }
27 }
28 }
29 }
30 // Step2: remove unused entries and sort
31 nzinds.remove(k.read(), ncol-k.read());
32 mergeSort(nzinds); //parallel merge sort
33 //Step3: populate the output vector
34 const yParentDom = {ciLow..ciHigh};
35 var yDom: sparse subdomain(yParentDom);
36 yDom += nzinds; // used specialized code
37 var Y: [yDom] int;
38 forall (si,sv) in zip(yDom, Y) do
39 sv = localy[si];
40 return Y;
41 }

x"

= *"

A"

SPA$

gather"
sca-er/"

accumulate"

y"

Fig. 6: Sparse matrix-sparse vector multiplication using a
sparse accumulator (SPA) [10]. Our actual Chapel implemen-
tation is row-wise but we chose to draw the figure column-
wise for better visualization. Neither the algorithm nor its
complexity is affected by the use of row-wise vs. column-wise
representation.

of the matrix and d denotes the number of nonzeros in each
row of the matrix. We also randomly created the input vector
that is f percent full meaning that it has nf nonzeros.

To better understand the performance, we showed three
components of the shared-memory SpMSpV (as described
in Listing 7) separately in Figure 7. Overall, SpMSpV_shm
achieves 9-11× speedups when we go from 1 thread to 24
threads on Edison. In Figure 7, we observed that sorting is
the most expensive step in shared-memory SpMSpV imple-
mentation. In our code, we use parallel merge sort available
in Chapel. Since SpMSpV requires sorting of integer indices,
a less expensive integer sorting algorithm (e.g., radix sort) is
expected to reduce the sorting cost down, as was observed in
our prior work [9].

Performance of the distributed-memory SpMSpV. Fig-
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Fig. 7: The performance of the shared-memory SpMSpV algorithm on a single node of Edison. The scalability of each
component of the algorithm is shown separately. Erdős-Rényi matrices with different parameters are used. The number of
nonzeros in the input vector is nf .
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Fig. 8: The performance of the distributed-memory SpMSpV algorithm on Edison. The scalability of each component of the
algorithm is shown separately. Erdős-Rényi matrices with 1 million rows and columns are used. The number of nonzeros in
the input vector is nf .
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Fig. 9: The performance of the distributed-memory SpMSpV algorithm on Edison. 24 threads are used in each node. The
scalability of each component of the algorithm is shown separately. Erdős-Rényi matrices with 10 million rows and columns
are used. The number of nonzeros in the input vector is nf .

ure 9 demonstrates the performance of the distributed-memory
SpMSpV algorithm on a single node for different sparsity
patterns of the matrix and vector. As before, we showed three
components of the distributed-memory SpMSpV (as described
in Listing 8) separately in Figure 9. The total runtime of
SpMSpV_dist does not go down as we increase the number
of nodes because of expensive inter-node communication in

gathering and scattering the vectors. Figure 9 shows that the
computation time needed for the local multiplication attains
up to 43× speedup when we go from 1 node to 64 nodes on
Edison. However the communication time needed to gather
the input vector increases by several orders of magnitude and
dominates the overall runtime when run on multiple nodes.
The communication time needed to scatter the output vector



Listing 8: SpMSpV : distributed-memory implementation.
1 proc SpMSpV_dist(A: [?ADom], X: [?xDom])
2 {
3 var distM = ADom._value.dist;
4 var n = ADom.dim(2).size; //#columns of A
5 const denseDom = {0..#n} dmapped Block

({0..#n});
6 //global SPA
7 var isthere: [denseDom] atomic bool;
8 coforall l in distM.targetLocDom do on

distM.targetLocales[l] {
9 ref lADom=ADom._value.locDoms[l].myS

parseBlock;
10 ref lArr=A._value.locArr[l].myElems;
11 var pc = distM.targetLocDom.dim(2).

size;
12 // Step1: gather x along the processor

row
13 var lxDom: sparse subdomain({lADom.dim

(1).low..lADom.dim(1).high});
14 var rnnz = 0;
15 for i in distM.targetLocDom.dim(2) {
16 var remotexDom = xDom._value.locD

oms[(l(1) * pc + i)].mySparseB
lock;

17 rnnz += remotexDom.size;
18 }
19 lxDom._value.nnz = rnnz;
20 lxDom._value.nnzDom = {1..rnnz};
21 // copy remote parts of x along the

processor row
22 var rxi = 1;
23 for i in distM.targetLocDom.dim(2) {
24 var rxDom = xDom._value.locDoms[(

l(1) * pc + i)].mySparseBlock;
25 forall (si,di) in zip(rxDom._value

.indices(1..rxDom.size), rxi..#
rxDom.size) do

26 lxDom._value.indices[di] = si;
27 rxi += rxDom.size;
28 }
29 var lx: [lxDom] int;
30 // copy value of x (not shown)
31 //Step2: Local multiplication
32 var ly = SpMSpV_shm(lArr, lx);

34 //Step3: Scatter the output vectors
across locales (only indices)

35 forall (id,inval) in zip(ly.domain,ly)
do

36 if(!isthere[id].read()) then
37 isthere[id].write(true);
38 }
39 // locally create output from isthere
40 var y = denseToSparse(isthere);
41 return y;
42 }

oscillates when we increase node counts. Further investigation
is required to find the root cause of this oscillating behavior.

IV. DISCUSSION OF FINDINGS

Our effort is an ongoing work of implementing Graph-
BLAS operations in partitioned global address space (PGAS)
languages including Chapel. Sparse matrix functionalities in
Chapel are also under development and expected to perform
significantly better in future releases. We will continue to
improve the operations presented in this paper and add new
functionalities to the GraphBLAS library. Here, we provide a
high-level summary of our findings based on the preliminary
evaluation of the GraphBLAS library in Chapel. We also
provide some insights in language and library extensions that
might improve the performance of graph analytics in Chapel.

• In sparse array computation in Chapel, reasonable
performance can be achieved by manipulating low-
level data structures. We have shown in our implementa-
tions of GraphBLAS operations that operations on sparse
arrays can attain good performance if we directly manip-
ulate low-level data structures. Therefore, we believe that
high-level interface to the low-level data manipulations
will improve the productivity of sparse array computation
and graph analytics.

• Data parallel accesses to a single sparse domain or
array show good performance on a single locale. On
a single locale, data parallel accesses to a single sparse
domain or array show good performance. We used this
approach to implement Apply (Listing 2) that shows
excellent scaling on a single node of Edison as shown
in the left subfigure in Figure 1.

• Data parallel accesses to a single sparse domain or
array do not perform well on multiple locales. It
is expected that a forall loop over a block-distributed
domain or array executes each iteration on the locale
where that iteration’s index is mapped to. However, this
functionality is not implemented for sparse arrays yet.
Hence, Apply1 defined in Listing 2 requires a large
volume of fine-grained communication, translating into
the poor performance as shown in the right subfigure of
Figure 1.

• Lack of support for data parallel zipper iteration with
different sparse domains or arrays hurts performance.
Data parallel zipper iteration with different sparse do-
mains or arrays is not allowed. Hence, for implementing
Assign in Listing 4, we needed to iterate over the domain
of an array and access elements of arrays by indices.
Accessing an element of a sparse array by index requires
logarithmic time, impacting the sequential and shared-
memory performance as shown in the left subfigure of
Figure 2.

• Specialized implementations of sparse domain/array
operation are needed. The performance of most Graph-
BLAS operation will be improved if specialized im-
plementations of sparse domain/array operation become
available. For example, distributed-memory algorithms



can be simplified if the domain maps of two sparse arrays
are exactly equal. Similarly, if a domain is guaranteed
to be used by a single array, we can perform certain
operations more effeciently. For example, Assign can be
implemented by clearing the domain and then reinitializ-
ing it as described in Listing 4.

• Bulk-synchronous communication of sparse arrays
might improve the performance. Sparse matrix com-
putations often have very low computational intensity.
Hence, a large volume of fine-grained communication
negatively impacts the performance GraphBLAS oper-
ations. For example, the communication-heavy tasks of
the distributed-memory SpMSpV dominate its runtime
because we accessed remote entries of the inout and
output vectors one element at a time. This performance
impact is evident in Figure 9. We can mitigate this
effect by using bulk-synchronous execution and batched
communication [11]. We would like to mention that bulk-
synchronous communication does not necessarily boost
the performance of graph operations all the time. For
example, traversing a small number of long paths in a
bipartite graph matching algorithm benefits from fine-
grained asynchronous communication [12].

• Support for collective communication might improve
the productivity and performance. In our SpMSpV
implementation, we gathered parts of the input vector
along each processor column and scattered parts of the
output vectors along each processor row. MPI provides
functions for a number of team collectives. Support for
these operation is expected to improve the productivity
and performance of graph algorithms.

• Placing multiple locales on a single compute node
does not perform well. It is often desirable to place
multiple locales on a single compute node, especially
in the presence of NUMA architecture. For example,
Intel Ivy Bridge processor on Edison has two sockets.
From our past experience, we observed that placing
two or four MPI ranks on a node of Edison gives the
best performance. However, the performance of our code
degrades significantly when we placed more than one
locales on a single node as shown in Figure 10.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our approach for implementing a
prototype GraphBLAS library. After evaluating built-in opera-
tions, in many cases, we opted to implement our own low-level
functionality for better scalability and higher performance.
We identified many shortcomings with the existing distributed
sparse matrix support in Chapel and provided recommenda-
tions on how to remedy them. We have also found that Chapel
excels in several important aspects regarding productivity and
ease of use. In addition to providing the first set of primitives
towards a functional graph processing library in Chapel, our
work also sheds light on how to better exploit parallelism in
Chapel for sparse matrices and vectors in other domains such
as scientific computing.
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Fig. 10: The performance of two implementations of the
distributed-memory Assign operation. All locales are placed
on a single node of Edison. 1 thread per locale is used on
each node. Input sparse vectors are randomly generated with
10,000 nonzeros.

Our future work consists of finishing a complete
GraphBLAS-compliant library, ideally in collaboration with
the Chapel language developers. While many algorithms for
the remaining GraphBLAS primitives exist, efficient imple-
mentations of novel concepts in GraphBLAS, such as masks,
have not been attempted in distributed memory before. Finally,
we plan to implement and evaluate complete graph algorithms
written in our GraphBLAS Chapel library.
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