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Abstract—Autotuning is gaining importance to achieve the
best possible performance for exascale applications. The perfor-
mance of an autotuner usually depends on the amount of per-
formance data collected for the application, however, collecting
performance data for large-scale applications is oftentimes an
expensive and daunting task. This paper presents an autotuner
database, which we call a history database, for enhancing the
reusability and reproducibility of performance data. The his-
tory database is built into a publicly available autotuner called
GPTune, and allows users to store performance data obtained
from autotuning and download historical performance data
provided by the same or other users. The database not only
allows reuse of the best available tuning results for widely
used codes but also enables transfer learning that can leverage
knowledge of pre-trained performance models. An evaluation
shows that, for ScaLAPACK’s PDGEQRF routine, a transfer
learning approach using the history database can attain up
to 33% better tuning results compared to single task learning
without using prior knowledge, on 2,048 cores of NERSC’s
Cori supercomputer.

Keywords-autotuning; transfer learning; crowd-tuning; Ex-
ascale Computing Project;

I. INTRODUCTION

Autotuning is becoming increasingly important for opti-
mizing a variety of applications ranging from classical linear
algebra operations to machine learning algorithms. The goal
of autotuning is to automatically choose tuning parameters to
achieve the best possible performance (e.g. the best runtime,
number of messages communicated, memory size, accuracy,
etc.) of an application within a given time and/or resource
budget. Choosing optimal tuning parameters using a naive
autotuning approach such as grid search or random search,
however, is infeasible when the number of tuning parameters
is large, the application performance has complex behaviors,
and/or running the application to measure the actual perfor-
mance is expensive. In this context, recent autotuners such
as ytopt [1], HpBandster [2], HiPerBOt [3], BLISS [4], and
GPTune [5] often employ Bayesian optimization [6] (using
Gaussian Processes (GP)). These Bayesian optimization-
based autotuners tune applications as “black-boxes”, running
them for carefully chosen tuning parameter samples and
building a performance model (i.e. surrogate model) based
on the measured performance (i.e. function evaluation).

While these recent autotuners may achieve better tuning
results than grid search or random search, tuning large-scale
applications still remains a challenge due to their expensive
function evaluations. Moreover, as we approach the exascale
era, high performance computing (HPC) applications are
becoming more complex and expensive to evaluate, and the
need to optimize HPC applications on different machines
and software configurations may hinder a wide adoption
of autotuning techniques. As an example, climate modeling
accounts for one of the largest portions of supercomputer
workloads, but the common practice for climate model
tuning still relies on manual input from experts due to the
computational costs [7].

To overcome this challenge, we focus on database support
to maximize the reusability and reproducibility of collected
performance data. Several existing autotuners [1], [5], [8]
support storing obtained performance data to log files,
however, they do not provide some necessary information
to reproduce performance data (e.g. it is unknown which
software and how many compute resources are used), and
reusing data is usually only possible for the identical tuning
task. For enhancing reusability and reproducibility, our work
aims to provide a more sophisticated database that can
provide the information needed to reproduce performance
data and reuse historical performance data to help tune new
tuning tasks. We envision an autotuning database, where
different users at different sites can share performance data,
so everyone can benefit from expensive runs of widely used
HPC codes and tune difficult problems by leveraging the
power of crowd-tuning.

To this end, we present a history database for enhanc-
ing autotuning capability by improving the reusability and
reproducibility of collected performance data. The history
database is built into an open-source autotuner called GP-
Tune [5] 1, and allows users to save and reuse performance
data (e.g. function evaluation data and trained surrogate
models) obtained from GPTune. When reusing historical
data, users need to determine which performance data are
relevant for learning from different machines or software
versions or configurations. The history database therefore

1https://github.com/gptune/GPTune



supports storing the machine information (e.g. number of
nodes/cores used to run the application) and which version
of the application code and the software libraries are used
as well as the function evaluation results. Furthermore, the
history database enables transfer learning to leverage knowl-
edge of pre-trained surrogate models to tune new tasks.
The presented transfer learning autotuning (TLA) approach
relies on GPTune’s multitask learning autotuning (MLA)
which permits tuning multiple tasks simultaneously. If mul-
tiple tasks exhibit highly correlated performance behaviors,
MLA with a joint model across tasks may achieve optimal
tuning results with fewer function evaluations compared to
tuning individual tasks separately. Using the MLA feature,
we can use pre-trained surrogate models to guide tuning
new tasks. For crowd-tuning, we provide a public shared
repository at https://gptune.lbl.gov, where users
can upload their performance data obtained from autotuning
or download performance data provided by other users.

To summarize, our work makes the following contribu-
tions:

• Design and implementation of an autotuner database
providing high reproducibility of performance data.
Unlike existing autotuners that store only function
evaluation results, our database additionally stores the
machine and software configuration along with the
function evaluation results, which can be used to re-
produce the performance data. The user can optionally
use CK-GPTune [9] to automatically detect and store
the software configuration with CK (Collective Knowl-
edge) [10] technology.

• A TLA approach that leverages knowledge of pre-
trained surrogate models to tune new tasks. With our
database, users can use a pre-trained surrogate model
to predict the value of certain tuning parameters, and
we can treat TLA as running MLA with new function
samples for the target tasks and previously-trained
surrogate models for the existing tasks. An evaluation
shows that, for ScaLAPACK’s PDGEQRF routine, the
transfer learning approach using our database feature
can attain up to 33% better tuning results compared to
tuning without previous knowledge, on 2,048 cores of
NERSC’s Cori supercomputer.

• Harnessing the power of crowd-tuning. Using our
shared repository, users can post their tuning problems
with a flexible hierarchical control on data access.
Based on the given tuning information, multiple users
at different sites can run autotuning for the same tuning
problem while sharing performance data. This feature is
useful when the application is expensive to run, and/or
there are multiple users who want to use the same
application.

The rest of this paper is organized as follows. In Sec-
tion II, we discuss the related work. In Section III, we de-

scribe the background of GPTune. Section IV then presents
the design and implementation of the GPTune history
database. In Section V, we present several use cases of the
history database and an evaluation of the TLA approach
using the database. Section VI concludes this paper and
presents future work.

II. RELATED WORK

A. Existing Autotuners

There are existing autotuners for both general-purpose
and HPC applications. OpenTuner [8] is a general-purpose
autotuner which uses multiple heuristic techniques (e.g.,
simulated annealing, genetic algorithms, etc.) to find the
optimal tuning parameters. HpBandSter [2] is an autotuner
using Bayesian optimization and bandit-based methods to
explore the tuning parameter space. With a focus on optimiz-
ing large-scale HPC applications, Menon et al. [3] presented
HiPerBOt which is also a Bayesian optimization-based au-
totuner. BLISS [4] is also a Bayesian optimization-based
autotuner using ensemble of models. Ytopt [1] explores
parameter space with several machine learning techniques
such as reinforcement learning within Bayesian optimiza-
tion. Based on the ytopt framework, Wu et al. [11] optimize
compile-time loop optimization pragmas for OpenMP appli-
cations. These autotuners have a feature to store the tuning
result logs into files, so users can query performance logs
from the files. Compared to these autotuners, we provide
a more sophisticated database which records the machine
and software configuration used to obtain the tuning data;
this kind of information is useful to determine whether the
data is relevant to be reused. In addition, we present a
TLA approach by leveraging historical data which is one
of the unique features exploiting GPTune’s MLA algorithm.
Furthermore, we provide a shared repository for sharing
autotuning data between multiple users.

B. Crowd-tuning and reproducible autotuning

There have been many efforts to share research data
between different users. A work philosophically similar to
our database is the CK project [10]. CK is an interface
and tool for reproducible and automated workflows, and
provides a web repository to share results across different
users. For reproducible workflows, users can write a meta-
description of their workflow using CK’s syntax and use
a command line interface for automatically installing and
running the workflow. CK’s public repository 2 allows users
to upload their performance results and download results
from other users. Compared to CK, the main distinction of
our database repository is that our database stores additional
useful information in the context of autotuning. For example,
our database stores trained surrogate models which can be
used for autotuning (e.g. TLA). One of the powerful features

2https://cknowledge.io/



of CK is the reproducibilty of workflows. In CK, the user can
define software dependencies to run the workflow, then CK
can automatically detect the versions of the required soft-
ware packages [12]. To leverage CK’s software detection,
in Section V-B, we provide an additional interface called
CK-GPTune [9] which allows the user to run CK-enabled
workflows with the GPTune history database.

Compared to CK, we particularly focus on the reusability
of performance data of supercomputing applications that
are expensive to evaluate. A similar idea from a different
community is the Materials project [13] which provides a
repository to share computed information of materials using
supercomputing resources in materials science.

III. GPTUNE BACKGROUND

A. Bayesian Optimization
Bayesian optimization [6] provides a surrogate modeling

framework that allows us to model and optimize the black-
box functions that describe either the runtime or resource
consumption (i.e. memory usage and peak flops).

GPTune supports both single task autotuning (SLA) and
multitask autotuning (MLA). For SLA, GPTune sequentially
draws samples from the black-box function evaluations by
acquisition maximization (for a chosen acquisition func-
tion) and fits the surrogate GP model with the samples
using Bayes’ theorem until the number of obtained samples
reaches the prescribed sample count. For MLA, GPTune
considers multiple tasks with a joint surrogate model. As
a result, we can model not only the correlation between
samples within one task, but also the correlation between
samples across multiple tasks as well. The MLA approach,
in the specific form of multiple-output Gaussian process,
allows us to learn and incorporate this piece of across-
task information into our model and improve the quality of
surrogate models. Such a feature is in the spirit of transfer
learning and utilizes the existing data more efficiently.

B. Linear Coregionalization Model
For MLA, GPTune uses the Linear Coregionalization

Model (LCM), which is a generalization of Gaussian
Process (GP) in the multi-output setting. For a set of
correlated objective functions for all the δ given tasks
(yi(x), i ∈ 1..δ), LCM builds a joint model of the target
functions (fi(x), i ∈ 1..δ), through the underlying assump-
tion of linear dependence on latent functions (uq):

fi(x) =

Q∑
q=1

ai,quq(x)

where each (uq) is an independent GP, and ai,q are hyperpa-
rameters. In LCM, we assume the covariance kq(x, x′) of a
latent function uq is based on a Gaussian kernel, as follows:

kq(x, x
′) = σ2

q exp(−
β∑
j=1

(xj − xj ′)2

Iqj
)

1 from autotune import *
2 from gptune import *
3

4 def objective(point):
5 return run_and_measure(point)
6

7 def main():
8 # Input/Parameter/Output space definitions
9 IS = Space([Integer(0, 10, transform=’

normalize’, name=’t’)])
10 PS = Space([Real(0, 1, transform=’normalize’,

name=’x’)])
11 OS = Space([Real(float(’-Inf’), float(’Inf’),

name=’y’)])
12

13 # Create GPTune instance
14 problem = TuningProblem(IS, PS, OS, objective)
15 gt = GPTune(problem)
16 giventask = [[1],[2]]
17

18 # Run GPTune for tasks [1] and [2] for NS=10
function evaluations per task

19 gt.MLA(Igiven = giventask, NS=10)

Listing 1. Simplified GPTune Python interface. This example has a single
integer task t (e.g. a linear algebra operation on a matrix of a certain size)
and the tunable parameter is a real number x (e.g. a block size) ranging
from 0.0 to 1.0. GPTune then builds a surrogate model f(x) which predicts
the true runtime y(x). GPTune tries to find optimal x minimizing f(x) with
a given budget (number of function evaluations).

where σq and Iqj are also hyperparameters to be learned. In
addition to the aforementioned hyperparameters ai,q , σq , I

q
j ,

we use diagonal regularization parameters for the covariance
matrix during the LCM. For details about the covariance
matrix and the parameter search algorithm, please refer to
the GPTune paper [5].

C. User Interface

GPTune is a Python software package (including a high
performance C implementation for LCM). Users should
write a Python code, which we call a driver code, to use
GPTune for the user’s tuning problem. Autotuning of GP-
Tune relies on the autotune [14] interface which requires
three information spaces: input space (IS), parameter space
(PS), output space (OS). IS contains all the input problems
(i.e. tasks) that the application may encounter (e.g. the
size of matrices under a numerical linear algebra operation,
pointers to input files for a large HPC code) and PS contains
all tuning parameter configurations to be optimized (e.g.
blocking parameters for improving flop performance). OS
is the output space for each of the scalar objective functions
(e.g. measured runtime).

Listing 1 shows an example of GPTune interface code.
After importing GPTune and autotune modules (lines
1–2), the user can then define the input, parameter, and
output spaces, following the autotune interface (lines 8–
11). GPTune currently supports integer, real, and categorical
types of parameters. The user defines the objective function
for the tuning problem, which may call the target application
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Figure 1. History database design.

and return the objective value (e.g. runtime) (lines 4–5). The
remaining preparation steps are defining the tuning problem
(line 14) and creating a GPTune instance (line 15). Then,
the user can provide the target input tasks and run the tuner
(lines 18–19).

GPTune further supports several advanced options such
as multi-objective tuning, multi-fidelity modeling, and in-
corporating an analytical performance model to guide auto-
tuning. For more details, please refer to the GPTune User
Guide [15].

IV. HISTORY DATABASE

A. Design

Figure 1 illustrates the design of the history database.
The database automatically stores and loads historical per-
formance data to and from the performance data files with
JavaScript Object Notation (JSON [16]) format in the user’s
local storage. Each application (tuning problem) has a sepa-
rate data file that contains all the historical performance data
(function evaluation results and trained surrogate models)
of the application. As shown in the figure, the user can
provide a meta-description of the tuning application, like
machine configuration and software information (e.g. which
software libraries are used for that application) using a JSON
file or a Python Dict. To detect and provide the software
configuration automatically, users can use our additional
interface called CK-GPTune [9] which permits leveraging
software detection tools in CK. This machine and software
information is stored along with the function evaluation data
and can be used to reproduce the performance data.

After evaluating the function with each parameter con-
figuration, GPTune stores the task parameters, tuning pa-
rameters, and the evaluated result into the JSON file. This
practice ensures that no data is lost in the cases where (a)
a long run with many parameter configurations does not
complete due to job allocation time limitation, or (b) a
certain parameter configuration crashes and causes the tuner
to stop. If GPTune is run in parallel and multiple processes
attempt to update the JSON file simultaneously, the history
database allows only one process to update the file at a time

{
  “func_eval”:
  [
    { ... },
    { ... }
  ],
  ”surrogate_model”:
  [
    { ... },
    { ... }
  ]
}

{
  “task_parameter”: {“m”:10000,“n”:10000},
  “tuning_parameter”: {“mb”:6,“nb”:9,“nproc”:5,“p”:203},
  “evaluated_result”: {“r”:9.94401},
  “machine_configuration”: {
    “machine_name”: “Cori”
    “Haswell”: {“nodes”:1,“cores”:32}
  }
  “software_configuration”: {
    “scalapack”: {“version_split”:[2,1,0]}
  },
  “uid”: “...” # string of unique ID
}

{
  “hyperparameters”: [1.595,1295127.963,...],
  “model_stats”: {
    “log_likelihood”: -22.196,
    “gradients”: [-9.374,-7.434,...],
    “iteration”: 77
  },
  “task_parameter”: [[10000,10000]],
  “func_evaluations”: [...] #list of UIDs
}

Each function
evaluation data

Each surrogate
model

Figure 2. Example JSON performance data file.

based on simple file access control (either using Python’s
filelock module or using rsync-based file synchronization).
GPTune also supports storing and loading trained GP sur-
rogate models along with some model statistics information
such as likelihood values of the model. This unique feature
of our database enables interesting use cases such as using
pre-trained models for TLA (Section V-D) and sensitivity
analysis on the tuning parameters (future work).

For crowd-tuning, we provide a shared repository at
https://gptune.lbl.gov through NERSC’s Science
Gateways, where users can upload their performance data
obtained from GPTune and download performance data pro-
vided by other users. In the shared repository, all submitted
performance data is stored in NERSC storage and managed
using MongoDB [17].

B. JSON Format

In this section, we explain the JSON format to store per-
formance data from GPTune. Figure 2 shows an example of
performance data for ScaLAPACK’s [18] QR factorization
routine PDGEQRF. Each tuning problem has a separate data
file (e.g. PDGEQRF.json) that contains all performance data
(obtained by the user and/or downloaded from the shared
public database) of the tuning problem. Each JSON file has
two labels func_eval and surrogate_model. As the
name indicates, func_eval contains the list of all function
evaluation results, and surrogate_model contains the
list of each trained surrogate model’s meta-data.

1) Function Evaluation Result: For a function evalua-
tion, task_parameter contains the task parameter con-
figuration, and tuning_parameter contains the tuning
parameter configuration, and its evaluation result is stored
in evaluated_result. Each function evaluation data
also contains the information about the machine and soft-
ware configuration to run the application. The machine
information includes the machine name (e.g. Cori) and
the number of cores/nodes used. The software informa-
tion contains the versions of software packages used to
compile/install the application. The machine and software



configurations are stored in machine_configuration
and software_configuration, respectively. Unlike
task and tuning parameters, the machine and software in-
formation need to be given by the user. Users can use CK-
GPTune to automatically detect the software dependencies
and provide the detected software versions to the database
(Section V-B introduces CK-GPTune).

In addition, for each function evaluation result, a times-
tamp and a unique ID (UID) of the function evaluation
are automatically generated and appended by GPTune. If
different users submit function evaluation results for the
same task and parameter configurations, the database can
differentiate between different function evaluation results
using their UIDs.

2) Surrogate Model: This section explains what infor-
mation is stored by GPTune for a GP surrogate model.
Label hyperparameters contains the hyperparameter
values which are required to reproduce the surrogate model.
The database currently considers only the GPTune’s de-
fault modeling scheme, the Linear Coregionalization Model
(LCM) [5] discussed in Section III-B. The database can be
extended to support other types of modeling algorithms; this
is future work.
model_stats stores the model’s statistics information.

For the GPTune’s LCM, we can store some statistics in-
formation such as log likelihood, gradients, and iteration
(how many iterations were required for the model to con-
verge). Note that trained surrogate models may or may
not be meaningful for different problem spaces. Therefore,
the JSON data also contains task parameter information
(task_parameters) and which function evaluation re-
sults were used (func_eval) to build the surrogate model,
by containing the list of the UIDs of the function evaluation
results. The history database can load trained models only
if they match the problem space of the given optimization
problem. Similar to function evaluation results, the data
generation time and a unique ID of each surrogate model
are also automatically appended by GPTune.

V. USE SCENARIOS

In this section, we present several use cases of the
history database and demonstrate the benefit of the TLA
approach using the database. For more detailed usage, we
refer interested readers to our User Guide [15].

A. Reusing Historical Function Evaluation Data
As discussed in Section IV, the history database stores

obtained function evaluation results and loads historical data
based on a meta-description of the tuning application. The
meta-description includes the application name, compute
resources needed, and software dependence for both the
current tuning experiment and loadable historical data.

Listing 2 shows an example of a tuning meta-description.
For the machine configuration, users can provide the ma-
chine name and number of nodes/cores used (lines 3–6).

1 {
2 "tuning_problem_name": "PDGEQRF",
3 "machine_configuration": {
4 "machine_name": "Cori",
5 "haswell": { "nodes": 8, "cores": 32 }
6 },
7 "software_configuration": {
8 "openmpi": { "version_split": [4,0,1] },
9 "scalapack": { "version_split": [2,1,0] },

10 "gcc": { "version_split": [8,3,0] }
11 },
12 "loadable_machine_configurations": {
13 "Cori": {
14 "haswell": {
15 "nodes": [1,2,3,4,5,6,7,8],
16 "cores": 32
17 }
18 }
19 },
20 "loadable_software_configurations": {
21 "openmpi": {
22 "version_from": [4,0,0],
23 "version_to": [5,0,0]
24 },
25 "scalapack": { "version_split": [2,1,0] },
26 "gcc": { "version_split": [8,3,0] }
27 }
28 }

Listing 2. Example meta-description to load historical data.

The software versions are passed as dictionaries which can
contain a string of the software version (e.g. Git commit ID)
and an array of the version split numbers (e.g. major, minor,
and revision numbers) (lines 7–11). As shown in lines 12–
27, users can define conditions to selectively load historical
performance data. If the user wants to load performance data
obtained from more than one machine configurations, the
user can use an array to allow multiple configurations for
loading. For example, line 15 allows loading performance
data obtained from 1, 2, ..., 8 compute nodes. Loaded
historical data can be used for checkpointing and restarting,
which is useful for long autotuning processes, possible
machine failures, limited job allocation times, etc.

B. Leveraging CK for Reproducible Tuning

As discussed in Section IV-B, for the reproducibility of
tuning results, our database stores the software configu-
ration of performance data (e.g. which software packages
and versions used). This information can be automatically
detected and saved by leveraging the CK’s workflow au-
tomation [10] discussed in Section II. In CK, users write
a meta-description of the software dependencies of their
workflow and use a command line interface for auto-
installation/compilation and running workflow. Then, CK
automatically detects software versions of the software de-
pendencies. To leverage CK with GPTune’s history database,
we provide CK-GPTune [9] which provides a command
line interface to run CK-enabled autotuning workflows with
the history database while taking the advantage of CK’s



software detection technology. Using CK-GPTune, users can
use a simple command for installing or running a specific
(automated) tuning application. CK-GPTune provides sev-
eral examples of automated autotuning including ScaLA-
PACK’s PDGEQRF tuning (used for TLA experiments in
Section V-D). In the automated PDGEQRF tuning, users can
set up the tuning task with a command, $ ck compile
CK-GPTune:program:PDGEQRF, which detects the ver-
sions and the locations of the necessary software (GCC,
OpenMPI, Intel Math Kernel Library, and ScaLAPACK).
Then, users can run the automated tuning, $ ck MLA
gptune --target=PDGEQRF, which will store the de-
tected software in the history database.

C. Reusing a Surrogate Model

Users can read a pre-trained surrogate model and use it
as a cheap black-box function. Here, a black-box function
means a callable Python function (from the user side) which
returns the mean value predicted by the surrogate model for
the given task and parameter information. This feature is
useful for many interesting scenarios: in-depth analysis using
the model function (e.g. a surrogate model-based sensitivity
analysis which is our future work), and using the model
function to guide autotuning and/or to tune a new problem,
to be used for transfer learning.

For flexible use scenarios, users can use a simple wrap-
per function called ReadSurrogateModelFunction to
read a surrogate model to use as a function. The wrapper
function can take meta information to selectively load surro-
gate models, where the task information needs to be given in
the meta information. If there are multiple surrogate models,
by default, the database returns the surrogate model that
contains the largest number of function evaluation results.
Note that users can also load LCMs trained for multiple
tasks (MLA). For this, the user can simply pass all the
task information used to train the model when reading
the surrogate model. In the following, we show how this
feature is used for transfer learning. More detailed usage
and available model selection schemes are provided in the
User Guide [15].

D. Transfer Learning

The idea of the proposed TLA approach is to treat TLA as
running MLA using samples from true function evaluations
on the target task, and from pre-trained surrogate models
on previously tuned tasks. In our MLA design, the model
update scheme assumes that every task always has the same
number of sample function evaluation results. In this regard,
to tune a new task, we use the previously-described model
function feature to obtain additional samples of the tasks that
cannot be run (e.g. results from other machines) or that we
do not want to run (e.g. leverage the knowledge of already
trained data without actually evaluating the function).

1 from autotune import *
2 from gptune import *
3

4 def objectives(point):
5 if point[’t’] == 1:
6 return run_and_measure(point)
7 elif point[’t’] == 2:
8 return model_function[point[’m’]]
9

10 def main():
11 # Input/Parameter/Output space definitions
12 IS = Space([Integer(0,10,transform=’normalize’,

name=’t’)])
13 PS = Space([Real(0,1,transform=’normalize’,name=

’x’)])
14 OS = Space([Real(float(’-Inf’),float(’Inf’),name

=’y’)])
15

16 # Create GPTune instance
17 problem = TuningProblem(IS, PS, OS, objectives)
18 gt = GPTune(problem)
19

20 # 1: New task, 2: Use a trained surrogate model
21 giventask = [[1],[2]]
22 model_function = ReadSurrogateModelFunction(
23 meta_dict={"task_parameters": [[2,2]]})
24 gt.MLA(Igiven = giventask, NS=20)

Listing 3. Example code to run transfer learning with a pre-trained
surrogate model.

Listing 3 shows an example of TLA to tune task
1 with a pre-trained model from task 2. As shown
in the code, we load a model for task 2 in line 22,
and the objective function uses the model when evalu-
ating a sample for task 2. The TLA can also be used
to leverage the knowledge obtained from different ma-
chine/software configurations. For the same task parame-
ter with different machine/software configurations, GPTune
allows the user to add categorical parameters to the task
space, with label names machine_configuration and
software_configuration. In other words, TLA can
be used to tune a new task by leveraging prior knowledge
of historical data. However, the TLA approach can only be
applied when the tuning and output parameter space is the
same as for the historical data.

We demonstrate the benefits of TLA compared to SLA us-
ing two applications, a synthetic demo function and ScaLA-
PACK’s PDGEQRF routine. The demo function is given as
y(t, x) = 1+e(−(x+1)t+1) cos(2πx)

∑3
i=1 sin

(
2πx(t+2)i

)
,

having one task parameter t and one tuning parameter
x. This function is highly non-convex, and finding the
optimal parameter is non-trivial. The objective is to find
the minimum for x ∈ [0, 1], for the given task t. As a
real-world example, ScaLAPACK’s PDGEQRF routine has
two task parameters for the matrix size, and four tuning
parameters for the blocking algorithm (row and column
block sizes) and the MPI configuration (number of MPI
processors and number of row processes). This application
has non-trivial optimal tuning parameters [15] and needs
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Figure 3. Benefits of TLA on a Cori Haswell node. X-axis represents the
task value(s), and Y-axis is normalized performance of the obtained tuning
results. In TLA, the surrogate models used for the learning task are trained
from 49 samples.

to be evaluated on distributed systems. Therefore, tuning
this application can be expensive. We focus on finding
the optimal tuning parameter configuration for minimizing
the runtime to solve the given input matrix. To evaluate
PDGEQRF, we mainly used Intel Haswell compute nodes on
NERSC’s Cori machine. Each Haswell node has two 16-core
Intel Xeon E5-2698v3 processors and 128GB of 2133MHz
DDR4 memory.

To compare performance of different autotuning settings,
we use normalized performance comparing the best tuning
results (minimizing the objective function) obtained from
the autotuners; hence, the normalized performance is the
best result among all the autotuners divided by the best
result of a specific tuner. The TLA performance depends on
which task is selected as the pre-trained surrogate model.
To evaluate the potential effectiveness of TLA approaches,
if there are multiple tasks to choose, we present both
TLA (worst) and TLA (best), where TLA (worst)
means selecting the worst task among the available options,
and TLA (best) means selecting the best task resulting
in the best tuning result.

In Figure 3, we start evaluating the TLA approach using
a small problem set on a single compute node. Figure 3
compares the best tuning results (the function output in
the demo function and runtime in the PDGEQRF routine)
obtained from SLA and TLA. Like our intuition, the benefits
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Figure 4. Benefits of TLA on multiple Cori Haswell nodes. Unlike
Figure 3, here we assume only 20 runs for each tuning. The pre-trained
models used for TLA are trained from 19 samples.

of TLA can be more prominent when the number of allowed
runs is small. Looking at the PDGEQRF results, while TLA
achieves marginal improvements (0–5%) when the number
of runs is equal or greater than 20 runs, the overall benefit of
TLA (best) (i.e. when selecting the best task among four
available task options for learning) is 14% for 10 runs. In
case of the demo function, although SLA achieves better
results for 10 runs (this is possible given the nature of
random sampling), TLA improves the tuning result for other
budgets; the best improvement (10%) was achieved with 20
runs).

In Figure 4, we further evaluate the PDGEQRF tuning
for larger problem sizes using 8 nodes (256 cores) and
64 nodes (2,048 cores). The tuning problem here becomes
more difficult (but more important) than the single-node
experiments in Figure 3 because a larger number of nodes
are used, hence the MPI tuning parameters (e.g. number
of MPI processes) have larger search spaces. As shown in
the result, TLA improves the tuning results by a significant
margin, compared to the single-node experiments. On 64
Cori nodes, for example, TLA (best) improves the tuning
result by 31% (task 10,000), 21% (task 20,000) and 44%
(task 30,000), respectively, with a geometric mean of 33%
for those three tasks. Since application performance has
higher variability on multi-node environments (depending on
the specific node allocation), we run the experiments three
times and report their average.

TLA can also be used to leverage previous knowledge
obtained from a different machine. Figure 5 shows an
evaluation of TLA using an exsiting model trained on a
different machine, a Cori Knights Landing (KNL) node
which includes an Intel Xeon Phi processor 7250. TLA
achieves marginal improvements for the left three tasks
but has small performance degradation for the right two
tasks. The results imply that, without using good pre-trained
models, the TLA approach may not lead to significant
improvements, but TLA generally does not suffer noticeable
performance drops.

As shown by these overall results, the performance of
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TLA depends on which model or task is used for TLA.
Choosing appropriate models that are most relevant to the
tuning task is the key to achieving the best TLA perfor-
mance. We leave this as our future work.

For reproducibility, we provide the surrogate models
used in the TLA experiments in our shared repository.
Section V-E explains how to use the repository to access
the data.

E. Crowd-tuning

Here, we present a brief introduction to our shared
repository designed for crowd-tuning. For the details of
the repository, please refer to our website at https:
//gptune.lbl.gov/. To assure provenance and avoid
uploading bad data, the repository requires login credentials
to submit any data. There are multiple accessibility options
for performance data: publicly available, private, and shared
with specific users/groups.

1) Downloading Performance Data: To browse and
download performance data from the repository, we pro-
vide an interactive web dashboard. In the dashboard, users
can select a specific tuning problem from the drop-down
menu. Once the tuning problem is selected, the dashboard
will display all available machine configurations, software
configurations, and owner information (i.e. who submitted
the data). The user can check the machine/software/user
configuration(s) that match the user’s interests. Then, the
dashboard will display a table that contains all the fil-
tered results that the user can access, and the user can
download data in the JSON format. Interested readers can
try this feature by downloading the surrogate models used
in Section V-D. The models can be found by searching
data for the PDGEQRF-ATMG application on the dashboard.
The experiment scripts and their usage are available at the
GPTune’s Github repository 3.

3https://github.com/gptune/GPTune/tree/master/
examples/ScaLAPACK-PDGEQRF-ATMG

2) Uploading Performance Data: The user can upload
function evaluation results and/or surrogate models using
the web interface. The user first needs to select the tuning
problem and the machine used for generating the data. If
the user’s tuning problem or machine is not shown in the
drop-down menu, the user needs to add the tuning problem
or machine information to the repository. After the user
uploads the obtained JSON performance data, the shared
repository automatically checks if there are duplicated data
in the repository, and stores only new data to the repository.
The repository also checks if the submitted data match the
problem space of the tuning problem and if the submitted
data provide all the necessary machine configuration infor-
mation.

3) Adding Tuning Problems: Before uploading any per-
formance data, users need to define their tuning problems
in the shared repository using our web interface, unless
the same tuning problem already exists in the repository.
With the (well-defined) tuning problem information, multi-
ple users can run the tuner for the same tuning problem. The
user needs to define the tuning name by selecting appropriate
category/categories and defining the task space, the tuning
parameter space, and the output space. The user also needs
to provide which software and which type of information
is needed for the problem. We have a list of widely used
software packages/tools obtained from the CK’s software
database [12], which can be automatically detected by CK.
The repository will assign a unique name by combining the
user-provided tuning problem name by username and the
date of submission; hence users can differentiate between
tuning problems, tuning the same program with different
settings.

4) Adding Machine Information: The user also needs to
define machine information, unless the user’s machine infor-
mation is already available in the repository. The user first
needs to provide the machine name and the site/institution
information. The user can then select the system model type
(e.g. HPC system manufacturer, cloud service provider, etc.).
Another important data field is to provide the processor types
of the machine. We have built a list of processors from
popular (HPC) processor vendors such as Intel, NVIDIA,
IBM, AMD, ARM, etc. The user can select one or multiple
processor types (in case of heterogeneous systems) that make
up the user’s machine and provide information about the
number of nodes/cores contained in the machine. The user
can finally select the interconnect(s) of the machine. In case
there are multiple records for the same machine (this is
possible as the system can continue to consolidate more
system resources), the user can still choose one machine
record that best suits the user’s tuning configurations.

VI. CONCLUSION AND FUTURE WORK

GPTune is a performance autotuner based on multi-output
Gaussian process regression. In this paper, we presented



a history database for enhancing the autotuning capability
of GPTune and reproducibility of performance data. The
history database allows users to achieve the best possible
tuning results for widely used codes, as well as a TLA
approach that can leverage the knowledge of already trained
models to tune a new tuning task. Our evaluation of TLA
shows that, for the ScaLAPACK’s PDGEQRF routine, TLA
can attain up to 33% better tuning results on the NERSC’s
Cori supercomputer.

In future work, we plan to improve the user interface
for the web-based shared repository. For example, we can
provide a programmable Python interface to access perfor-
mance data in the shared repository. Such an interface can
provide more flexible use cases without needing to manually
download data using a web browser. In addition, we plan
to improve the TLA approach by using more sophisticated
and intelligent (and automated) model selection for learning.
Another future work is providing a surrogate model-based
sensitivity analysis to determine how different values of
individual tuning parameters could affect the output results.
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