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We present a study of the standard plasma physics test, Landau damping, using
the particle-in-cell (PIC) algorithm. The Landau damping phenomenon consists
of the damping of small oscillations in plasmas without collisions. In the PIC
method, a hybrid discretization is constructed with a grid of finitely supported
basis functions to represent the electric, magnetic and/or gravitational fields, and
a distribution of delta functions to represent the particle field. Approximations to
the dispersion relation are found to be inadequate in accurately calculating values
for the electric field frequency and damping rate when parameters of the physical
system, such as the plasma frequency or thermal velocity, are varied. We present
a full derivation and numerical solution for the dispersion relation, and verify the
PETSC-PIC numerical solutions to the Vlasov–Poisson system for a large range
of wavenumbers and charge densities.

1. Introduction

In 1936, Lev Landau first formulated a simple kinetic model, now referred to as the
Fokker–Plank equation in Landau form or simply just the Landau equation, for the
description of charged particles in a plasma performing Coulomb collisions [24].
Ten years later, Landau furthered this discovery by predicting the damping of
nonrelativistic, collisionless plasma oscillations, or Langmuir waves, for the first
time [25]. The basic concept proposed in that paper, that a conservative phenomenon
exhibits irreversible behaviors, has since influenced hundreds of papers and become
one of the foundational problems in plasma physics. Thus, the phenomenon is now
referred to as Landau damping. In his seminal paper, Landau used the solution to
the Cauchy problem for the linearized Vlasov–Poisson equation around a spatially
homogeneous Maxwellian equilibrium. Landau solved the equation analytically
using Fourier and Laplace transforms and concluded that the electric field damps
exponentially and that the decay is a function of the wavenumber, k, of the pertur-
bation. In [5], Bohm and Gross provide a simple explanation for the damping in
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plasmas. In essence, plasmas exhibit a tendency to remain approximately field free.
Therefore, if electric fields are introduced, either by external disturbance or by an
incomplete space charge neutralization, the newly introduced fields will be forced
out by a reaction from the free charges.

Through the years, numerous others have extensively examined Landau damping
[12; 19; 36]. In 2009, a rigorous solution to the nonlinear Vlasov–Poisson equation
was given by Villani and Mouhot in [31]. In their paper, the damping phenomenon is
reinterpreted in terms of transfer of regularity between kinetic and spatial variables,
rather than exchanges of energy, with phase mixing being the driving mechanism.

Developed in parallel to the theory behind Landau damping, numerical meth-
ods for approximating solutions to the kinetic plasma system were pioneered by
Vlasov [37]. The particle-in-cell (PIC) method has been a popular choice for
numerically simulating plasmas since its inception [17; 18], as it can considerably
reduce the complexity of the system in comparison to direct N -body methods. The
PIC method is a hybrid discretization algorithm comprised of two separate sets of
bases for evaluation of different aspects of the problem. These bases are the particle
basis, where the particle is represented by some (usually radially symmetric) shape
function, and the mesh basis, where a mean field approach may be taken to comput-
ing different field quantities from external and self consistent forces. Typically, the
continuum field solve is handled by employing the finite element method, although
other formulations have used splines [10], finite difference methods [4], etc.

We present a particle-in-cell (PIC) method for solving the Vlasov–Poisson system
using the portable extensible toolkit for scientific computing (PETSc) [2; 3]. PETSc-
PIC uses symplectic integration schemes [1] for particle pushing while conducting
field solves with a finite element method [21; 26]. The goal of PETSc is to provide
composable pieces from which optimal simulations can be constructed. PETSc
user level APIs allow applications to delay implementation choices, such as solver
details, until runtime using dynamic configuration [6]. PETSc-PIC solvers fully
conserve the moments, mass, momentum and energy at each time step while also
preserving entropy monotonicity. Recent advances in the PETSc-PIC code [33]
also include conservative projections between the finite element and particle basis,
a key step towards hybrid FEM-particle algorithms.

2. Problem formulation

Consider the Vlasov–Poisson system, a common variation of the more general
Vlasov–Maxwell–Landau system of equations in the nonrelativistic case where the
magnetic and collisional effects are neglected. It can be an effective model for
strongly non-Maxwellian plasmas. The Vlasov equation,

∂ f
∂t

+ v ·
∂ f
∂x −

qe
m

E ·
∂ f
∂v

= 0, (1)
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describes the evolution of the phase space distribution, f (x, v, t), defined over the
domain (x, v) ∈ RD

× RD where D is the spatial dimension. The electric field is
obtained using Poisson’s equation,

1φ(x, t)= −
ρ

ϵ0
, (2)

where φ is the electric potential, ρ is the charge density and E = −∇φ. The charge
density contains a neutralizing background term, σ , such that

ρ(x, v, t)= σ − qe

∫
RD

f (x, v, t) dv. (3)

This neutralizing background simulates the effect of ions on the electrons in the
domain. The use of a stationary, uniform background charge is based on the
assumption that the ions are much heavier than the electrons and thus feel little
influence from them.

In order to study the linear Landau damping phenomenon, we consider the initial
particle distribution

f (x, v, t = 0)=
1

√

2πv2
th

e−v2/2v2
th (1 +α cos(kx)),

(x, v)=

[
0, 2π

k

]
× [−vmax, vmax],

(4)

where vth =
√

K Te/m, α = 0.01, k = 0.5, vmax = 10 and the boundaries are
periodic. An important piece of PIC methods for the Vlasov–Poisson system is
the reduction of noise. Statistical noise in PIC methods is introduced during the
initialization phase as continuum representations are discretized into a finite number
of macroparticles. As PIC models evolve, the stability error for the electric field
contains a term that will grow exponentially [15]. This build up of stability error is
often referred to as “particle noise”. To reduce statistical noise in the initialization
phase, we mimic a “quiet start” [7; 13; 30] continuum initialization in this work by
placing particles at the center of the spatial and velocity cells and weighting them
based on the initial distribution function f (x, v, t = 0). This method is also used
in [32], where particles are further remapped back to the cell centers every few
steps. The remapping step provides enough particle noise reduction to accurately
observe nonlinear effects in damping, however, as we are, for now, concerned only
with the linear case of Landau damping, we will ignore the remapping phase.

2.1. Linear Landau damping. We seek to first derive a set of equations to under-
stand the damping of plasma oscillations in our system and to calculate expected
values for the damping rate and electric field oscillation frequency. These expres-
sions are found by first deriving the dispersion relation for a plasma. The derivation
shown follows from [9]. Consider a one-dimensional uniform plasma with an initial

markadams
Highlight

markadams
Highlight

markadams
Highlight



138 D. S. FINN, M. G. KNEPLEY, J. V. PUSZTAY AND M. F. ADAMS

distribution f0(v) with zero initial electric and magnetic fields, E0 = B0 = 0. To
first order, the perturbation in f (x, v, t) is denoted by f1(x, v, t) such that

f (x, v, t)= f0(v)+ f1(x, v, t). (5)

Plugging (5) into (1) gives

∂ f1

∂t
+ v ·

∂ f1

∂x
−

qe

me
E1 ·

∂ f0

∂v
= 0. (6)

Assuming that the ions are massive and fixed and that the waves are one-dimensional
plane waves f1 ∝ ei(kx−ωt), (6) becomes

f1 =
iqe E
me

∂ f0/∂v

ω− kv
. (7)

Recall the Poisson equation (2), with the potential φ replaced by the divergence of
the electric field,

∇ · E = ∇ · E1 = −
ρ

ϵ0
= −

1
ϵ0

(
σ − qe

∫
( f0(v)+ f1(x, v, t)) dv

)
. (8)

With zero initial electric field, the electric field vector is replaced by the electric
perturbation, E1, which takes the form E1 = Eei(kx−ωt) x̂. At equilibrium, the
neutralizing background is equal to the total weight of the electron distribution,
σ = qe

∫
f0 dv, leaving only the perturbation term f1 in the Poisson equation. Thus

we are left with

ikϵ0 E = −qe

∫
f1 dv. (9)

Substituting (7) into (9) and dividing by ikϵ0 E , we have

1 =
q2

e

kmeϵ0

∫
∂ f0/∂v

kv−ω
dv. (10)

Substituting in the plasma frequency, ωp = (neq2
e /mϵ0)

1/2, and normalizing the
electron number, ne, to 1, leaves the dispersion relation

1 =
ω2

p

k2

∫
∞

−∞

∂ f0/∂v

v− (ω/k)
dv. (11)

Landau showed that this problem can be solved rigorously by means of the Laplace
transform method. Importantly, it is necessary to go around the singularity in the
integrand in (11) in the complex plane. The solution to (11) takes the form

ω = ωr + iγ, (12)

where ωr represents the real oscillations of the plasma and γ the imaginary, which
Landau showed to be the part of the solution driving the damping of the oscillations.
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Following Landau’s method [9], an approximation for the oscillation and damping
terms can be derived, given by

ωr = 1 +
3
2 k̂2, γ = −

√
π

8
1
k̂3

exp
[
−

1
2k̂2

]
. (13)

A normalized form of the wavenumber k has been introduced to simplify the
equations going forward. The normalized wavenumber, k̂, is given by

k̂ =
kvth

ωp
, (14)

where vth =
√

K T/m is the thermal velocity. For all examples, we nondimension-
alize so that vth = 1. The real part of the solution to (11) was similarly derived by
Vlasov in [37], however he did not account for the imaginary damping term.

These approximations are valid for the case where k̂ ≪ 1 but their accuracy
degrades considerably as k̂ approaches 1 and higher. Even when k̂ = 0.5, the
calculated values for ωr and γ differ from the numerical results by at least 5%.
In [29], McKinstrie draws similar conclusions, electing to derive more accurate
forms of (13) by expanding ωr in powers of k̂:

ωr = 1 +
3
2

k̂2
+

15
8

k̂4
+

147
16

k̂6, (15)

γ = −

√
π

8

(
1
k̂3

− 6k̂
)

exp
[
−

1
2k̂2

−
3
2

− 3k̂2
− 12k̂4

]
. (16)

These new expressions are more accurate for k̂ up to 0.4 but still diverge from the
correct values as k̂ increases further. Shalaby et al. provided further refinements to
these equations in [34], using a numerical fitting formula, taking the form

ω = 1 +
3
2

k̂2
+

15
8

k̂4
+

147
16

k̂6
+ 736.437k̂8

− 14729.3k̂10

+ 105429k̂12
− 370151k̂14

+ 645538k̂16
− 448190k̂18,

γ = −

√
π

8

(
1
k̂3

− 6k̂ − 40.7173k̂3
+ 3900.23k̂5

− 2462.25k̂7
− 274.99k̂9

)
exp

[
−

1
2k̂2

−
3
2

− 3k̂2
− 12k̂4

− 575.516k̂6
+ 3790.16k̂8

− 8827.54k̂10
+ 7266.87k̂12

]
.

(17)

These equations give good estimates for ωr and γ in the case where k̂ = 0.5, which
is of particular interest in this paper. In fact, the values obtained from (17) in the
case where k̂ = 0.5 and all other parameters (ωp, vth , qe, etc.) are assumed to be
1.0 match those commonly listed as “analytic solutions” [9; 32; 39]. That being
said, the accuracy of the numerical fit still decreases considerably for k̂ > 0.6.
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k̂ ωr γ

0.25 1.1056 -0.0021693
0.5 1.4156 -0.15336
0.75 1.7371 -0.46192
1.0 2.0459 -0.85134
1.5 2.6323 -1.7757
2.0 3.1891 -2.8272

Table 1. Values for ωr and γ for given values of k̂ from [8].

An alternate, and as we will show, more accurate way to calculate ωr and γ for
given values of k̂ is to find them by computing the zeros of (11). This was done
by Canosa in [8] for values of k ranging from 0.25 to 2.0 in increments of 0.05
(see Table 1 for a selection of values). A comparison of the approximations by
Landau, McKinstrie and Shalaby to the zero-finding results from Canosa is shown
in Section 4.

3. PETSc-PIC

PETSc, the portable extensible toolkit for scientific computation, is a well-known
library for numerical methods. It provides parallel data management, structured and
unstructured meshes, linear and nonlinear algebraic solvers and preconditioners,
optimization algorithms, time integrators and many more functions. The PETSc-PIC
algorithm relies on two modules to handle the particle and mesh solves simultane-
ously. The first, DMPlex [22; 23; 26], is a PETSc module for generic unstructured
mesh creation, manipulation, and I/O [16]. It decouples user applications from
the implementation details of common mesh and discretization tasks. The other
important module for this work, DMSwarm [28], provides a fully parallel solution
for pure particle methods (e.g., DEM, SPH, EFG) and for particle-mesh methods
(e.g., PIC, FLIP, MPM, GIMP).

We start with discussion of the particle methods in the PETSc-PIC algorithm. A
method must first be chosen to represent the particle space and for interpolation
between the mesh and particle representations. There are numerous choices in
shape functions for this purpose, however, in our case a simple delta function
representation of particles is chosen. Thus the approximation of the distribution
function is defined in the particle space as

f p =

∑
p

−→ωpδ(x − xp), (18)

where −→ωp is the vector of weights, x are the configuration space variables and
xp represents the particle position and velocity, respectively. The finite element
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representation, using a function space V , is given by the weighted sum of basis
functions

fFE =

∑
i

fiψi (x), (19)

where ψi ∈ V denotes the basis functions and fi the associated finite element
coefficient.

The Vlasov equation is a linear hyperbolic equation which may be written in a
simpler form as

∂ f
∂t

+ z · ∇q f = 0, (20)

where q = (x, v) is the phase space variable and z = (v,−qe E/m) is the combined
force. The force term −qe E/m is independent of velocity, and therefore (20) may
be written in the conservative form

∂ f
∂t

+ ∇q · (z f )= 0. (21)

Given this new advective form of the Vlasov equation, we can rewrite the equation
for the characteristics Q = (X, V ) as

d Q
dt

= z, (22)

which reexpressed with the original phase-space variables gives

d X
dt

= V , dV
dt

= −
qe

m
E. (23)

Since particles follow characteristics, the Vlasov equation in the particle basis
becomes

dxp

dt
= vp,

dvp

dt
= −

qe

m
E. (24)

The equations of motion are stepped forward in time using structure-preserving
symplectic integrators which have been well studied [14, pages 179–236]. The
electric field is solved concurrently at each step using a finite element solver,
discussed in the next section.

3.1. PETSc-FEM. At each step in the simulation, the Poisson equation is solved
using the finite element method. The gradient of the potential, i.e., the electric
field, is then interpolated across each cell at the particle locations. The interpolated
electric field is then applied to the particles in the form of the Coulomb force.

The PETSc-FEM method is abstractly formalized by the Ciarlet triple [11; 20],
such that a finite element is a triple (T ,V,V ′), where

• the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . .) with
nonempty interior and piecewise smooth boundary;
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• the space V =V(�) is a finite-dimensional function space on T of dimension n;

• the set of degrees of freedom (nodes) V ′
= {l1, l2, . . . , ln} is a basis for the

dual space, that is, the space of bounded linear functionals on V .

The cell T together with the local function space V and the set of rules for describing
the functions in V is the finite element. The discretization in PETSc is handled by
the PETScFE object, which contains a PetscSpace (V), PetscDualSpace (V ′), and
DMPlex (T ). PETScFE supports simplicial elements, tensor cells, and some special
cells such as pyramids.

In general, the finite element solve for the Poisson equation can be accomplished
using the standard H 1 function space. In the H 1 space, the weak form of the
Poisson equation is ∫

�
∇ψi · ∇φ =

∫
�
ψi , (25)

where ψ ∈ V and V is the set of basis functions on the cell. The elements are then
constructed such that the basis functions are continuous across the cell boundaries.

3.2. Conservative projections. To preserve the conservation laws in a PIC simula-
tion, a method must be constructed to conservatively project between the particle
and grid representations. Weak equality of the representations,∫

�
ψi fFE =

∫
�
ψi fP , (26)

is enforced on the representations to achieve this [27; 33]. Restricting this equiva-
lence to the finite-dimensional analogues gives the matrix-vector form,

M fFE = Mp f p, (27)

where M is the finite element mass matrix,

M =

∫
�
ψiψ j , (28)

Mp is the particle mass matrix,

Mp =

∫
ω
ψiδ(x − xp), (29)

fFE is a vector containing the finite element coefficients and f p is the vector of
particle weights. The entries of Mp contain evaluations of the finite element basis
functions at particle locations with rows being determined by the basis function
index, and columns being determined by the particle indices. Moving from the
particle basis to the mesh, we must invert the finite element mass matrix, which is
easily accomplished with CG/Jacobi [38]. In the other direction, we must invert a
rectangular particle mass matrix, usually with LSQR [33].
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4. Numerical results

The results of this numerical study are presented. We consider the one-dimensional
(1X–1V) case of the Vlasov–Poisson system. By (15), derived in Section 2.1, and
the zero-finding data from Canosa [8], the damping rate should be γ = −0.153 and
the frequency of oscillations should be ωr = 1.416. All runs were conducted on a
single 2.4 GHz 8-Core Intel Core i9 processor with 64 GB of memory. The example
code and packages/options required to run it are provided in the Appendix.

To begin, we show results from the densest run of the PETSc-PIC simulation
with 160 spatial cells and 32, 000 particles per cell and a PIC timestep of dt = 0.3.
Figure 1 shows the maximum value of the electric field, Emax =max� |E |, over time.
The values for γ and ωr were measured by fitting the peaks of the given data. We
ignore the peaks at t = 0 and past t = 25 as they may represent complex frequency
roots other than the desired Landau root or data corrupted by particle noise. A more
in depth discussion of how the Landau root is determined from simulation data is
found in [4]. The frequency of oscillations describes the frequency of the electric
field completing one full oscillation. Since each oscillation of Emax is the equivalent
of one half of the electric field period, we count two Emax oscillations for each
plasma oscillation. Values achieved by the PETSc-PIC algorithm, γ = −0.1443 and
ωr = 1.4117, agree within 5.9% and 0.3%, respectively, of the analytic values from
Canosa and Shalaby et al., which are assumed to be the most accurate for the case
k̂ = 0.5. These values for γ and ωr at k̂ = 0.5 were also calculated using a zero-
finding algorithm, which utilizes Newton’s method, from [35]. The zero-finding
algorithm calculates multiple values for ωr and γ ; however, we select the solution

Figure 1. The maximum value of the electric field as a function of time for the one-
dimensional linear Landau damping problem.
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Figure 2. The total mass, momentum and energy error for the particle and finite element
solve. The moment errors all converge to zero given a long enough time.

containing the largest γ which corresponds to the smallest ωr . Other solutions
found by the algorithm represent less dominant modes which can be ignored for
the purposes of this study. As we discussed in Section 2, particle noise builds over
time in the simulation and becomes dominant around t > 25. Increasing mesh and
particle density has, thus far, been effective in reducing noise build up long enough
to achieve time scales reported in similar PIC methods.

The primary solve function, TSSTep, takes on average 22.7 s per timestep, while
the finite element solve, executed by the SNESSolve function, requires 0.12 s per
time step, or just 0.54% of the total step time. The most expensive operation in
the PETSc-PIC algorithm is the conservative projection from the particle basis to
the FEM basis. This is due to the currently unoptimized point locator function,
DMPlexLocatePoints. In future work, this function will be optimized to decrease
solver time.

The total error in the moments, shown in Figure 2, was shown to be stable over
the entire runtime. At early times, the error in momentum and energy fluctuate but
each converges by t = 20. This convergence comes from the use of basic symplectic
integrator in PETSc-PIC which guarantees the error does not grow over time. We
also note that the error in the particle solve and the finite element solve is exactly
equal, apart from an increased level of noise in the particle solve. This confirms the
effectiveness of the conservative projector used in PETSc-PIC. More detailed tests
of the conservative projector can be found in [33].

Convergence studies were conducted for varying mesh and particle densities. We
note here that running the densest cases on a single core is costly, particularly if we
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Figure 3. Results from various convergence studies: (first row) particle number convergence
results for varying mesh densities, (second row) mesh convergence results using 32, 000
particles per cell, (third row) particle number convergence error using 160 mesh cells, and
(fourth row) mesh density convergence error using 32, 000 particles per cell.
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consider higher dimensional runs, e.g., 2x × 2v and 3x × 3v. Including a remapping
stage in our solve would allow for the reduction in particle numbers, however, the
scalability of PETSc will similarly ameliorate the computational cost in future work.
For now, we rely on scaling up the PETSc-PIC algorithm to increase solve times.
Results from the convergence study, seen in Figure 3, show that increasing mesh
densities requires increasing particle densities to properly converge towards the
analytic values for γ and ωr . Mesh convergence was measured at the densest particle
per cell counts where particle convergence reaches asymptotic behavior. In both
cases, as mesh and particle number increases, γ and ωr approach the analytic values.
From this data, we can conclude that given a dense enough population of particles
within the domain, the overall error in the system is minimized. Convergence
rates are provided in Figure 3, however, these values do not provide clear insight
into the convergence behavior of the PETSc-PIC algorithm. Further work will be
conducted in future studies to fully capture and explain the convergence behavior
of the PETSc-PIC algorithm.

4.1. Variations in wavenumber and charge density. We have thus far shown
that the PETSc-PIC algorithm is an accurate and structure-preserving method
for modeling plasma systems. We next present results from tests in which the
wavenumber k, and consequently the domain size, and the charge density were
varied. Varying either of these values impacts the value of the nondimensional
wavenumber k̂. In the case of the wavenumber k̂, the calculated values for ωr and
γ were compared to the values obtained with the approximation equations (13)
and (15), the numerical fit (17) and the zero-finding results from Table 1. The
results from PETSc-PIC, shown in Figure 4, clearly show a strong deviation of the
approximation equations and the numerical fit for k̂ > 0.5 while closely matching
the zero-finding data from Canosa and Newton’s method for finding zeros. This
demonstrates that these approximations quickly break down outside of the small
parameter range typically chosen in numerical studies of Landau damping. When
considering real plasma systems in which values for k̂, ωp, etc. are more dynamic,
it is far more effective to use zero-finding methods to calculate expected values for
ωr and γ . It may be naively assumed that data from numerical tests with varying
charge densities will match the approximation equations (13), (15) and (17) or
even the zero-finding data from Canosa, however, these analytic results are based
on an assumption of unchanging charge density. More specifically, these results
are based on charge densities such that the plasma frequency, ωp, is always unity.
Therefore, to accurately compare analytic results to our data we must resolve the
dispersion relation for varying charge densities. The zero-finding algorithm from
[35] was employed to calculate new analytic values for ωr and γ with charge
densities ranging from 0.1 to 2.0. Figure 5 contains the results from the zero-finding
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Figure 4. A comparison of various approximations for ωr and γ to zero-finding algorithms
and numerical results from PETSc-PIC. Plots on the right are zoomed in on the region
0.0 ≤ k̂ ≤ 0.75 to show the accuracy of each approximation before they diverge from the data.

algorithm along with data from numerical tests which agree perfectly. We observe
that when the charge density is increased, the frequency of oscillations also increases.
This matches the expected physical behavior of an electrically charged plasma.

Figure 5. Numerical results for varying charge densities compared to zero-finding data. The
charge density is represented on the x-axis as the integral of the initial distribution over the
domain volume.
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Figure 6. A comparison of electric field oscillations given different charge densities.

We have extended our zero-finding algorithm to the case where the charge density
approaches zero (k̂ → ∞) to make note of an interesting phenomenon. At a charge
density of zero, the dispersion relation has no solution. We capture this in Figure 5,
where we observe that both ωr and γ are asymptotic at

∫
f0/V = 0. This can

similarly be observed in the numerical results from our PETSc-PIC algorithm.
As the charge density is decreased, the rate at which the electric field oscillates
becomes too large to resolve numerically. In the case of

∫
f0/V = 0.25, shown in

Figure 6, we can only observe two full oscillations of the electric field before the
simulation becomes too noisy. Theoretically, the charge density could be decreased
asymptotically in our simulations to observe the damping rate and frequency trends,
but in practice there is too much noise to resolve any real processes in the plasma.
The implementation of noise reduction techniques, such as the remapping phase
used in [32], would allow for longer simulation times at these charge densities.
Thus, we will implement these methods in future work.

5. Conclusions and future work

We have presented PETSc-PIC, a structure-preserving particle-in-cell algorithm for
solving the electrostatic Vlasov–Poisson systems. The accuracy of our algorithm
has been demonstrated by comparing the frequency of electric field oscillations and
the damping rate of the oscillations to analytic values. We have also shown that the
approximations for the frequency and damping rate break down outside of narrow
ranges for the wavenumber and charge density. These approximations are often
cited in numerical Landau damping studies without further context or reference
to the equations used to compute the parameters, which can lead to complications
in reproducing results. We have sought to provide a complete picture of Landau
damping and the numerical methods we have used to simulate this phenomenon.
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Future work with the PETSc-PIC algorithm will fall into two primary categories:
improvements to the algorithm and the extension of the Landau damping test to
multidimensional and nonlinear cases. Improvements to the algorithm will focus
on reformulation using a mixed form of the Poisson equation and H(div) finite
elements. We expect that C0 electric fields will decrease the noise in our particle
representation over time. While we have not observed any major negative impacts
from using H 1 finite elements in the test problem chosen for this paper, Landau
damping, using a mixed form makes a notable difference in the case of two-stream
instability. PETSc currently includes support for the H(div) conforming finite
elements Brezzi–Douglas–Marini (BDM) and Raviart–Thomas (RT) on simplicial
grids, however RT elements are currently the only element type supported on tensor
cells. We will also replicate our tests in parallel, allowing us to increase the number
of particles per cell by several orders of magnitude, reducing the largest source of
error in the code.

Nonlinear Landau damping is more complex in that nondamping phenomenon,
such as plasma echo, are present. Vitally, the linearization of the Vlasov equation,
used as the fundamental approximation in the study of linear Landau damping,
does not guarantee that the asymptotic behavior of the linear Vlasov equation is an
approximation of the asymptotic behavior of the nonlinear Vlasov equation [31].
There are reasons to doubt that the study of the linearized equations gives any hint
on the long-time behavior of the nonlinear equations. Therefore if an algorithm is
desired that can accurately capture the long-time behavior of a plasma, the nonlinear
case of Landau damping must also be considered.

Appendix: Example code

The data presented in this paper can be recreated with PETSc using the DMSwarm
example ex9 ($PETSC_DIR/src/dm/impls/swarm/tests/ex9.c). Exact runtimes may
vary depending on the architecture and compiler. The DMSwarm example can be
run using the options

./ex9 -dm_plex_dim 2 -dm_plex_simplex 0 -dm_plex_box_bd periodic,none
-dm_plex_box_faces 160,1 -dm_view
-dm_plex_box_lower 0,-0.5 -dm_plex_box_upper 12.5664,0.5

-dm_swarm_num_species 1 -dm_swarm_num_particles 5120000
-vdm_plex_dim 1 -vdm_plex_simplex 0 -vdm_plex_box_faces 32000

-vdm_plex_box_lower -10 -vdm_plex_box_upper 10
-petscspace_degree 1 -em_type primal

-em_pc_type svd -em_snes_atol 1.e-12
-ts_type basicsymplectic -ts_basicsymplectic_type 1

-ts_max_time 500 -ts_max_steps 1000 -ts_dt 0.3
-fake_1D -cosine_coefficients 0.01,0.5 -charges -1.0,1.0

-perturbed_weights -periodic
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This example uses a 160 square cell mesh on the domain (x, v)∈[0, 4π ]×[−10, 10],
with 32, 000 particles per cell. A first-order basic symplectic integrator is chosen as
the time integration method and H 1 finite elements are chosen for the field solves.
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