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What is “Good” Performance?

= |magine profiling the mix of loop t
nests in an application when
running on the GPU

o GFLOP/s alone may not be particularly
insightful

GFLOP/s

o speedup relative to a Xeon may seem
random

Loop nest (kernel)
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What is “Good” Performance?

= Two fundamental aspects to “Good” performance...

1. Operating in the throughput-limited regime

not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, efc...

2. making good use of the GPU’s compute and/or bandwidth capabilities

» Ultimately, we need a quantitative model rather than qualitative
statements like “good”




Roofline Model

= Roofline Model is a throughput-
oriented performance model

= Tracks rates not times
* Independent of ISA and architecture

= applies to CPUs, GPUs, Google
TPUs', FPGAs, etc...

= Helps quantify Good Performance

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.
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Roofline Performance Model

Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak estimates, the model can be used to
assess the quality of attained performance by combining locality, and different i into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
limitations.

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
total data movement (bytes). A BLAS-1 vector-vector increment ( x[iJ+=y[i] ) would have a very low arithmetic intensity of 0.0417 (N FLOPS
/24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

N\ r N N

Intenglty

Particle
Stencils (PDEs) Methods
FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
N Methods , ( (BLAsY) ,
Y Y Y
o(1) O(log(N)) O(N)
Rooflina Madal

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline
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https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Reduced Model

Front End Instructi
QSC%UJT';’S L1 Instruction Cache

= Superscalar architectures can be complex o] e [

Branch
Predictor ’ Instruction Fetch & PreDecode ‘

(BPU) (16 B window)

= Don’t model / simulate full architecture XXX EX:
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Memory Subsystem

~

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server) 6 .ﬁ|
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Reduced Model

= Superscalar architectures can be complex
= Don’t model / simulate full architecture
= Created simplified processor architecture

= Make assumptions on performance and
usage...
o Cores can attain peak GFLOP/s on local data
o Cores execute load-balanced SPMD code
o NoC bisection bandwidth is sufficient
O

There is sufficient cache bandwidth and capacity
such that they do not affect performance

> Basis for DRAM Roofline Model

Comfpute

GFLOP/s

Pierfect ECachefs

!

! !

} DRAMGB/s

DRAM
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Data Movement or Compute?

= Which takes longer?

o Data Movement
o Compute?

Time = max=<

(HFP ops / Peak GFLOP/s

_#Bytes / Peak GB/s

Comfpute

GFLOP/s

Pierfect ECachefs

!

! !

} DRAMGB/s

DRAM




Data Movement or Compute?

= Which takes longer?
o Data Movement

Comfpute

GFLOP/s

o Compute?

Pierfect ECachefs

! !

} DRAMGB/s

* |s performance limited by compute or t

DRAM

data movement?

_
Time N 1/ Peak GFLOP/s
#FP ops

_#Bytes / #FP ops / Peak GB/s




Data Movement or Compute?

GFLOP/s

} DRAMGB/s

» Which takes longer?  Compute |
o Data Movement
o Compute? Perfect Caches

_ t t t
= |s performance limited by compute or DRAM

data movement?

/‘
#FPops _ . Peak GFLOP/s
: = min=<
Time

_(#FP ops / #Bytes) * Peak GB/s




Data Movement or Compute?

= Which takes longer?

o Data Movement
o Compute?

* |s performance limited by compute or
data movement?

Peak GFLOP/s
GFLOP/s = min
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (as presented to DRAM )

Comfpute

GFLOP/s
Pierfect ECachefs
} } } } DRAMGBIs
DRAM




Arithmetic Intensity

= Measure of data locality (data reuse)

= Ratio of Total Flops performed to Total Bytes moved

= For the DRAM Roofline...

Total Bytes to/from DRAM
Includes all cache and prefetcher effects

Can be very different from total loads/stores (bytes requested)

O O O O

Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)
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(DRAM) Roofline Model

Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

Peak GFLOP/s
GFLOP/s = min

= Plot Roofline bound using Arithmetic
Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

—>

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)



(DRAM) Roofline Model

Peak GFLOP/s
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

GFLOP/s = min

= Plot Roofline bound using Arithmetic
Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

Attainable FLOP/s

Peak GFLOP/s

: >
Arithmetic Intensity (FLOP:Byte)

Transition @ Al ==
Peak GFLOP/s / Peak GB/s ==
‘Machine Balance’
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(DRAM) Roofline Model

Peak GFLOP/s |
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM )

GFLOP/s = min

Peak GFLOP/s

= Roofline tessellates this 2D view of
performance into 5 regions...

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)
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Roofline Example #1

= Typical machine balance is 5-10

FLOPs per byte...
o 40-80 FLOPs per double to exploit compute capability Peak GFLOP/s
o Artifact of technology and money ) |
: : o :
o Unlikely to improve O |
™ :
@ |
3 :
= Consider STREAM Triad... S GFLOP/s <Al * HBM GBYs
#pragma omp parallel for < i
for(i=0;i<N;i++){ I I
} z[1] = x[i] + alpha*Y[i]; TRIAD! !
0.083 5.0
o 2 FLOPs per iteration Arithmetic Intensity (FLOP:Byte)

o Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
o Al=0.083 FLOPs per byte == Memory bound

~
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Roofline Example #2

= Conversely, 7-point constant coefficient
stencill...

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1l;i<dim+1l;i++){
new[k][j]1[i] = -6.0%old[k 1[3 1[i ]
+ old[k 1[3 1[1-1]
old[k 1[j 1[i1+1]
oldfk 1[3-11[1 1]

old[k J[j+1][1
old[k-11[7 1I[i
old[k+1]1[7 1I[i

Compute

GFLOP/s

Perfect ECache

HBM GB/s

HBM

~
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Roofline Example #2

= Conversely, 7-point constant coefficient Comipu o L op
stencil...
o 7FLOPs Perfect.Cache
o 8 memory references (7 reads, 1 store) per point HBM GB/s
o Al=7/(8*8)=0.11 FLOPs per byte HBM

(measured at the L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++) {
for(j=1;j<dim+1;j++){

v =TT L;i++)
new[k]J[JI1[1 = -64~old[k 1[J 1I[1
oldfk 1[j I[i-1]

old[k 1[j 1[i+1]
old[k 1[j-1][1 ]

old[k 1[j+1][1 ]
old[k-1][3 1[1 ]
old[k+1]1[3 1[i ]
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Roofline Example #2

= Conversely, 7-point constant coefficient r— i
: : ompute i GFLOP/s
stencill... 5
o 7FLOPs  Perfect Cache's :
o 8 memory references (7 reads, 1 store) per point 0 0 0 0 HBM GB/s
o ldeally, cache will filter all but 1 read and 1 write per point HBM

#pragma omp parallel for
for(k=1;k<dim+1;k++) {
for(J 1; J<d1m+1,J++){

107 107 ]
107 1[0i-1]
107 1[0i+1]
107-11[07 ]
105+

UruIN =1LJ dJLt |

old[k+1]1[7 1I[i

~
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Roofline Example #2

= Conversely, 7-point constant coefficient r— i
: . Compute GFLOP/s
stencil...
o 7FLOPs ~ PerfectiCaches
o 8 memory references (7 reads, 1 store) per point 0 0 0 0 HBM GB/s
o Ideally, cache will filter all but 1 read and 1 write per point HBM
> 71/ (8+8) =0.44 FLOPs per byte (DRAM)

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1l;i++){
new[k][j][i1] = -6.0%old[k 1[3 1[i 1]
+ old[k 1[3 1[1-1]
old[k 1[j 1[i1+1]
oldfk 1[3-11[1 1]
old[k 1[j+1]1[1

]
old[k-11[7 1[1 ]
old[k+1][7 1[7 1;
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Roofline Example #2

= Conversely, 7-point constant coefficient

stencil...
o T7FLOPs Peak GFLOP/s
o 8 memory references (7 reads, 1 store) per point %
o ldeally, cache will filter all but 1 read and 1 write per point %
— *
> 71(8+8) = 0.44 FLOPs per byte (DRAM) I ) GFLOP/s <Al™ HBM GB/s
== memory bound, but 5x the FLOP rate as TRIAD 2 :
c I
#pragma omp parallel for éE I | :
for (k=1; k<dim+1; k++) { < | | 7-point
for(j=1;j<dim+l;j++){ | ! Stencill
for(i=1;i<dim+1l;i++){ RIAD: I
new[k][j1[i] = -6.0%o1d[k I[j 1[i 1] ! :
+ old[k I[j 1[i-1] : >
old[k 1[j 1[i+1] 0.083 0.44
old[k 1[j-11[i ] Arithmetic Intensity (FLOP:Byte)

old[k J[j+1]1[1 ]
old[k-11[7 1[1 ]
old[k+1][7 1[7 1;

~
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What is “Good” Performance?

= Think back to our mix of loop
nests...

FLOP/s

Loop nest (kernel)




What is “Good” Performance?

= We can sort kernels by arithmetic
intensity...

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)




What is “Good” Performance?

= We can sort kernels by arithmetic
intensity...

= .. and compare performance
relative to machine capabillities

Attainable FLOP/s

Peak GFLOP/s

>
Arithmetic Intensity (FLOP:Byte)
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What is “Good” Performance?

= Kernels near the roofline are

making good use of |
computational resources Peak GFLOP/s
g RN 0
E__I) ' | 50% of Peak
o e
o
Ic
g
Arithlmetic Intensity (FLOP:Byte) g
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What is “Good” Performance?

= Kernels near the roofline are
making good use of
computational resources Peak GFLOP/s

» kernels can have low performance
(GFLOP/s), but make good use
(% STREAM) of a machine

S m—_————— -

' 50% of Peak

Attainable FLOP/s

/’ >

Arithmetic Intensity (FLOP:Byte)
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What is “Good” Performance?

= Kernels near the roofline are

making good use of |
computational resources Peak GFLOP/s
> kernels can have low performance & | boulld
(GFLOPY/s), but make good use 5 ¥ g1 o Peak
(%STREAM) of a machine o
» kernels can have high performance %
(GFLOP/s), but still make poor use of a Z
machine (%peak)
Arithlmetic Intensity (FLOP:Byte) g
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Roofline is made of two components

Machine Model

O

Lines defined by peak GB/s and GF/s
(Benchmarking)

Unique to each architecture
Common to all apps on that architecture

Attainable FLOP/s

Peak GFLOP/s

______________

50% of Peak

Arithmetic Intensity (FLOP:Byte)

>

-
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Roofline is made of two components

= Machine Model

o Lines defined by peak GB/s and GF/s
(Benchmarking)

o Unique to each architecture
o Common to all apps on that architecture

= Application Characteristics

o Dots defined by application GFLOP’s and
GB'’s (Application Instrumentation)

o Unique to each application
o Unique to each architecture

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)
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General Performance Optimization Strategy

= Get to the Roofline

Peak GFLOP/s

50% of Peak

Attainable FLOP/s

,’/ >
Arithmetic Intensity (FLOP:Byte)




General Performance Optimization Strategy

= Get to the Roofline

* Increase Arithmetic Intensity

when bandwidth-limited Peak GFLOP/s
o Reducing data movement increases Al /

______________

50% of Peak

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)
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Performance Below the Roofline?

O FP32 #filters 64 e B
H I e ra rCh I Ca I A - £P32 #filters 128 Tensor Core (FP16): 125.0 TFLOP/s Ad d t I F P
10 FP32 #f:lt::: 256 &) I I O n a
Roofline Model . e s s i
Peak GFLOP/s — ® FP16 #filters 64

@ 5 m FP16 #f;nz:z 128 Cel I I n g S

o) T v FPl6filters 256 FMA (FP16): 28.3 TFLOP/s
Charlene Yang, Thorsten Kurth, Samuel 5 s I i/ Charl Y Thorsten Kurth

) ) 2 ariene ang, orsten urtn,

Williams, "Hierarchical Roofline analysis & 2 o / / y L i "Hi '

’ y g 3 —— Fva (Fr32) 14 17rLors|  Samuel  Williams,  "Hierarchical
for GPUs: Accelerating performance ;;3 g 100 / /f /;Z{‘fa/VA Roofline analysis for GPUs:
optitmizati%n for the NERSdC-é) Perlrtnltjltter / / 7/ NoFMA (P32 T1TFLOPs | Accelerating performance
system”, Concurrency an omputation: optimization for the NERSC-9
Practice and Experience (CCPE), August . Perlmutter system", Concurrency
2019 Arithmetic Intensity (FLOP:Byte) 10! 10° ’

Arlthmetlclnten5|ty[FLOP/Byte] and Computation: Practice and
Experience (CCPE), August 2019.

roofline_summary_sp_lbl

| | 103 ‘ i ‘ ‘
° RO Ofl I n e S Cal I n - ) Thoeretical Peak: 489.6 warp GIPS
ST Se==h o g |nStrU Ct|0n =
N e Trajectories Roofline Model ¢
§ Oq,’?)\\ L 7 =B OO I n e O e E
g_ w\i ,AAA ™ i 8 L
- /\:&‘{b Sl es | Khaled Ibrahim, Samuel Williams, Leonid _ . ] &
) / SV . Oliker, "Performance Analysis of GPU Nan Ding, Samuel Wiliams, “An g
o Programming Models using the Roofline Instruction Roofline Model for GPUs", “%
Scaling  Trajectories”,  International Performance Modeling, Benchmarking, & | | |
- Symposium on Benchmarking, and Simulation (PMBS), BEST PAPER 1072 10" 10° 10! 102
) 001 005 050 so0  seoo Measuring and Optimizing (Bench), AWARD, November 2019. Instruction Intensity (Warp Instructions per Transaction)
Avthmeticntensiy (Flops/Byte) BEST PAPER AWARD, November 2019.
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Why We Use Roofline...

1. Determine when we're done optimizing code

o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

2. ldentify performance bottlenecks & motivate software optimizations

3. Understand performance differences between Architectures,

Programming Models, implementations, etc...
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

4. Predict performance on future machines / architectures
o Set realistic performance expectations
o Drive for Architecture-Computer Science-Applied Math Co-Design

-
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Take away

= Roofline helps understand application performance relative to machine

capabilities
= just the beginning of the optimization process
= Other bottleneck- or architecture-specific tools can be used to refine the process

= Roofline helps frame the conversation between...
= Application Developers
= Computer Scientists
= Applied Mathematicians
= Processor Vendors

...providing a common mental model and optimization language
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