
Introduction to the
Roofline Model

Samuel Williams
Computational Research Division
Lawrence Berkeley National Lab

SWWilliams@lbl.gov

mailto:SWWilliams@lbl.gov

You just spent 6 months porting
your application to GPUs

Are you done?

What is “Good” Performance?

3

§ Imagine profiling the mix of loop
nests in an application when
running on the GPU
o GFLOP/s alone may not be particularly

insightful

Loop nest (kernel)

o speedup relative to a Xeon may seem
random

G
FL

O
P/

s

What is “Good” Performance?

4

2. making good use of the GPU’s compute and/or bandwidth capabilities

1. Operating in the throughput-limited regime
not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

Ø Ultimately, we need a quantitative model rather than qualitative
statements like “good”

§ Two fundamental aspects to “Good” performance…

Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ Tracks rates not times
§ Independent of ISA and architecture
§ applies to CPUs, GPUs, Google

TPUs1, FPGAs, etc…
§ Helps quantify Good Performance

5
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

6https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture
§ Make assumptions on performance and

usage…
o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o NoC bisection bandwidth is sufficient
o There is sufficient cache bandwidth and capacity

such that they do not affect performance
Ø Basis for DRAM Roofline Model

7

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

8

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

Data Movement or Compute?

9

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Data Movement or Compute?

10

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Data Movement or Compute?

11

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM)

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or
data movement?

Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

12

(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic
Intensity as the x-axis

§ Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc…

13

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

(DRAM) Roofline Model

14

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

H
B
M

 G
B
/s

Peak GFLOP/s

§ Plot Roofline bound using Arithmetic

Intensity as the x-axis

§ Log-log scale makes it easy to

doodle, extrapolate performance

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

(DRAM) Roofline Model

15

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

unattainable performance
(greater than peak GFLOP/s)

unatt
ain

ab
le

perf
orm

an
ce

(in
su

ffic
ien

t b
an

dwidth)

poor

performance
HBM

 G
B/s

Peak GFLOP/s

§ Roofline tessellates this 2D view of
performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

Roofline Example #1

§ Typical machine balance is 5-10
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability
o Artifact of technology and money
o Unlikely to improve

16

#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration
o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
o AI = 0.083 FLOPs per byte == Memory bound

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

5.0

TRIAD

GFLOP/s ≤ AI * HBM GB/s

0.083

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…

17

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point

18

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point

19

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

20

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

Roofline Example #2

§ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

21

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083

7-point
Stencil

GFLOP/s ≤ AI * HBM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k][j][i]

+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

== memory bound, but 5x the FLOP rate as TRIAD

What is “Good” Performance?

§ Think back to our mix of loop
nests…

22

FL
O

P/
s

Loop nest (kernel)

What is “Good” Performance?

§ We can sort kernels by arithmetic
intensity…

23

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

What is “Good” Performance?

§ We can sort kernels by arithmetic
intensity…

§ … and compare performance
relative to machine capabilities

24

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

50
%

 o
f S

TREAM

50% of Peak

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

25

Peak GFLOP/s

A
tta

in
ab

le
 F

LO
P

/s

HBM
 G

B/s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

50
% of

 STREAM

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

26

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Ø kernels can have low performance
(GFLOP/s), but make good use
(%STREAM) of a machine

50% of Peak

50
% of

 STREAM

What is “Good” Performance?

§ Kernels near the roofline are
making good use of
computational resources

27

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Ø kernels can have low performance
(GFLOP/s), but make good use
(%STREAM) of a machine

Ø kernels can have high performance
(GFLOP/s), but still make poor use of a
machine (%peak)

Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

28

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

50
% of

 STREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak

Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)

o Unique to each architecture

o Common to all apps on that architecture

§ Application Characteristics
o Dots defined by application GFLOP’s and

GB’s (Application Instrumentation)

o Unique to each application

o Unique to each architecture

29

A
tta

in
ab

le
 F

LO
P

/s

Arithmetic Intensity (FLOP:Byte)

General Performance Optimization Strategy

§ Get to the Roofline

30

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

HBM G
B/s

50
% of

 STREAM

General Performance Optimization Strategy

§ Get to the Roofline

31

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

HBM G
B/s

50
% of

 STREAM

§ Increase Arithmetic Intensity
when bandwidth-limited
o Reducing data movement increases AI

How can performance ever
be below the Roofline?

Performance Below the Roofline?

§ Insufficient cache bandwidth and
data locality

33

§ “Lack of Parallelism”
o Thread Divergence (idle threads)
o Insufficient Occupancy (idle warp sched)
o Insufficient #Thread Blocks (idle SMs)

§ Integer-heavy Codes
o Non-FP instructions impair FP

performance
o No FP instructions… AI=0

§ Instruction Mix
o Lack of FMA
o Mixed Precision effects
o Lack of Tensor Core operations

Additional FP
Ceilings
Charlene Yang, Thorsten Kurth,
Samuel Williams, "Hierarchical
Roofline analysis for GPUs:
Accelerating performance
optimization for the NERSC-9
Perlmutter system", Concurrency
and Computation: Practice and
Experience (CCPE), August 2019.

Instruction
Roofline Model

Nan Ding, Samuel Williams, "An
Instruction Roofline Model for GPUs",
Performance Modeling, Benchmarking,
and Simulation (PMBS), BEST PAPER
AWARD, November 2019.

10-2 10-1 100 101 102

Instruction Intensity (Warp Instructions per Transaction)

100

101

102

103

Pe
rf

or
m

an
ce

 (w
ar

p
G

IP
S)

HBM 25.9 GTXN/s

L2 93.6 GTXN/s

L1 437.5 GTXN/s
Thoeretical Peak: 489.6 warp GIPSRoofline Scaling

Trajectories
Khaled Ibrahim, Samuel Williams, Leonid
Oliker, "Performance Analysis of GPU
Programming Models using the Roofline
Scaling Trajectories", International
Symposium on Benchmarking,
Measuring and Optimizing (Bench),
BEST PAPER AWARD, November 2019.

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
Fl

op
/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c3

2) (1
28)

DRAM (c1
) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4
c8

c16c32c64

A
tta

in
ab

le
 G

FL
O

P
/s

HBM G
B/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

Hierarchical
Roofline Model

Charlene Yang, Thorsten Kurth, Samuel
Williams, "Hierarchical Roofline analysis
for GPUs: Accelerating performance
optimization for the NERSC-9 Perlmutter
system", Concurrency and Computation:
Practice and Experience (CCPE), August
2019.

Summary

Why We Use Roofline…

1. Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

2. Identify performance bottlenecks & motivate software optimizations

3. Understand performance differences between Architectures,
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

4. Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for Architecture-Computer Science-Applied Math Co-Design

35

Take away

§ Roofline helps understand application performance relative to machine
capabilities
§ just the beginning of the optimization process
§ Other bottleneck- or architecture-specific tools can be used to refine the process

§ Roofline helps frame the conversation between…
§ Application Developers
§ Computer Scientists
§ Applied Mathematicians
§ Processor Vendors

…providing a common mental model and optimization language

36

Questions

