
Codesign Proxy Apps in UPC

Steven Hofmeyr

Lawrence Berkeley National Laboratory

June 2013
DEGAS Summer Retreat



Which Apps?
• Small code base (incl. libs)
• C/C++ with OpenMP
• Different co-design centers

Chosen:

• CESAR
• XSBench v3
• 653 LOC

• ExMatEx
• LULESH v1.0.1
• 2350 LOC

• Exact
• MG (others)



App Scaling
Original OMP vs best tuned UPC:

Test platform: 48-core AMD Opteron 6174, 8 NUMA
nodes, 128GB Mem



Converting OpenMP to UPC
Some parts are straightforward:

• #pragma omp parallel for

–> upc_forall

• #pragma omp critical

–> bupc_allv_reduce_all()

Memory locality is not:
• When should memory be shared? (shared)
• When should memory be blocked? (shared [])

Memory conversion strategy:
• private whenever possible
• replicate to prevent sharing



XSBench
• Monte Carlo simulation of paths of neutrons traveling

across a reactor core

–> 85% of runtime in calculation of macroscopic
neutron cross sections

random_sample
binary_search
for each nuclide

lookup_bounding_micro_xs
interpolate
accumulate_macro_xs

• Embarrassingly parallel
• But uses lots of memory



XSBench OMP Doesn’t Scale
• Option to add flops; according to the README:

"Adding flops has so far shown to increase scaling,
indicating that there is in fact a bottleneck being caused
by the memory loads."



XSBench OMP Initialization
• But memory locality is the problem (on NUMA)
• Adding parallel initialization makes it scale



XSBench UPC
• Private replication of data
• Except: make largest memory array shared



XSBench UPC No Shared Mem
• Improves if we make all memory private
• Doesn’t scale to large problem sizes

• 355 isotopes requires 60GB for full repl. on 48 cores



LULESH
• Models explicit hydrodynamics portion of ALE3D
• Particular application is a Sedov blast wave problem
• Used to explore various programming models, e.g.

Charm++, Chapel, Loci, Liszt
• Solves equations on a staggered 3D spatial mesh
• Most communication is nearest neighbor on a

hexahedral 3D grid



LULESH OMP
• Doesn’t scale beyond 12 cores (2 NUMA nodes)



LULESH OMP Parallel Initialization
• Parallel initialization helps only slightly
• Still doesn’t scale beyond 18 cores
• Uses temporary arrays with malloc and free in

many calls



LULESH OMP TCMalloc
• Liu et al (Rice) improve performance with TCMalloc:

• free in glibc releases pages to OS
• subsequent calls to malloc → OS zero-fills pages
• TCMalloc doesn’t return free’d pages to the OS

• TCMalloc slow for < 6 threads (e.g. 1 core 1.28x)



LULESH OMP Avoid mmap

• For larger mem, glibc uses mmap instead of brk
• Force glibc to always use brk with flags:

MALLOC_MMAP_MAX_=0
MALLOC_TRIM_THRESHOLD_=-1



LULESH UPC
• LULESH authors advise:

"Do not make simplifications"
• None-the-less, I made some simplifications:

• Primarily for readability and clarity
• Why follow certain implementation choices? (e.g.

using temp arrays)
• Performance improvements in UPC at scale

• primarily due to locality management, not
simplifications

• UPC with one thread is slower than C++ serial
• Best UPC 298s, best C++ serial 283s



LULESH Naive UPC
• Replicate data to make it private where possible
• Shared arrays distributed cyclically (default)
• Poor compared to OMP



LULESH UPC Memory Layout
• Cyclic layout poor fit for communication pattern
• Contiguous layout (blocked) reduces communication

shared [*] double x[N * THREADS];



LULESH UPC Communication

Cyclic layout Contiguous layout



LULESH UPC Cast Shared to Private
• Use private pointer to the thread block in shared array

double* my_x = (double*)(x + MYTHREAD * BSIZE)



LULESH UPC Dynamic vs Static Mem
• Dynamic memory allocation worse than static
• From upcc man page, static has:

"potential for more aggressive compiler optimizations"
• But 48 is not a power-of-two



LULESH UPC Procs vs Pthreads
• One thread per process (one per core) is faster
• With procs, can pin threads and migrate static pages

migrate_pages(pid, maxnode, oldnodes, newnodes)

• (But only migrates private pages)



LULESH UPC Procs vs Pthreads
• At 48 cores, pthreads takes 33s, processes takes 22s.
• Top non-app code functions with pthreads:

upcr_wait_internal 15%
__ticket_spin_lock 3% (kernel)
gasnete_coll_broadcast 2%
gasnete_coll_gather 2%

• Top non-app code functions with pinned procs:

gasneti_AMPSHMPoll 5%
gasnete_pshmbarrier_wait 5%

• For comparison, collectives with pinned procs:

gasnete_coll_broadcast 0.2% (15x)
gasnete_coll_gather 0.04% (75x)



Lessons Learned
• On a large NUMA system, managing remote memory

access is key

–> good preparation for distributed memory?
• Parallel initialization in OMP for locality
• UPC:

• Replication to private can help, but limited by available
memory → replicate fixed amount?

• Explicitly cast to private whenever possible
• Contiguous blocking can be effective at reducing

communication
• With static memory, need to migrate pages after

pinning
• Procs can be significantly better than pthreads



A Final Mystery
LULESH best scaling on 48 cores:



OMP Scales Better "Cold"
After system restarts, OMP scales better



UPC Scales a Lot Better "Cold"
And an even more dramatic improvement for UPC

• For a while anyway
• After several runs, reverts to slow "hot" performance:

10s → 13s → 15s → 18s → 22s



NUMA?
• Find out what pages are mapped to what nodes for a

process from /proc/self/numa_maps
• No difference between local and remote mappings for

hot and cold
• Shared pages map 0.37 local, 0.37 near, 0.26 far
• Private pages map 1.0 local, 0.0 near, 0.0 far

• But NUMA seems to matter still
• Restrict memory to nodes 0-3:

• runtime cold 10s → 25s
• runtime hot 22s → 30s

• Don’t see it in XSBench
• Killing UPC accelerates future transitions to hot
• Time spent in kernel < 2%



Perf Counter Comparisons
Counter

Instructions/cycle
Stalled Instructions/cycle
Stalled cycles, frontend
Stalled cycles, backend
LS Buffer dispatch stalls
Cache refs
Cache misses
Ctx switches
Minor faults
TLB misses
node loads
node misses

"Cold"

1.20
0.41
3.8E+10
6.4E+11
4.1E+9
3.1E+11
1.2E+8
3979
3.3E+5
3.1E+11
4.3E+10
5.0E+9

"Hot"

0.71
0.99
3.7E+10
1.7E+12
2.0E+10
3.4E+11
1.3E+8
5289
3.3E+5
3.3E+11
4.3E+10
5.3E+9



Questions?

Ideas?



All Codesign Proxy Apps

Name Languages LOC
ExMatEx
CoMD C++/OCL 2548
HILO 1D/2D C/MPI 5003
LULESH C++/OMP 2350
VPFFT C++/OMP 2637
Exact
CNS_NoSpec F90/OMP/MPI 787
MultiGrid_C C++/OMP/MPI 1704
Cesar
mocfe_bone F90/MPI 6252
nekbone F90/MPI 30105
XSBench C/OMP 663



Codesign Proxy App Details
Name Time (s) Mflps Mips VM RSS Spd
ExMatEx
CoMD 192 229 2979 37 12 35.9
HILO 2D 50 563 1900 41 3 37.3
LULESH 342 1079 2303 121 89 4.4
VPFFT 70 622 2387 72 36 3.8
Exact
CNS_NoSpec 35 795 1994 599 553 13.6
MultiGrid_C 90 577 2257 2553 2474 21.5
Cesar
mocfe_bone 132 1096 3069 2366 2323 15.3
nekbone 244 1460 3157 927 272 27.0
XSBench 49 224 1798 287 260 7.8

Test platform: 48-core AMD Opteron 6174, 8 NUMA nodes,
128GB Mem


