
GPTuneBand: Multi-task and Multi-fidelity Autotuning for Large-scale High
Performance Computing Applications

Xinran Zhu†, Yang Liu‡, Pieter Ghysels‡, David Bindel†, Xiaoye S. Li‡

Abstract

This work proposes a novel multi-task and multi-fidelity

autotuning framework, GPTuneBand, for tuning large-scale

expensive high performance computing (HPC) applications.

GPTuneBand combines a multi-task Bayesian optimization

algorithm with a multi-armed bandit strategy, well-suited

for tuning expensive HPC applications such as numerical

libraries, scientific simulation codes and machine learning

(ML) models, particularly with a very limited tuning budget.

Our numerical results show that compared to other state-

of-the-art autotuners, which only allows single-task or

single-fidelity tuning, GPTuneBand obtains significantly

better performance for numerical libraries and simulation

codes, and competitive validation accuracy for training ML

models. When tuning the Hypre library with 12 parameters,

GPTuneBand wins over its single-fidelity predecessor GPTune

on 62.5% tasks, with a maximum speedup of 1.2x, and wins

over a single-task, multi-fidelity tuner BOHB on 72.5% tasks.

When tuning the MFEM library on large numbers of CPU

cores, GPTuneBand obtains a 1.7x speedup when compared

with the default code parameters.

1 Introduction

Autotuning aims at automatically finding code param-
eters that optimize the runtime, memory, communica-
tion cost, or accuracy for complex, black-box functions.
Specifically, this technique can be applied to hyperparam-
eter tuning of ML models such as neural networks and
support vector machines [7, 50, 8, 54, 29, 36, 30, 16, 57],
as well as tuning of performance-critical parameters for
large-scale numerical libraries and first-principle simu-
lation software packages [37, 35, 47]. Model-free opti-
mization and Bayesian optimization (BO) are two main
families of black-box tuning methods. Model-free op-
timization methods include global approaches such as
simulated annealing [28], genetic algorithms [52] and par-
ticle swarm optimization [26], and local approaches such
as Nelder–Mead simplex [41] and Orthogonal Search [11].

† Cornell University, Ithaca, NY 14850, USA (xz584,
bindel@cornell.edu).

‡ Scalable Solvers Group, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA (liuyangzhuan, pghy-
sels, xsli@lbl.gov).

In contrast, Bayesian optimization methods [21, 49, 17]
typically model the tuning objective as a Gaussian pro-
cess (GP) [46], adaptively sample the objective to update
the GP, and use the posterior GP as a surrogate model to
search for new promising samples. When tuning expen-
sive and noisy objectives, e.g., performance of large-scale
HPC applications, both methods face significant chal-
lenges due to the high cost of reliable samples. Strategies
to address these challenges include:

Multi-task tuning. In many tuning scenarios,
there are correlated tuning tasks, and one can use such
correlation to improve performance on each task. Multi-
task tuning has been used for continuous sets of tasks
[39, 38] and discrete tasks [31, 54, 44, 13, 35]. In the
discrete case, one can use a multi-output GP model, such
as the linear coregionalization model (LCM) [3, 22] or the
intrinsic model of coregionalization (IMC) [3, 18, 9], to
model performance across correlated tasks [54, 44, 13, 35].
Some works further extended acquisition functions in
BO to multi-task settings [31, 54, 44, 13].

Multi-fidelity tuning. Many applications can ex-
ecute at multiple fidelity levels, where the highest-fidelity
runs correspond to the true, but most expensive objec-
tive function, and lower-fidelity ones are less accurate
but computationally inexpensive. A multi-fidelity au-
totuner can run many low-fidelity evaluations (applica-
tion runs) with smaller cost, quickly identify promis-
ing samples (parameter configurations), and then al-
locate more resources for high-fidelity evaluations (ap-
plication runs) with those samples (parameter config-
urations). Some works focused on extending BO algo-
rithms to multi-fidelity settings and adapted various
acquisition functions in BO to multi-fidelity settings
[19, 32, 23, 24, 45, 30, 57, 55]. Another line of work
is to use multi-armed bandit strategy for multi-fidelity
sampling to better balance low-fidelity evaluations and
high-fidelity evaluations [33, 56].

To further improve tuner performance for large-scale
HPC applications, we propose GPTuneBand, a publicly
available autotuner allowing both multi-task and multi-
fidelity tuning. GPTuneBand is specially designed for
large-scale HPC applications, where application runs are
expensive and limited to a relatively small number, but it

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

mailto:xz584@cornell.edu
mailto:xz584@cornell.edu
mailto:xsli@lbl.gov
mailto:xsli@lbl.gov

is also well suited for tuning any applications that needs
multi-task tuning and allows multi-fidelity evaluations.

Our main contributions are summarized below:

• GPTuneBand is an autotuning framework that
allows both multi-task and multi-fidelity tuning.
The key idea is to build LCM models across both
tasks and fidelity levels to guide sampling and
then use a multi-armed bandit strategy to select
potentially strong candidates from lower-fidelity
samples. Compared to neural network-based multi-
task and multi-fidelity autotuners [56], our LCM-
based lightweight autotuner requires much smaller
numbers of samples to build informative models.

• GPTuneBand applies to HPC codes on a variety
of shared-memory or distributed-memory, CPU or
CPU-based machine. In addition, GPTuneBand
itself is also distributed-memory parallel for the
efficient modeling process.

• GPTuneBand is an extension of the publicly avail-
able multi-task, single-fidelity autotuning frame-
work GPTune [35], and therefore it is also publicly
available and inherits all salient features of GPTune,
such as a historical database, crowd tuning, user-
provided performance models, and reverse communi-
cation interface (RCI) to improve tuning efficiency.

• Our empirical study shows that GPTuneBand out-
performs several other state-of-the-art autotuners
on a wide range of large-scale scientific applications
as well as ML models.

The paper is organized as follows. Section 2 discusses
related state-of-the-art work as our reference algorithms.
Section 3 introduces the notations of the general tuning
problem, the multi-task tuning problem in the BO
framework, and the multi-fidelity tuning problem in
the multi-armed bandit framework. Section 4 describes
the GPTuneBand algorithm with an illustrative example.
Section 5 shows the empirical study of GPTuneBand on
tuning various HPC and machine learning applications
and compare with the other state-of-the-art autotuners.

2 Related work

In Section 1, we discussed related work in the general
autotuning literature, and related work specifically in the
multi-task tuning literature and multi-fidelity tuning lit-
erature. Here, we highlight some specific stat-of-the-art
autotuners as the reference algorithms. OpenTuner [5] is
one of the state-of-the-art model-free autotuners, which
combines most of the model-free optimization algorithms
mentioned in Section 1 and then solves a multi-armed
bandit problem [25] to allocate workloads to different

optimization algorithms. OpenTuner does not support
multi-task or multi-fidelity tuning. Hyperband (HB) [33]
is a model-free multi-fidelity tuner based on the bandit
strategy and random sampling. It balances the number
of objective evaluations and the fidelity by using the ban-
dit strategy, and it will be described in detail in Section
3.2. HpBandSter (BOHB) [16] is a BO variant of HB. It
differs from HB in that it builds Tree Parzen Estimator
(TPE) [7] models to guide sampling. These tuners do
not support multi-task tuning. Similarly, HB-ABLR [56]
is a multi-task and multi-fidelity tuning algorithm that
combines HB with adaptive Bayesian linear regression
(ABLR) [42]. However, it relies on neural networks, and
thus requires large number of evaluations, to build task
correlation. GPTune [35] is a multi-task autotuning soft-
ware package targeted at exascale applications, which
relies on LCM surrogate models to efficiently learn task
correlations. GPTune does not support multi-fidelity
tuning, and it will be desribed in detail in Section 3.1. In
addition, a multi-task search space refinement algorithm
[43] is also developed.

Algorithm 1 Bayesian optimization-based MLA

1: Sampling: Evaluate y(x, ti) at n = ntot/2 initial
random samples for each task ti ∈ T .

2: while n < ntot do
3: Modeling: Update hyperparameters of the

LCM of {y(x, ti)}i≤m using all available data.
4: Search: Search for an optimizer x∗i for the EI

of task ti ∈ T . Let X∗ = [x∗1, x
∗
2, . . . , x

∗
m].

5: Evaluate y(x, ti) for ti ∈ T at the new tuning
parameter configurations X∗.

6: n← n+ 1.
7: end while
8: Return the optimal tuning parameter configurations

and objective function values for each task.

3 Background

The goal of tuning is to find the parameter configurations
that optimize an application’s performance such as
runtime, accuracy, or memory use. The tuning objective
is a function f : X → R over a d-dimensional tuning
parameter space X ⊂ Rd (discrete and categorical
parameters are mapped to R if needed). We model
observations of the objective, which may be noisy, by
y(x) = f(x) + ε where ε ∼ N (0, σ2

noise). In the
following, we describe the multi-task tuning algorithm
of GPTune [35], and the multi-fidelity tuning algorithm
of Hyperband [33], both of which are closely related to
our GPTuneBand algorithm.

3.1 Multi-task tuning in the BO framework
In a multi-task setting, one has several tuning tasks

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

for an application, for example tuning the runtime of
a linear algebra solver on several different matrix sizes.
We parameterize tasks by t ∈ T ⊂ Rα, where T is an
α-dimensional task space. The objective can then be
written as f(x, t) with one task argument t. We denote
by T = {t1, t2, . . . , tm} ⊂ T a set of m tuning tasks.

The Efficient Global Optimization (EGO) [21] is
a classical BO algorithm that builds a Gaussian pro-
cess (GP) [46] as a surrogate model and then optimizes
the Expected Improvement (EI) [40] acquisition func-
tion to determine the next sample. The multi-task BO
algorithm used in GPTune, called the Multi-task Learn-
ing Autotuning (MLA) algorithm, extends EGO to the
multi-task setting. MLA consists of three main phases:
sampling, modeling and search [35].

Sampling. MLA evaluates a set of n initial sam-
ples for each task. We let Xi ∈ Rd×n and Yi =
[yi,1, . . . , yi,n] ∈ Rn denote initial samples and evaluated
objective values for task ti, and X = [X1, X2, . . . , Xm] ∈
Rd×nm and Y = [Y1;Y2; . . . ;Ym] ∈ Rmn denote initial
samples and evaluated objective values for all m tasks.

Modeling. MLA models the joint distribution
across tasks by LCM [3, 22] which generalizes GPs to the
multi-task setting. Specifically, LCM models objective
f(x, ti) for each task ti ∈ T by linear combinations of
Q ≤ m latent random functions:

f(x, ti) =

Q∑
q=1

ai,quq(x),

where ai,q are hyperparameters to learn and uq(x) are
latent functions. Each latent function is an independent
zero-mean GP with e.g., a squared exponential (SE)
kernel

kq(x, x
′) = σ2

q exp

(
−

d∑
i=1

(xi − x′i)
2
/lqi

)
,

where σ2
q is the variance and lqi are length scales.

Thus, the covariance matrix for all samples of all tasks,
Σ(X,X) ∈ Rmn×mn, has entries

Σ(xi,j , xi′,j′) =

Q∑
q=1

(ai,qai′,q + bi,qδi,i′)kq(xi,j , xi′,j′)

+ diδi,i′δj,j′ ,

where δi,j is the Kronecker delta function, and bi,q
and di are regularization parameters. The LCM model
hyperparameters can then be estimated by maximizing
the log-likelihood using gradient-based optimization
methods such as L-BFGS [34].

Search. The LCM predicts the joint distribution
at new points [x∗1, x

∗
2, . . . , x

∗
m] with posterior mean

µ∗ = [µ∗1, µ
∗
2, . . . , µ

∗
m] and posterior variance σ∗2 =

[σ∗21 , σ
∗2
2 , . . . , σ

∗2
m] as:

µ∗ = Σ(X∗, X)Σ(X,X)−1Y,

σ∗2 = diag(Σ(X∗, X∗)− Σ(X∗, X)Σ(X,X)−1Σ(X,X∗)),

which can be used to construct the EI acquisition
function. The EI is then optimized to select the next
point X∗ for each task. We refer to the GPTune paper
[35] for more details on the search phase.

One iteration finishes when a new sample X∗ is
evaluated and it repeats until the sample budget ntot is
exhausted. Algorithm 1 summarizes the MLA iterations.

Algorithm 2 Hyperband using SuccessiveHalving (SH)
as a subroutine
Inputs: η, fidelity bounds bmin and bmax

1: compute smax =
⌊
logη

bmax

bmin

⌋
.

2: for s ∈ {smax, smax − 1, . . . , 0} do

3: compute N(s) =

⌊
smax + 1

s+ 1

⌋
ηs.

4: compute B(s) = bmaxη
−s.

5: generate N(s) random samples at fidelity B(s)
and run SH on them.

6: end for

3.2 Multi-fidelity tuning in the multi-armed
bandit framework
In a multi-fidelity setting, the application can be run with
different fidelity parameters, such as the discretization
level in a partial differential equation (PDE) solver, or
the number of iterations in an iterative algorithm. Lower
fidelity runs are less accurate, but are also less expensive.
We parameterize fidelities by b ∈ [bmin, bmax], where
bmin, bmax are given minimum and maximum fidelity
levels. Here we assume the function evaluation time
is linear with the fidelity b. In this way, the objective
function can be augmented as f(x, b) with one more
fidelity input argument b. The tuning goal is to find
tuning parameters x to optimize the objective at the
highest fidelity, i.e., f(x, bmax). Evaluations at a low
fidelity f(x, b) where b < bmax serve as approximations
of f(x, bmax).

Hyperband (HB) [33] (Algorithm 2) is a recent
model-free multi-fidelity tuning algorithm. Based on
bandit strategy, it collects sets of random samples at
different fidelity levels and then calls successive halv-
ing (SH) [20] (Algorithm 3) to promote promising sam-
ples to higher fidelity evaluations. Given a fidelity
bound [bmin, bmax] and a “halving” factor η, Hyperband’s
multi-armed bandit strategy prescribes multiple brackets
{0, 1, . . . , smax}, where 0 corresponds to the highest fi-
delity and smax = blogη bmax/bminc. Thus, the associated
fidelity levels are {bmax ' ηsmaxbmin, . . . , ηbmin, bmin}, a

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

geometrically decreasing sequence. Here bracket s re-
quires N(s) initial samples at fidelity B(s). Note that
bmin, bmax and η are designed for approximately equal
evaluation costs across brackets. After a bracket s col-
lects all initial samples, it evaluates all existing samples
in the bracket, keeps the best η ones, and evaluates them
at a fidelity η times larger. This process repeats until
the highest fidelity bmax is reached in bracket s. Finally,
Hyperband selects the best sample at the highest fidelity
among all brackets.

By using the multi-armed bandit strategy, Hyper-
band achieves good balance between the exploration via
low fidelity sampling and the exploitation via high fi-
delity sampling. Instead of generating random samples
for SH, HpBandSter (BOHB) [16] generates samples for
SH using BO methods via TPE [7] models. However,
neither HB nor BOHB supports a multi-task tuning set-
ting. Moreover, even for single-task tuning, they do not
exploit correlations among different fidelity levels during
sample collection.

Algorithm 3 SuccessiveHalving

Inputs: B(·), s, η, a set C containingN(s) configuration
samples.

1: for i ∈ {s, s− 1, . . . , 1} do
2: Evaluate all configuration samples from C at
B(i).

3: Select the top b|C|/ηc samples and form a new
sample set C.

4: end for
5: Evaluate the current configuration sample set C at
B(0).

6: Return C containing selected samples at the highest
fidelity.

4 The GPTuneBand algorithm

In this section, we introduce the proposed multi-task and
multi-fidelity tuning algorithm GPTuneBand. Similar
to HpBandSter (BOHB), GPTuneBand has three stages.
First, the bandit strategy prescribes the total number
of brackets, where bracket s requires N(s) samples at
starting fidelity B(s). Second, BO algorithms are used
to generate the N(s) samples in each bracket. Third,
each bracket runs the SH [20] algorithm (Algorithm 3)
to find the best one(s) in each bracket.

We highlight several key differences between Hp-
BandSter and GPTuneBand: (a) While HpBandSter
build TPE models within each bracket to guide sam-
pling, GPTuneBand uses LCMs across fidelities in dif-
ferent brackets to facilitate sampling. (b) GPTuneBand
extends well to the multi-task setting by using LCMs
across both fidelity brackets and tasks. (c) GPTuneBand

can execute multiple passes to collect more samples and
build more informative LCMs. Using correlations across
fidelities and tasks, GPTuneBand needs significantly
fewer total samples.

Since LCM is used across both brackets and tasks,
we use “task” to refer to a user-specified tuning task, and
“LCM-task” to refer to a sub-task used to construct LCMs.
Specifically, an “LCM-task” is a bracket associated with
a given fidelity level and a given tuning task. See Section
4.1 for more details and examples.

Algorithm 4 summarizes the GPTuneBand algo-
rithm. The inputs are: a fidelity function B(·) mapping
a bracket variable s to a fidelity level B(s), a constant
smax determining the number of brackets, a constant
“halving” factor η determining the number of samples
of each bracket and the selection rate later in the SH
run [20], and task parameters {ti}mi=1 indicating tuning
tasks. We explain Algorithm 4 in three stages:

Initialization stage. In this stage, we determine
the number of samplesN(s) and the fidelityB(s) for each
bracket and each task. Given the constant smax, there
will be smax + 1 brackets indexed by bracket variables
s = 0, 1, . . . , smax. For bracket s, the number of samples
N(s) is geometrically-spaced:

N(s) = b(smax + 1)/(s+ 1)cηs.

The fidelity function B(·) maps a bracket variable s to
a fidelity B(s), satisfying bmax = B(0) > B(1) · · · >
B(smax) = bmin. In this way, different from Hyperband
(Algorithm 2), we provide a more flexible way of bandit
sampling, but it reduces to the Hyperband setup by
setting B(s) = bmaxη

−s and smax = blogη(bmax/bmin)c.
In the remaining part of this paper, for clarity we use
the same setup as Hyperband and we refer to one input
tuple [bmin, bmax, η] as one specific bandit structure.

Sampling stage. The next stage is to sample for
all brackets of all tasks. The main for-loop in Algorithm
4 details the sampling approach. Specifically, it builds
LCMs across both brackets and tasks to guide the
sampling. We use the notation LCM(p, n) to represent
one LCM with p LCM-tasks and n target samples for
each LCM-task. In line 5 of Algorithm 4, “build or
update LCM” works the same way as the MLA algorithm
(Algorithm 1) iteratively build and update an LCM.

Selection stage. When a bracket of one task has
finished the sampling stage, i.e., a bracket s reaches the
target number of samples N(s), it will be removed from
the LCM and enter the selection stage. It then calls an
SH [20] run to identify the best one(s) at the highest
fidelity. At the end of the for-loop, after each bracket
identifies the best ones, GPTuneBand then reports the
best among them.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

LCM(8,4)

samples n

arm s user-task t

s=0 s=1 s=2 s=3

LCM(6,6)

LCM(4,9)
LCM(2,27)

b=3

b=1

b=9

b=3

b=9

b=27

SH
SH

SH

n=9

n=27

n=3

n=9

n=3

n=1

SH

SH
SH

b=27
n=4 b=27

n=4

b=9
n=6

b=9
n=6

b=3
n=9

b=1
n=27

b=27

n=2

b=27
n=1

b=3

b=9

b=27

n=9

n=3

n=1

b=9
n=3

b=27
n=1

b=27

n=2

Figure 1: Illustrution of the proposed GPTuneBand algorithm with bmin = 1, bmax = 27, η = 3 and m = 2 tasks.
Number of samples and corresponding fidelity are denoted by n and b respectively.

4.1 Illustrative example of GPTuneBand
In this section, we use a graphical example in Figure 1 to
illustrate Algorithm 4. This example uses the bmin = 1,
bmax = 27, η = 3 bandit structure andm = 2 tasks. Each
solid vertical block represents one set of n samples at
fidelity level b for one task. Each transparent horizontal
block corresponds to one LCM (in gray, pink, orange
and blue). Each transparent vertical block represents
one SH run (in green).

From line 1 of Algorithm 4, for each of the two tasks,
it generates 4 brackets s = {0, . . . , 3}, with fidelities
B(0) = 27, B(1) = 9, B(2) = 3, B(3) = 1, and number
of samples N(0) = 4, N(1) = 6, N(2) = 9, N(3) = 27
respectively. The main for-loop of Algorithm 4 contains
the sampling stage (LCM sampling) and the selection
stage (SH runs). We explain the LCM sampling and
the SH runs separately even though they are done
concurrently in Algorithm 4.

For the LCM sampling (Algorithm 4, lines 4 and 5),
GPTuneBand first builds an LCM with m(smax + 1) = 8
LCM-tasks and 4 samples each, using samples from all
brackets and tasks. Next, bracket s = 0 is removed from
LCM sampling and starts an SH run (Algorithm 4, line 6).
Without bracket s = 0, an LCM with msmax = 6 LCM-
tasks and 6 samples each is then updated, which only
requires 2 more samples per LCM-task from 2 additional
MLA search iterations (same as the MLA’s search phase
in line 4 of Algorithm 1) as there exist 4 samples per
LCM-task from the previous LCM sampling. This LCM
sampling process continues until all the brackets and
tasks have collected the target number of samples.

For the SH runs (Algorithm 4, line 6), it performs 6

Algorithm 4 GPTuneBand Algorithm (one pass)

Inputs: fidelity function B(·), smax, η, tasks: t1, . . . ,tm

1: Compute the starting number of samples N(s) for
each bracket s:

2: N(s) =

⌊
smax + 1

s+ 1

⌋
ηs for s = 0, 1, . . . , smax.

3: for s ∈ {0, . . . , smax} do
4: build the current LCM-task set T = {Tij : i =

1, . . . ,m, j = s, . . . , smax}, where an LCM-task Tij
means task ti with starting fidelity B(j).

5: build or update LCM(|T |, N(s))
†

, where |T | =
m(smax − s + 1), until N(s) configuration samples
for each task Tij ∈ T are obtained.

6: run sucessive halving (SH) on each task Tij in
bracket s, i.e. on T s = {Tij : i = 1, . . . ,m, j = s}

7: end for
8: Return Configuration with the optimal objective

value for each task ti.

† LCM(p, n) means an LCM model with p LCM-tasks, with
n target samples for each LCM-task.

SH runs in total, 3 brackets s = 1, 2, 3 multiplied with 2
tasks t = 1, 2 (bracket s = 0 requires no SH runs since
it collects samples at the highest fidelity bmax directly).
For one task, each SH starts using N(s) samples at the
starting fidelity B(s), then boosts the fidelity for the top
1/η = 1/3 configurations until the highest fidelity bmax

is reached.
Algorithm 4 and Figure 1 only show one pass of

GPTuneBand, while in fact GPTuneBand can do multi-
pass tuning, with number of passes np > 1. In the first

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

pass, each LCM(p, n) generates n new samples per LCM-
task from scratch. In the following passes, however, each
LCM(p, n) generates n new samples per LCM-task on
top of all the historical data from previous passes, i.e.,
data generated by previous LCM sampling and SH runs.
Therefore, more passes np could significantly improve
the model quality of each LCM.

Figure 2: Example of multi-fidelity demo objective
function for t ∈ [1, 1.5, 2, 2.5] with fidelity level b ∈
[1, 9, 27] and bmax = 27.

5 Experiments

We run multi-task and multi-fidelity (MTMF) tuning
to evaluate the tuning performance of GPTuneBand on
one synthetic function and four real numerical applica-
tions: hypre [15], fast kernel ridge regression (KRR),
NIMROD [51], MFEM [4], and one machine learning model:
graph convolutional network (GCN). Experiments are
run on the Cori machine at NERSC1: a Cray XC40 sys-
tem with 2388 Haswell nodes, each of which consists of
two 16-core Intel Xeon E5-2698v3 processors. Codes are
available online [1], and more experiment details can be
found in the supplement2.

We compare with other state-of-the-art tuners:
GPTune [35], HpBandSter (BOHB) [16], TPE [7] and
OpenTuner (OT) [5]. GPTune supports multi-task and
single-fidelity tuning; BOHB supports single-task and
multi-fidelity tuning; TPE is the single-fidelity version
of BOHB, i.e., a single-task BO algorithm based on
TPE models; OpenTuner supports single-task and single-
fidelity tuning.

1http://www.nersc.gov/users/computational-systems/

cori/
2https://drive.google.com/file/d/

1naLrGS73gBaDOQ83wpg7FzBHnb0JNCXJ/view?usp=sharing

To compare multi-fidelity tuners GPTuneBand and
BOHB, we use the same multi-armed bandit structure
in both cases. To compare with single-fidelity tuners
(GPTune, OpenTuner and TPE), which always run the
application at the highest fidelity, we use the same,
normalized, total evaluation cost. Specifically, let the
highest fidelity evaluation have unit cost, an evaluation
at fidelity b would have normalized cost b/bmax. We
ensure the total sum of these normalized costs over all
samples at all fidelities for one task remains the same
across all autotuners.

Performance metrics. In multi-task settings, we
define three metrics to evaluate the tuning performance
of an autotuner. The absolute performance is the
final optimal objective values found by an autotuner,
while the relative performance is the ratio of the
optimal objective values found by an autotuner to the
optimal among all autotuners. Specifically, let {Ai}5i=1

be 5 autotuners. With tasks {tj}mj=1, the absolute
performance of autotuner Ai is defined as

RAi =
[
oAi
1 , oAi

2 , . . . , oAi
m

]
,

and its relative performance is then

R̃Ai =
[
oAi
1 /o∗1, o

Ai
2 /o∗2, . . . , o

Ai
m /o∗m

]
,

where o∗j = min1≤i≤5{oAi
j } is the best objective value of

task tj among all autotuners. Therefore, the closer each

entry of R̃Ai is to 1, the better the relative performance
autotuner Ai shows. For tuning with a relatively large
number of tasks, we evaluate tuning performance by
comparing the distribution of R̃ over tasks {tj}mj=1 and

use R̄ = (mean(R̃) + median(R̃))/2 as a metric to
evaluate the relative performance, the closer to 1 the
better. In addition, for tuning with a small number
of tasks, it is more straightforward to evaluate the
tuning history, which is an array of historical best
objective values found by an autotuner during objective
evaluations on one task. We plot and compare the tuning
history (on the highest fidelity) versus thus-far the total
normalized evaluation cost (using all fidelities).

5.1 Synthetic function
We first run MTMF tuning on a 1D demo function. The
true objective is

y(x, t) = 1 + e−(x+1)t+1

cos(2πx)

3∑
i=1

sin
(
2πx(t+ 2)i

)
,

where x ∈ [0, 1] and t > 0. This function is highly non-
convex, representing a very hard problem for black-box
optimization. The tuning goal is to minimize y(x, t) for
multiple tasks t. To enable multi-fidelity evaluations, we
add noise to the true objective, with a constant e = 0.1

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/
https://drive.google.com/file/d/1naLrGS73gBaDOQ83wpg7FzBHnb0JNCXJ/view?usp=sharing
https://drive.google.com/file/d/1naLrGS73gBaDOQ83wpg7FzBHnb0JNCXJ/view?usp=sharing

0.65

0.75

0.85

0.95

Op
tim

al
 o

bj
ec

tiv
e

va
lu

e

BOHB
GPTuneBand, 9 wins

GPTune
GPTuneBand, 6 wins

1 2 3 4 5 6 7 8 9 10
Task ID

0.65

0.75

0.85

0.95

Op
tim

al
 o

bj
ec

tiv
e

va
lu

e

OpenTuner
GPTuneBand, 9 wins

1 2 3 4 5 6 7 8 9 10
Task ID

TPE
GPTuneBand, 10 wins

0
0.3
0.6
0.9 0.8

0.1 0.1

GPTuneBand, R = 1.010

0
0.3
0.6
0.9

0.3 0.2
0.5BOHB, R = 1.082

0
0.3
0.6
0.9

0.6
0.3

0.1

GPTune, R = 1.043

0
0.3
0.6
0.9

0.4 0.3
0.1 0.2

OpenTuner, R = 1.079

1 1.05 1.1 1.15 1.2
Relative performance

0
0.3
0.6
0.9

0.3
0.6

0.1

TPE, R = 1.112

0.5

1.0

1.5

2.0

2.5

Op
tim

al
 h

yp
re

 ti
m

e BOHB
GPTuneBand, 9 wins

GPTune
GPTuneBand, 7 wins

1 2 3 4 5 6 7 8 9 10
Task ID

0.5

1.0

1.5

2.0

2.5

Op
tim

al
 h

yp
re

 ti
m

e OpenTuner
GPTuneBand, 10 wins

1 2 3 4 5 6 7 8 9 10
Task ID

TPE
GPTuneBand, 8 wins

0
0.3
0.6
0.9 0.7

0.2 0.1

GPTuneBand, R = 1.027

0
0.3
0.6
0.9

0.10.1 0.10.1 0.10.10.10.1 0.10.1

BOHB, R = 1.343

0
0.3
0.6
0.9

0.4
0.1 0.20.10.1 0.1

GPTune, R = 1.241

0
0.3
0.6
0.9

0.1 0.10.1 0.10.10.1
0.3

0.1

OpenTuner, R = 1.445

1 1.2 1.4 1.6 1.8
Relative performance

0
0.3
0.6
0.9

0.3 0.20.10.1 0.20.1

TPE, R = 1.169

Figure 3: Detailed tuning results: 1) pair-wise comparison of absolute performance metric RAi and 2) histogram
plot of relative performance metric R̃Ai , where i = 1, ..., 5 correspond to five autotuners. Left: 10 demo tasks
corresponding to ID 1 of Table 1. Right: 10 hypre tasks corresponding to ID 3 of Table 2.

ID Task range
Bandit structure

[bmin,bmax,η]
GPTuneBand BOHB GPTune OpenTuner TPE

1 [1, 1.45] [1, 8, 2] 1.010 1.082 1.043 1.079 1.112
2 [1, 1.45] [1, 16, 2] 1.018 1.064 1.039 1.054 1.094
3 [1, 1.45] [1, 9, 3] 1.022 1.088 1.023 1.092 1.114
4 [1, 1.45] [1, 27, 3] 1.017 1.017 1.050 1.060 1.051
5 [1, 1.45] [1, 16, 4] 1.016 1.025 1.030 1.086 1.084
6 [1, 5.5] [1, 27, 3] 1.013 1.090 1.107 1.131 1.090

Table 1: MTMF tuning of 10 demo tasks with different task ranges and different multi-armed bandit structures.
The relative performance metric R̄ of each autotuner is shown, the closer to 1 the better.

controlling the maximum noise level:

ỹ(x, t, b) = y(x, t) (1 + e cos(ax)(1− b/bmax)) .

Hence, ỹ(x, t, bmax) = y(x, t) is an exact evaluation,
while ỹ(x, t, bmin) approximates y(x, t) with the least
accuracy. Figure 2 shows plots of demo function for
t ∈ [1, 1.5, 2, 2.5] with different fidelity levels b ∈ [1, 9, 27].
Specifically, b = bmax = 27 provides exact evaluation of
the demo function y(x, t), while b = bmin = 1 and b = 9
provide approximate evaluations with different accuracy.

Using this demo, we study how different bandit
structures affect the performance of GPTuneBand. We
select 10 tasks uniformly from a range of t and different
bandit structures. Each experiment uses np = 1 pass
and is repeated for 5 runs. Table 1 compares the relative
performance, where GPTuneBand shows the best relative
performance for all experiments (rows). As for the
absolute performance, averaging over all 6 experiments,
GPTuneBand wins over BOHB on 73% tasks, over
GPTune on 67% tasks, over OT on 85% tasks, over
TPE on 95% tasks. For more details, see Figure 3 (Left)
for the pair-wise comparison of absolute performance
RAi and the histogram of relative performance R̃Ai for
ID 1 in Table 1. We conclude that, for this example,
GPTuneBand performs the best and is not sensitive
to the choice of bandit structure. Therefore, in the
following, we mainly use the [1, 8, 2] and [1, 27, 3]

structures, which work the best here.

5.2 HPC application: Hypre
The package hypre [15] contains several families of par-
allel algebraic multigrid preconditioners and solvers for
large-scale sparse linear systems. Here we tune the
runtime of GMRES with the BoomerAMG precondi-
tioner for solving the convection-diffusion equation on
structured 3D grids. Task parameters are defined by
the a, c coefficients in the convection-diffusion equation:
−c∆u+ a∇ · u = f. There are 12 tuning parameters of
integer, real and categorical types, for example processor
topology parameters, total number of MPIs, the AMG
strength threshold, the type of the parallel coarsening
algorithm and the type of parallel interpolation operator.
Details on tuning parameters can be found at [1].

The fidelity level is defined by the discretization
with k3 grid points, where k ranges from kmin = 10 to
kmax = 100. Given the O(k3) computational complexity
of the algebraic multigrid algorithm, the fidelity mapping
from b to k is a linear function interpolating [bmin, k

3
min]

and [bmax, k
3
max]. Experiments are run on 2 NERSC

Cori nodes, with 5 repeated runs and np = 1 pass. Each
highest-fidelity evaluation takes 5 seconds on average,
depending on the value of the tuning parameter.

Using hypre, we study how the multi-task setting
affects the performance of GPTuneBand. We randomly

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

ID Task groups
Bandit structure

[bmin, bmax, η]
GPTuneBand BOHB GPTune OpenTuner TPE

1 10 [1, 8, 2] 1.20 1.25 1.02 1.49 1.23
2 10 [1, 27, 3] 1.11 1.16 1.01 1.35 1.10
3 5+5 [1, 27, 3] 1.03 1.34 1.24 1.46 1.17
4 3+2+3+2 [1, 27, 3] 1.03 1.27 1.13 1.53 1.19
5 3+3+4 [1, 27, 3] 1.09 1.29 1.08 1.39 1.14
6 3+3+4 [1, 8, 2] 1.10 1.19 1.10 1.34 1.13

Table 2: MTMF tuning of 10 hypre tasks with different task groups: m1 +m2 represents one m1-task tuning and
one m2-task tuning. Each task group performs an independent GPTune/GPTuneBand multi-task tuning. The
relative performance metric R̄ of each autotuner is shown, the closer to 1 the better.

select 10 tasks with a, c ∈ [0, 1] and break tasks into
different groups for multi-task tuning. This task group
division only affects multi-task tuners GPTune and
GPTuneBand, which perform an independent multi-task
tuning per group.

A comparison of relative performance is summarized
in Table 2. From Table 2, GPTuneBand outperforms
almost all tuners but GPTune in 10-task tuning (ID
1&2). However, if the same 10 tasks are divided into
smaller multi-task groups (ID 3,4,5,6) with each group
containing tasks of similar coefficients a, c, GPTuneBand
then performs the best or nearly best. As for the
absolute performance, with smaller groups, on average
GPTuneBand wins over BOHB on 72.5% tasks, over
GPTune on 62.5% tasks, over OT on 85% tasks, and over
TPE on 65% tasks. For more details, see Figure 3 (Right)
for the pair-wise comparison of absolute performance
RAi and the histogram plot of relative performance R̃Ai

for ID 3 in Table 2. On hypre, BOHB, however, cannot
even outperform its single-fidelity version TPE, whereas
GPTuneBand shows effective multi-fidelity tuning.

For the observation that smaller groups improve
GPTuneBand to outperform GPTune, one intuitive
reason is that, for the same set of tasks, GPTuneBand
builds more and larger size of LCMs than GPTune, which
is more difficult to fit due to more LCM hyperparameters,
especially for large task counts.

5.3 HPC-ML application: linear-complexity
kernel ridge regression (KRR)
We run MTMF tuning of the KRR validation accuracy
on datasets from the public repository [14]. We consider
two tasks/datasets SUSY [6] and Occupancy [10], with
N = 10K and N = 8K training data respectively. We
use a linear-complexity (in N) KRR algorithm using the
distributed-memory numerical software STRUMPACK[53]
with the HSS compression algorithm. The tuning setting
is similar to Algorithm 5 of [12] with two real-valued
tuning parameters: the length scale h in the Gaussian
kernel and the regularization parameter λ in ridge re-
gression. Here we use the 5 autotuners to tune h and λ

simultaneously without any grid search as in [12].
Given the linear-complexity of HSS-enhanced KRR,

we define the fidelity by the percentage p of total training
data, where pmin = 0.5 to pmax = 1. Therefore, the
fidelity level is linear with evaluation cost. With the
validation set fixed to 1K, a low-fidelity evaluation uses
partial training data, while a highest-fidelity evaluation
uses all training data. Given a bandit structure
[bmin, bmax, η], the fidelity mapping from b to p is a linear
function interpolating [bmin, pmin] and [bmax, pmax]. We
use the [bmin, bmax, η] = [1, 27, 3] bandit structure with
np = 3 passes. Each highest-fidelity evaluation requires
about 5 seconds on 2 NERSC Cori nodes.

A comparison of the tuning history is summarized
in Figure 4. Tuning histories are averaged over 5 runs,
with the shaded area being the standard error. We
note that, on average, GPTuneBand outperforms its
single-fidelity counterpart GPTune. For the first task
on the left, all tuners, except TPE, find a good enough
objective value fairly quickly and they also reach very
similar final results. TPE performs the worst on the
first task. For the second task, though all tuners reach
similar final results, earlier tuning performance differs
a lot. Noticeably, GPTuneBand outperforms all tuners,
except only TPE; BOHB cannot even outperform its
single-fidelity counterpart TPE and showed very large
performance variances. Generally, on the two tasks
among all tuners, GPTuneBand performs stably well
with small variances, and consistently outperforms its
single-task counterpart GPTune.

5.4 ML application: graph convolutional net-
work (GCN)
We run MTMF tuning on another ML application us-
ing GPUs. The tuning goal is the validation accuracy
of a graph convolutional network (GCN) [27] for semi-
supervised graph node classification. We tune four GCN
hyperparameters3: number of hidden units, initial learn-

3We use the GCN implementation in https://github.com/

tkipf/pygcn.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/tkipf/pygcn
https://github.com/tkipf/pygcn

Figure 4: Tuning history of KRR on 2 tasks/datasets: SUSY (Left) and Occupancy (Right). Averaged over 5 runs.
Plots are the historically best function values at the highest fidelity versus thus-far the total normalized evaluation
cost using all fidelities.

ing rate, dropout rate for all layers, and weight decay (the
L2 regularization factor in the GCN loss). We set up two
graph datasets Cora [48] and Citeseer [48] as two tasks.
The fidelity is defined by the number of training epochs
K ranging from Kmin = 100 to Kmax = 500. Given
a bandit structure [bmin, bmax, η], the fidelity mapping
from b to K is a linear function interpolating [bmin,Kmin]
and [bmax,Kmax]. We use the [bmin, bmax, η] = [1, 27, 3]
bandit structure with np = 4 passes. Each evaluation at
highest fidelity requires several seconds using 1 NERSC
Cori GPU (NVIDIA Tesla V100 GPU).

A comparison of the tuning history is summarized
in Figure 5. Tuning histories are averaged over 10 runs,
with the shaded area being the standard error. We note
that, on average, GPTuneBand not only finds the best
final objective value, but also optimizes the performance
faster than other tuners. For this example, GPTuneBand
shows efficient multi-task and multi-fidelity tuning.

5.5 HPC Application: NIMROD
In addition, we run single-task, multi-fidelity tuning
on a large-scale HPC application NIMROD for modeling
reactor-scale tokamaks. NIMROD is a time-marching code
for modeling extended magnetohydrodynamic equations,
whose most computationally expensive component is
solving multiple nonsymmetric sparse linear systems
using SuperLU DIST at each time step.

In this experiment, we consider single-task tuning
of the marching time by fixing a geometry model and
discretization with 16 NERSC Cori nodes and a total
of 512 MPIs. We pick four integer tuning parameters
affecting computation granularity of matrix assembly in
NIMROD and matrix factorization in SuperLU DIST. The
fidelity level is defined by the number of time steps t,
where tmin = 3 to tmax = 30. Given that the runtime

of one function evaluation is proportional to t, we map
a fidelity level b to number of time steps t by linearly
interpolating between [bmin, tmin] and [bmax, tmax].

For fast and reliable evaluations of the tuning
objective, we use the so-called reverse communication
interface (RCI, see Section 3.2.2 of [2]). However,
other autotuners (OpenTuner, BOHB or TPE) do not
support RCI, and therefore we only apply GPTune
and GPTuneBand to tune NIMROD. Tuning histories
are plotted in Figure 6 (left). GPTuneBand is able
to find better runtime faster than GPTune, and the best
runtime is about 7% faster than the default parameter
configuration (the first sample in Figure 6).

5.6 HPC Application: MFEM
We also run single-task and multi-fidelity tuning on an-
other large-scale HPC application MFEM. MFEM [4] is a
high-performance scalable finite element discretization
library, containing a collection of discretization algo-
rithms, linear system solvers, and application drivers.
Here we focus on using first order Nédélec elements on
tetrahedral mesh to discretize a unit cube for solving
highly indefinite Maxwell equations. Once the linear
system is constructed, we solve it with the multi-frontal
sparse solver STRUMPACK[53] with block low-rank (BLR)
compression algorithms.

In this experiment, we consider single-task tuning of
total MFEM runtime using 16 NERSC Cori nodes. There
are three tuning parameters indicating the number of
OpenMP threads per MPI, cutoff size of BLR compressed
fronts, and leaf sizes in BLR compression. The fidelity
level is defined by the mesh resolution on the geometry.
Specifically, we use the [bmin, bmax, η] = [1, 8, 8] bandit
structure, corresponding to linear systems of size N =
1872064 (high fidelity) and N = 238688 (low fidelity).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 5: Tuning history of GCN on 2 tasks/datasets Cora (Left) and Citeseer (Right). Averaged over 10 runs.
Plots are the historically best function values at the highest fidelity versus thus-far the total normalized evaluation
cost using all fidelities.

Figure 6: (Left) Tuning history of NIMROD: single task, bandit structure [bmin, bmax, η] = [1, 8, 2]. Averaged
over 4 runs with the shaded area being the standard error. (Right) Tuning history of FMEM: single task, bandit
structure [bmin, bmax, η] = [1, 8, 8]. Averaged over 7 runs with the shaded area being the standard error.

Same as NIMROD, we only use the RCI-enabled GPTune
and GPTuneBand to tune MFEM. Tuning results are
plotted in Figure 6 (right). GPTuneBand is able to
find better runtime faster than GPTune, and the best
runtime is about 1.7x (1.7 times) faster than the default
parameter configuration (the first sample in Figure 6).

6 Conclusion

We developed GPTuneBand, a gernal tuning framework
that supports both multi-task and multi-fidelity (MTMF)
tuning, well-suited for tuning large-scale HPC applica-
tions when the number of application runs is limited.
GPTuneBand outperforms other state-of-the-art auto-
tuners on the MTMF tuning of a wide range of numer-
ical software packages and machine learning methods.
GPTuneBand is implemented within the framework of
GPTune, which is a recently developed, publicly avail-
able, multi-task autotuner. Therefore, GPTuneBand
essentially extends the GPTune tuning framework to a

multi-fidelity setting, inherits all features of GPTune,
and is also publicly available. Limitations, and there-
fore future developing directions of GPTuneBand may
include: 1) a more rigorous investigation on task correla-
tions, 2) an improvement of GPTuneBand on multi-task
tuning for a large number of tasks, 3) a relaxation of
the multi-task modeling, to allow different number of
samples for each task in the LCM modeling.

Acknowledgement

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, and by the National
Science Foundation under CCF-1934985 and the Simons
foundation. We used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] GPTune. https://github.com/gptune/GPTune.

[2] GPTune user guide. https://gptune.lbl.gov/

documentation/gptune-user-guide.

[3] Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D.
Lawrence. Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4(3):195–
266, 2012.

[4] Robert Anderson, Julian Andrej, Andrew Barker, Jamie
Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin
Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev,
Will Pazner, Mark Stowell, Vladimir Tomov, Ido
Akkerman, Johann Dahm, David Medina, and Stefano
Zampini. MFEM: A modular finite element methods
library. Computers and Mathematics with Applications,
81:42–74, 2021.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni,
Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An
extensible framework for program autotuning. In Pro-
ceedings of the 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT), pages
303–315, 2014.

[6] Pierre Baldi, Peter Sadowski, and Daniel Whiteson.
Searching for exotic particles in high-energy physics
with deep learning. Nature Communications, 5:4308,
2014.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for hyper-parameter optimiza-
tion. In Advances in Neural Information Processing
Systems, volume 24, page 2546–2554. Curran Associates,
Inc., 2011.

[8] James Bergstra, Daniel Yamins, and David Cox. Making
a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In
Proceedings of the 30th International Conference on
Machine Learning, volume 28, pages 115–123. PMLR,
2013.

[9] Edwin V Bonilla, Kian Chai, and Christopher Williams.
Multi-task Gaussian process prediction. In Advances
in Neural Information Processing Systems, volume 20,
pages 153–160. Curran Associates, Inc., 2008.

[10] Luis M Candanedo and Véronique Feldheim. Accurate
occupancy detection of an office room from light,
temperature, humidity and CO2 measurements using
statistical learning models. Energy and Buildings, 112:28–
39, 2016.

[11] Timothy M Chan, Kasper Green Larsen, and Mihai
Pătraşcu. Orthogonal range searching on the RAM,
revisited. In Proceedings of the twenty-seventh annual
symposium on Computational geometry (SOCG), pages
1–10, 2011.

[12] Gustavo Chávez, Yang Liu, Pieter Ghysels, Xi-
aoye Sherry Li, and Elizaveta Rebrova. Scalable and
memory-efficient kernel ridge regression. In 2020 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 956–965, 2020.

[13] Sihui Dai, Jialin Song, and Yisong Yue. Multi-task
Bayesian optimization via Gaussian process upper
confidence bound. In ICML 2020 Workshop on Real
World Experiment Design and Active Learning, 2020.

[14] Dheeru Dua and Casey Graff. UCI Machine Learning
Repository. Irvine, CA: University of California, School
of Information and Computer Science, 2017.

[15] Robert D. Falgout and Ulrike Meier Yang. hypre:
A library of high performance preconditioners. In
International Conference on Computational Science
(ICCS), pages 632–641. Springer Berlin Heidelberg,
2002.

[16] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB:
Robust and efficient hyperparameter optimization at
scale. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80, pages 1437–1446.
PMLR, 2018.

[17] Peter I Frazier. Bayesian optimization. In Recent Ad-
vances in Optimization and Modeling of Contemporary
Problems, pages 255–278. INFORMS, 2018.

[18] Pierre Goovaerts et al. Geostatistics for natural resources
evaluation. Oxford University Press on Demand, 1997.

[19] Deng Huang, Theodore T Allen, William I Notz,
and R Allen Miller. Sequential kriging optimization
using multiple-fidelity evaluations. Structural and
Multidisciplinary Optimization, 32(5):369–382, 2006.

[20] Kevin Jamieson and Ameet Talwalkar. Non-stochastic
best arm identification and hyperparameter optimiza-
tion. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51, pages
240–248. PMLR, 2016.

[21] Donald R Jones, Matthias Schonlau, and William J
Welch. Efficient global optimization of expensive black-
box functions. Journal of Global Optimization, 13(4):455–
492, 1998.

[22] Andre G Journel and Charles J Huijbregts. Mining
geostatistics. Academic Press, 1976.

[23] Kirthevasan Kandasamy, Gautam Dasarathy, Junier
Oliva, Jeff Schneider, and Barnabás Póczos. Gaussian
process bandit optimisation with multi-fidelity evalua-
tions. In Advances in Neural Information Processing
Systems, volume 29, page 1000–1008. Curran Associates,
Inc., 2016.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/gptune/GPTune
https://gptune.lbl.gov/documentation/gptune-user-guide
https://gptune.lbl.gov/documentation/gptune-user-guide

[24] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff
Schneider, and Barnabás Póczos. Multi-fidelity Bayesian
optimisation with continuous approximations. In Inter-
national Conference on Machine Learning, volume 70,
pages 1799–1808. PMLR, 2017.

[25] Michael N Katehakis and Arthur F Veinott Jr. The
multi-armed bandit problem: decomposition and compu-
tation. Mathematics of Operations Research, 12(2):262–
268, 1987.

[26] James Kennedy and Russell Eberhart. Particle swarm
optimization. In Proceedings of the International
Conference on Neural Networks (ICNN), volume 4, pages
1942–1948. IEEE, 1995.

[27] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
Proceedings of the 5th International Conference on
Learning Representations (ICLR), 2017.

[28] Scott Kirkpatrick, C Daniel Gelatt, and Mario P
Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[29] Aaron Klein, Simon Bartels, Stefan Falkner, Philipp
Hennig, and Frank Hutter. Towards efficient Bayesian
optimization for big data. In NIPS 2015 Bayesian
Optimization Workshop, 2015.

[30] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp
Hennig, Frank Hutter, et al. Fast Bayesian hyperparam-
eter optimization on large datasets. Electronic Journal
of Statistics, 11(2):4945–4968, 2017.

[31] Andreas Krause and Cheng Ong. Contextual Gaussian
process bandit optimization. In Advances in Neural
Information Processing Systems, volume 24, pages 2447–
2455. Curran Associates, Inc., 2011.

[32] Rémi Lam, Douglas L Allaire, and Karen E Willcox.
Multifidelity optimization using statistical surrogate
modeling for non-hierarchical information sources. In
56th AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, page 0143, 2015.

[33] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
The Journal of Machine Learning Research, 18(1):6765–
6816, 2017.

[34] Dong C Liu and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical
Programming, 45(1):503–528, 1989.

[35] Yang Liu, Wissam M Sid-Lakhdar, Osni Marques,
Xinran Zhu, Chang Meng, James W Demmel, and
Xiaoye S Li. GPTune: Multitask learning for autotuning
exascale applications. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 234–246, 2021.

[36] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost To-
bias Springenberg, and Frank Hutter. Towards
automatically-tuned neural networks. In Workshop on
Automatic Machine Learning, pages 58–65. PMLR, 2016.

[37] Harshitha Menon, Abhinav Bhatele, and Todd Gamblin.
Auto-tuning parameter choices in HPC applications us-
ing Bayesian optimization. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pages 831–840. IEEE, 2020.

[38] Jan Hendrik Metzen. Minimum regret search for single-
and multi-task optimization. In Proceedings of The
33rd International Conference on Machine Learning,
volume 48, pages 192–200. PMLR, 2016.

[39] Jan Hendrik Metzen, Alexander Fabisch, and Jonas
Hansen. Bayesian optimization for contextual policy
search. In Proceedings of the Second Machine Learning
in Planning and Control of Robot Motion Workshop.
IROS Hamburg, 2015.

[40] Jonas Močkus. On Bayesian methods for seeking
the extremum. In Proceedings of the IFIP Technical
Conference, pages 400–404. Springer, 1975.

[41] John A Nelder and Roger Mead. A simplex method for
function minimization. The Computer Journal, 7(4):308–
313, 1965.

[42] Valerio Perrone, Rodolphe Jenatton, Matthias Seeger,
and Cédric Archambeau. Scalable hyperparameter trans-
fer learning. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pages 6846–6856, 2018.

[43] Valerio Perrone, Huibin Shen, Matthias W Seeger,
Cedric Archambeau, and Rodolphe Jenatton. Learning
search spaces for bayesian optimization: Another view
of hyperparameter transfer learning. Advances in Neural
Information Processing Systems, 32:12771–12781, 2019.

[44] Matthias Poloczek, Jialei Wang, and Peter I Frazier.
Warm starting Bayesian optimization. In 2016 Winter
Simulation Conference (WSC), pages 770–781. IEEE,
2016.

[45] Matthias Poloczek, Jialei Wang, and Peter I Frazier.
Multi-information source optimization. In Advances
in Neural Information Processing Systems, volume 30,
pages 4291–4301. Curran Associates, Inc., 2017.

[46] Rasmussen, Carl Edward and Williams, Christopher K.
I. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

[47] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and
Devesh Tiwari. Bliss: Auto-Tuning Complex Appli-
cations Using a Pool of Diverse Lightweight Learning
Models, page 1280–1295. Association for Computing
Machinery, New York, NY, USA, 2021.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

[48] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-
lective classification in network data. AI Magazine,
29(3):93, 2008.

[49] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. Taking the human out
of the loop: A review of Bayesian optimization. In
Proceedings of the IEEE, volume 104, pages 148–175.
IEEE, 2016.

[50] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning al-
gorithms. In Advances in Neural Information Processing
Systems, volume 25, page 2951–2959. Curran Associates,
Inc., 2012.

[51] C.R. Sovinec, A.H. Glasser, T.A. Gianakon, D.C. Barnes,
R.A. Nebel, S.E. Kruger, S.J. Plimpton, A. Tarditi, M.S.
Chu, and the NIMROD Team. Nonlinear magnetohy-
drodynamics with high-order finite elements. Journal
of Computational Physics, 195:355, 2004.

[52] Mandavilli Srinivas and Lalit M Patnaik. Genetic
algorithms: A survey. Computer, 27(6):17–26, 1994.

[53] STRUMPACK – STRUctured Matrix PACKage, version
5.1.1, 2021.

[54] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.
Multi-task Bayesian optimization. In Advances in Neural
Information Processing Systems, volume 26, pages 2004–
2012. Curran Associates, Inc., 2013.

[55] Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada,
Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi, and
Masayuki Karasuyama. Multi-fidelity Bayesian opti-
mization with max-value entropy search and its par-
allelization. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pages
9334–9345. PMLR, 2020.

[56] Lazar Valkov, Rodolphe Jenatton, Fela Winkelmolen,
and Cédric Archambeau. A simple transfer-learning
extension of hyperband. In NIPS Workshop on Meta-
Learning, 2018.

[57] Jian Wu, Saul Toscano-Palmerin, Peter I Frazier,
and Andrew Gordon Wilson. Practical multi-fidelity
Bayesian optimization for hyperparameter tuning. In
Proceedings of the 35th Uncertainty in Artificial Intelli-
gence Conference, volume 115, pages 788–798. PMLR,
2020.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Related work
	Background
	Multi-task tuning in the BO framework
	Multi-fidelity tuning in the multi-armed bandit framework

	The GPTuneBand algorithm
	Illustrative example of GPTuneBand

	Experiments
	Synthetic function
	HPC application: Hypre
	HPC-ML application: linear-complexity kernel ridge regression (KRR)
	ML application: graph convolutional network (GCN)
	HPC Application: NIMROD
	HPC Application: MFEM

	Conclusion

