
Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication Avoiding and Overlapping for
Numerical Linear Algebra

Evangelos Georganas1, Jorge González-Doḿınguez2,
Edgar Solomonik1, Yili Zheng3, Juan Touriño2,

Katherine Yelick1,3

1Department of Electrical Engineering and Computer Sciences, UC Berkeley
2Department of Electronics and Systems, University of A Coruña

3Lawrence Berkeley National Laboratory

June 4, 2013

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Table of contents

1 Introduction
Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

2 Linear algebra algorithms
Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

3 Performance modeling
Motivation
Methodology

4 Conclusions
Conclusions

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication is Expensive

Communication has two components:

I Bandwidth cost: # of words moved / bandwidth

I Latency cost: # messages × latency

Communication exists in memory hierarchy and network
Things are bad and getting worse:

flop time � 1/bandwidth� latency

Annual improvements [FOSC]
Flop time Bandwidth Latency

59%

Network 26% 15%
DRAM 23% 5%

Communication is also expensive in energy

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication is Expensive

Communication has two components:

I Bandwidth cost: # of words moved / bandwidth

I Latency cost: # messages × latency

Communication exists in memory hierarchy and network
Things are bad and getting worse:

flop time � 1/bandwidth� latency

Annual improvements [FOSC]
Flop time Bandwidth Latency

59%

Network 26% 15%
DRAM 23% 5%

Communication is also expensive in energy

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication is Expensive

Communication has two components:

I Bandwidth cost: # of words moved / bandwidth

I Latency cost: # messages × latency

Communication exists in memory hierarchy and network
Things are bad and getting worse:

flop time � 1/bandwidth� latency

Annual improvements [FOSC]
Flop time Bandwidth Latency

59%

Network 26% 15%
DRAM 23% 5%

Communication is also expensive in energy

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation
I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):

I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation
I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms

I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation
I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation
I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):

I Reduces the impact of each communication event by
overlapping it with computation

I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation

I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation
I Hides bandwidth and/or latency cost

I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
I Leads to provably optimal algorithms
I There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
I Reduces the impact of each communication event by

overlapping it with computation
I Hides bandwidth and/or latency cost
I Most effective if communication & computation are balanced

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

I We studied these techniques in three Linear Algebra routines:
I Matrix Multiplication (SUMMA and Cannon’s algorithms)
I Cholesky factorization
I Triangular Solve

I Prior algorithms but novel implementations

 Optimizations
 Algorithm

Overlapping Avoidance Overlapping
& Avoidance

SUMMA PRIOR PRIOR

Cannon’s

PRIOR PRIOR

Cholesky PRIOR

TRSM PRIOR

∗Uses replication but not communication optimal

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

I We studied these techniques in three Linear Algebra routines:
I Matrix Multiplication (SUMMA and Cannon’s algorithms)
I Cholesky factorization
I Triangular Solve

I Prior algorithms but novel implementations

 Optimizations
 Algorithm

Overlapping Avoidance Overlapping
& Avoidance

SUMMA PRIOR PRIOR

Cannon’s

PRIOR PRIOR

Cholesky PRIOR

TRSM PRIOR

∗Uses replication but not communication optimal

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

I We studied these techniques in three Linear Algebra routines:
I Matrix Multiplication (SUMMA and Cannon’s algorithms)
I Cholesky factorization
I Triangular Solve

I Prior algorithms but novel implementations

 Optimizations
 Algorithm

Overlapping Avoidance Overlapping
& Avoidance

SUMMA PRIOR PRIOR NEW

Cannon’s

PRIOR
NEW: One sided
communication

PRIOR
NEW: One sided
communication

NEW

Cholesky PRIOR NEW NEW

TRSM PRIOR NEW* NEW*

∗Uses replication but not communication optimal

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:

1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:
1. Which is more important? CA or CO?

It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:
1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:
1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques?

Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:
1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:
1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations?

Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

Three major questions arise:
1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Table of contents

1 Introduction
Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

2 Linear algebra algorithms
Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

3 Performance modeling
Motivation
Methodology

4 Conclusions
Conclusions

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Matrix Multiplication (SUMMA)
[Van De Geijn and Watts 97]

tim
e

I Outer product form of Mat Mul

I Partitions A, B and C in 2 dimensions

I Row and column broadcast on 2D grid
I Costs:

I O(n3/p) flops
I O(n2/

√
p) words moved

I O(
√

p) messages

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Matrix Multiplication with CO (SUMMA)

I We overlap the broadcasts of next iteration with the local
Mat.Mul computation of current iteration

I Theoretically the execution time becomes
texec = O(max(tcomputation, tcommunication))

I If communication and computation are balanced we can
achieve up to 2× speedup

I Additional communication buffers are needed

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Experimental setup

I Experiments on Hopper, a Cray XE6 system (153,216 cores)

I We will focus on communication-limited problems (i.e. small
problems on large machine configurations)

I Strong scaling experiments

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Overlapping yields more benefits at medium scale

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

Pe
rc

en
ta

ge
 o

f M
ac

hi
ne

 P
ea

k

Number of cores

SUMMA on Hopper (n=16384)

2D
2D-overlp

I At medium scale where communication and computation are
balanced we observe larger benefits (1.34× speedup)

I At large scale overlapping does not help

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Overlapping yields more benefits at medium scale

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

Pe
rc

en
ta

ge
 o

f M
ac

hi
ne

 P
ea

k

Number of cores

SUMMA on Hopper (n=16384)

2D
2D-overlp

I At medium scale where communication and computation are
balanced we observe larger benefits (1.34× speedup)

I At large scale overlapping does not help

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Matrix Multiplication (SUMMA)
[McColl and Tiskin 99], [Solomonik and Demmel 11]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

32 CPUs (4x4x2)

2 copies of matrices

I The 2.5D algorithm uses extra
memory to reduce communication

I Each one of the c layers of processors
computes a different contribution to
the matrix C

I Works for c copies, c ∈ [1, p1/3]
I Costs:

I O(n3/p) flops
I O(n2/

√
c · p) words moved

I O(
√

p/c3) messages

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Communication avoidance helps a lot at large scale

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

Pe
rc

en
ta

ge
 o

f M
ac

hi
ne

 P
ea

k

Number of cores

SUMMA on Hopper (n=16384)

2D
2.5D

I At large scale avoidance helps a lot (2.08× speedup) (there is
a lot of communication to avoid!)

I At medium scale communication avoidance may yield
slowdown

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Communication avoidance helps a lot at large scale

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

Pe
rc

en
ta

ge
 o

f M
ac

hi
ne

 P
ea

k

Number of cores

SUMMA on Hopper (n=16384)

2D
2.5D

I At large scale avoidance helps a lot (2.08× speedup) (there is
a lot of communication to avoid!)

I At medium scale communication avoidance may yield
slowdown

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Matrix Multiplication with CO (SUMMA)

I We overlap the broadcasts of the next iteration with the local
Mat.Mul computation of current iteration on each of the c
processor layers

I Additional communication buffers are needed on top of
the extra memory needed for replication

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Putting everything together

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

ch
in

e
 P

e
a

k

Number of cores

SUMMA on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

I At medium scale overlapping itself yields best
performance

I At large scale combining both techniques pays off

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Cannon’s algorithm

I In SUMMA we use collective communication operations

I In Cannon’s algorithm the communication needed is shifting
I The same techniques can be applied for Cannon’s algorithm
I Use fast one-sided communication provided by UPC

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f
M

a
ch

in
e

 P
e

a
k

Number of cores

Cannon on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Cannon’s algorithm

I In SUMMA we use collective communication operations
I In Cannon’s algorithm the communication needed is shifting

I The same techniques can be applied for Cannon’s algorithm
I Use fast one-sided communication provided by UPC

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f
M

a
ch

in
e

 P
e

a
k

Number of cores

Cannon on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Cannon’s algorithm

I In SUMMA we use collective communication operations
I In Cannon’s algorithm the communication needed is shifting
I The same techniques can be applied for Cannon’s algorithm

I Use fast one-sided communication provided by UPC

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f
M

a
ch

in
e

 P
e

a
k

Number of cores

Cannon on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Cannon’s algorithm

I In SUMMA we use collective communication operations
I In Cannon’s algorithm the communication needed is shifting
I The same techniques can be applied for Cannon’s algorithm
I Use fast one-sided communication provided by UPC

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f
M

a
ch

in
e

 P
e

a
k

Number of cores

Cannon on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Cannon’s algorithm

I In SUMMA we use collective communication operations
I In Cannon’s algorithm the communication needed is shifting
I The same techniques can be applied for Cannon’s algorithm
I Use fast one-sided communication provided by UPC

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

ch
in

e
 P

e
a

k

Number of cores

Cannon on Hopper (n=16384)

2D
2D-overlp
2.5D
2.5D-overlp

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization

I Factorize a symmetric positive definite matrix A into
A = L · LT , where L is lower triangular

I Take advantage of symmetry and store only half of matrix A

I Employ block-cyclic layout for load-balance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization

1. Factorize the upper-left (green) block &
broadcast it to the column

2. Update via TRSM the (yellow) block column

3. Broadcast the factorized column in two phases
& update the trailing matrix (white blocks)

4. Continue with the factorization of the second
block column and repeat previous steps until all
matrix is factorized

I Communication involved is row and column broadcasts

I There are dependencies among rows and column during
factorization

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization

1. Factorize the upper-left (green) block &
broadcast it to the column

2. Update via TRSM the (yellow) block column

3. Broadcast the factorized column in two phases
& update the trailing matrix (white blocks)

4. Continue with the factorization of the second
block column and repeat previous steps until all
matrix is factorized

I Communication involved is row and column broadcasts

I There are dependencies among rows and column during
factorization

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization

1. Factorize the upper-left (green) block &
broadcast it to the column

2. Update via TRSM the (yellow) block column

3. Broadcast the factorized column in two phases
& update the trailing matrix (white blocks)

4. Continue with the factorization of the second
block column and repeat previous steps until all
matrix is factorized

I Communication involved is row and column broadcasts

I There are dependencies among rows and column during
factorization

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization

1. Factorize the upper-left (green) block &
broadcast it to the column

2. Update via TRSM the (yellow) block column

3. Broadcast the factorized column in two phases
& update the trailing matrix (white blocks)

4. Continue with the factorization of the second
block column and repeat previous steps until all
matrix is factorized

I Communication involved is row and column broadcasts

I There are dependencies among rows and column during
factorization

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization

1. Factorize the upper-left (green) block &
broadcast it to the column

2. Update via TRSM the (yellow) block column

3. Broadcast the factorized column in two phases
& update the trailing matrix (white blocks)

4. Continue with the factorization of the second
block column and repeat previous steps until all
matrix is factorized

I Communication involved is row and column broadcasts

I There are dependencies among rows and column during
factorization

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization with overlapping

1. Factorize the 1st block-column

2. Broadcast factorized column

3. Update & factorize only the 2nd block-column

4. Overlap
I broadcast of the 2nd block-column
I update of the rest trailing matrix

(using 1st block-column)

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization with overlapping

1. Factorize the 1st block-column

2. Broadcast factorized column

3. Update & factorize only the 2nd block-column

4. Overlap
I broadcast of the 2nd block-column
I update of the rest trailing matrix

(using 1st block-column)

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization with overlapping

1. Factorize the 1st block-column

2. Broadcast factorized column

3. Update & factorize only the 2nd block-column

4. Overlap
I broadcast of the 2nd block-column
I update of the rest trailing matrix

(using 1st block-column)

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2D Cholesky factorization with overlapping

1. Factorize the 1st block-column

2. Broadcast factorized column

3. Update & factorize only the 2nd block-column

4. Overlap
I broadcast of the 2nd block-column
I update of the rest trailing matrix

(using 1st block-column)

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Cholesky factorization
[McColl and Tiskin 99], [Solomonik and Demmel 11]

I Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
layer & update trailing matrices

3. All-reduce the next ”fat” panel to
accumulate the updates

I At step 2 we can overlap computation and communication
similarly to the 2D version

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Cholesky factorization
[McColl and Tiskin 99], [Solomonik and Demmel 11]

I Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
layer & update trailing matrices

3. All-reduce the next ”fat” panel to
accumulate the updates

I At step 2 we can overlap computation and communication
similarly to the 2D version

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Cholesky factorization
[McColl and Tiskin 99], [Solomonik and Demmel 11]

I Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
layer & update trailing matrices

Recall	
 matrix	
 mul-plica-on	
 !!!	

3. All-reduce the next ”fat” panel to
accumulate the updates

I At step 2 we can overlap computation and communication
similarly to the 2D version

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Cholesky factorization
[McColl and Tiskin 99], [Solomonik and Demmel 11]

I Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
layer & update trailing matrices

3. All-reduce the next ”fat” panel to
accumulate the updates

I At step 2 we can overlap computation and communication
similarly to the 2D version

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

2.5D Cholesky factorization
[McColl and Tiskin 99], [Solomonik and Demmel 11]

I Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
layer & update trailing matrices

3. All-reduce the next ”fat” panel to
accumulate the updates

I At step 2 we can overlap computation and communication
similarly to the 2D version

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Performance results on Hopper (Cray XE6)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1536 6144 24576

P
e
rc

e
n
ta

g
e
 o

f
M

a
ch

in
e
 P

e
a
k

Number of cores

Cholesky on Hopper (n=65536)

2D-overlp
2D
2.5D-overlp
2.5D

I CO helps more at the smallest scale (1,536 cores)
I Have not reached yet the cross-point of CA and 2D
I Future work: Aggregate updates to improve performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Triangular Solve (TRSM)

I Computes X , such that X · U = B with upper-triangular U
I Similar parallelization to Cholesky

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

P
e
rc

e
n
ta

g
e
 o

f
M

a
ch

in
e
 P

e
a
k

Number of cores

Triangular Solve on Hopper (n=32768)

2D
2D-overlp
2.5D
2.5D-overlp

I At small scale overlapping outperforms other versions

I At large scale the combining optimizations is the best option

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

Triangular Solve (TRSM)

I Computes X , such that X · U = B with upper-triangular U
I Similar parallelization to Cholesky

 0

 5

 10

 15

 20

 25

 30

 35

 1536 6144 24576

P
e

rc
e

n
ta

g
e

 o
f

M
a

ch
in

e
 P

e
a

k

Number of cores

Triangular Solve on Hopper (n=32768)

2D
2D-overlp
2.5D
2.5D-overlp

I At small scale overlapping outperforms other versions
I At large scale the combining optimizations is the best option

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Table of contents

1 Introduction
Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

2 Linear algebra algorithms
Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

3 Performance modeling
Motivation
Methodology

4 Conclusions
Conclusions

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:

I Introduce four different algorithmic variants for each routine
I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine

I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine
I Have different memory requirements

I Lead to performance gains dependent on the problem size, the
algorithm and the machine configuration

I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine
I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration

I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine
I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine
I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine
I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Can we explain the behavior of CO and CA?

I Communication avoiding and overlapping:
I Introduce four different algorithmic variants for each routine
I Have different memory requirements
I Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
I Tunable parameters with complicated interactions

 Effect
Parameter

messages load
balance

computation
efficiency

block size é ê ê é
replication é é/ê é/ê NA

fat panel sizeé ê ê NA

I Communication performance depends on number of processors

I Given a problem instance and a machine configuration
would like to predict the optimal variant

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models

I Inputs: matrix size, # of processors, BLAS efficiency, LogGP
parameters, block sizes, replication factors, fat panel sizes

I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks
I Estimate communication times through LogGP model

(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models
I Inputs: matrix size, # of processors, BLAS efficiency, LogGP

parameters, block sizes, replication factors, fat panel sizes

I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks
I Estimate communication times through LogGP model

(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models
I Inputs: matrix size, # of processors, BLAS efficiency, LogGP

parameters, block sizes, replication factors, fat panel sizes
I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks
I Estimate communication times through LogGP model

(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models
I Inputs: matrix size, # of processors, BLAS efficiency, LogGP

parameters, block sizes, replication factors, fat panel sizes
I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks
I Estimate communication times through LogGP model

(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models
I Inputs: matrix size, # of processors, BLAS efficiency, LogGP

parameters, block sizes, replication factors, fat panel sizes
I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks

I Estimate communication times through LogGP model
(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models
I Inputs: matrix size, # of processors, BLAS efficiency, LogGP

parameters, block sizes, replication factors, fat panel sizes
I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks
I Estimate communication times through LogGP model

(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Methodology for constructing performance models

I We construct detailed performance models
I Inputs: matrix size, # of processors, BLAS efficiency, LogGP

parameters, block sizes, replication factors, fat panel sizes
I Output: Estimate for execution time of algorithm

I We track the execution flow of each algorithm and estimate
completion time for encountered operation

I Estimate computation times through BLAS microbenchmarks
I Estimate communication times through LogGP model

(collective models from [Thakur, Rabenseifner, Gropp 2005])

I We take into account possible idle times

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

First approach: Ignore network congestion

I We predict correctly the relative performance of the CA
algorithms

I Prediction of absolute performance is inaccurate

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

First approach: Ignore network congestion

I We predict accurately the computation time

I We ignore congestion → optimistic communication time

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Quantify degradation due to congestion

I Calibration factor: ideal BW
real BW when several processes use the

network simultaneously

I Extract calibration factors via microbenchmarks

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Quantify degradation due to congestion

I Calibration factor: ideal BW
real BW when several processes use the

network simultaneously

I Extract calibration factors via microbenchmarks

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Quantify degradation due to congestion

I Calibration factor: ideal BW
real BW when several processes use the

network simultaneously

I Extract calibration factors via microbenchmarks

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Including calibration factors in the models

I We predict accurately the absolute performance

I Similar results for the rest algorithms

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Motivation
Methodology

Including calibration factors in the models

I We predict accurately the absolute performance

I Similar results for the rest algorithms

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Table of contents

1 Introduction
Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

2 Linear algebra algorithms
Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

3 Performance modeling
Motivation
Methodology

4 Conclusions
Conclusions

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO?

It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends

I For core counts where communication and computation are
balanced CO helps more (up to 1.82× speedup)

I For larger core counts CA is more beneficial (up to 2.08×
speedup)

2. Is there a benefit from combining both techniques? Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques?

Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes

I CO helps further hide the minimized communication by CA
(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations?

Yes - Performance models
I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO? It depends
I For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
I For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes
I CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

I We developed detailed performance models
I They encapsulate complicated interactions between parameters
I They predict correctly the performance

Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Thank you!

	Introduction
	Communication is Expensive
	Communication avoidance vs Overlapping
	CA and CO in Linear Algebra

	Linear algebra algorithms
	Matrix Multiplication
	Cholesky factorization
	Triangular Solve (TRSM)

	Performance modeling
	Motivation
	Methodology

	Conclusions
	Conclusions

