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You just spent 6 months porting 
your application to GPUs

Are you done?



What is “Good” Performance?
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§ Imagine profiling the mix of loop 
nests in an application when 
running on the GPU
o GFLOP/s alone may not be particularly 

insightful

Loop nest (kernel)

o speedup relative to a Xeon may seem 
random
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What is “Good” Performance?
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2. making good use of the GPU’s compute and/or bandwidth capabilities

1. Operating in the throughput-limited regime
not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

Ø Ultimately, we need a quantitative model rather than qualitative 
statements like “good”

§ Two fundamental aspects to “Good” performance…



Roofline Model

§ Roofline Model is a throughput-
oriented performance model

§ Tracks rates not times
§ Independent of ISA and architecture
§ applies to CPUs, GPUs, Google 

TPUs1, FPGAs, etc…
§ Helps quantify Good Performance

5
1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor 
Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture

6https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)



Reduced Model

§ Superscalar architectures can be complex
§ Don’t model / simulate full architecture
§ Created simplified processor architecture
§ Make assumptions on performance and 

usage…
o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o NoC bisection bandwidth is sufficient
o There is sufficient cache bandwidth and capacity 

such that they do not affect performance
Ø Basis for DRAM Roofline Model
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s



Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Data Movement or Compute?
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DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM )

Data Movement or Compute?

§ Which takes longer?
o Data Movement
o Compute?

§ Is performance limited by compute or 
data movement?



Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM 
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)
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(DRAM) Roofline Model

§ Plot Roofline bound using Arithmetic 
Intensity as the x-axis

§ Log-log scale makes it easy to 
doodle, extrapolate performance 
along Moore’s Law, etc…
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AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



(DRAM) Roofline Model
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§ Plot Roofline bound using Arithmetic 

Intensity as the x-axis

§ Log-log scale makes it easy to 

doodle, extrapolate performance 

along Moore’s Law, etc…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



(DRAM) Roofline Model
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§ Roofline tessellates this 2D view of 
performance into 5 regions…

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )



Roofline Example #1

§ Typical machine balance is 5-10 
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability
o Artifact of technology and money
o Unlikely to improve
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#pragma omp parallel for
for(i=0;i<N;i++){

Z[i] = X[i] + alpha*Y[i];
}

§ Consider STREAM Triad…

o 2 FLOPs per iteration
o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
o AI = 0.083 FLOPs per byte == Memory bound
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

HBM
HBM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte
(measured at the L1)



Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM) 
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}
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Roofline Example #2

§ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Ideally, cache will filter all but 1 read and 1 write per point
Ø 7 / (8+8) = 0.44 FLOPs per byte (DRAM)
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Arithmetic Intensity (FLOP:Byte)
0.083

7-point
Stencil

GFLOP/s ≤ AI * HBM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
new[k][j][i] = -6.0*old[k  ][j  ][i ] 

+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}

== memory bound, but 5x the FLOP rate as TRIAD



What is “Good” Performance?

§ Think back to our mix of loop 
nests…
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What is “Good” Performance?

§ We can sort kernels by arithmetic 
intensity…

23

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)



What is “Good” Performance?

§ We can sort kernels by arithmetic 
intensity…

§ … and compare performance 
relative to machine capabilities
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50% of Peak

What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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50% of Peak

50
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 STREAM

What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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Ø kernels can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine



50% of Peak

50
% of

 STREAM

What is “Good” Performance?

§ Kernels near the roofline are 
making good use of 
computational resources
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Peak GFLOP/s
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Ø kernels can have low performance 
(GFLOP/s), but make good use 
(%STREAM) of a machine

Ø kernels can have high performance 
(GFLOP/s), but still make poor use of a 
machine (%peak)



Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

28

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

HBM G
B/s

50
% of

 STREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak



Roofline is made of two components

§ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)

o Unique to each architecture

o Common to all apps on that architecture

§ Application Characteristics
o Dots defined by application GFLOP’s and 

GB’s (Application Instrumentation)

o Unique to each application

o Unique to each architecture
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General Performance Optimization Strategy

§ Get to the Roofline
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General Performance Optimization Strategy

§ Get to the Roofline
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§ Increase Arithmetic Intensity 
when bandwidth-limited
o Reducing data movement increases AI



How can performance ever 
be below the Roofline?



Performance Below the Roofline?

§ Insufficient cache bandwidth and 
data locality
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§ “Lack of Parallelism”
o Thread Divergence (idle threads)
o Insufficient Occupancy (idle warp sched)
o Insufficient #Thread Blocks (idle SMs)

§ Integer-heavy Codes
o Non-FP instructions impair FP 

performance
o No FP instructions… AI=0

§ Instruction Mix
o Lack of FMA
o Mixed Precision effects
o Lack of Tensor Core operations

Additional FP 
Ceilings
Charlene Yang, Thorsten Kurth,
Samuel Williams, "Hierarchical
Roofline analysis for GPUs:
Accelerating performance
optimization for the NERSC-9
Perlmutter system", Concurrency
and Computation: Practice and
Experience (CCPE), August 2019.

Instruction 
Roofline Model

Nan Ding, Samuel Williams, "An
Instruction Roofline Model for GPUs",
Performance Modeling, Benchmarking,
and Simulation (PMBS), BEST PAPER
AWARD, November 2019.
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Khaled Ibrahim, Samuel Williams, Leonid
Oliker, "Performance Analysis of GPU
Programming Models using the Roofline
Scaling Trajectories", International
Symposium on Benchmarking,
Measuring and Optimizing (Bench),
BEST PAPER AWARD, November 2019.
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Charlene Yang, Thorsten Kurth, Samuel
Williams, "Hierarchical Roofline analysis
for GPUs: Accelerating performance
optimization for the NERSC-9 Perlmutter
system", Concurrency and Computation:
Practice and Experience (CCPE), August
2019.



Summary



Why We Use Roofline…

1. Determine when we’re done optimizing code
o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

2. Identify performance bottlenecks & motivate software optimizations

3. Understand performance differences between Architectures, 
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

4. Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for Architecture-Computer Science-Applied Math Co-Design
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Take away

§ Roofline helps understand application performance relative to machine 
capabilities
§ just the beginning of the optimization process
§ Other bottleneck- or architecture-specific tools can be used to refine the process

§ Roofline helps frame the conversation between…
§ Application Developers
§ Computer Scientists
§ Applied Mathematicians
§ Processor Vendors

…providing a common mental model and optimization language
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Questions


