
UNIVERSITY OF
CALIFORNIA

Eric Roman

Resilient Runtimes for
Global Address
Languages
DEGAS Retreat

June 4, 2013

DEGAS

Introduction
Describe resilience efforts in DEGAS project

BLCR
Motivation: High-level requirements from a simple performance model
Design: Role of software components

Project goal
Deliver a resilient programming environment for PGAS applications

Activities
Performance models
Resiliency support for communications layer and language runtime
Integrated checkpoint/restart
Programming model for resilience

DEGAS

BLCR Goals

Provide checkpoint/restart for Linux systems running scientific workloads.

 Checkpoint and restart shell scripts running MPI applications.

Fit easily into production systems

Run unmodified application source.

Run unmodified binaries. If possible, users should not have to relink codes.

Run on unpatched kernels.

Run with unmodified system libraries. (e.g. libc)

Unrelated features (ptrace, Unix domain sockets) have low implementation priority

Why checkpoint?

 We see three main scenarios: scheduling, fault tolerance and debugging.

DEGAS

Example: Migrating A
Process

DEGAS

Fault Tolerance

Rollback recovery

 Not every application can checkpoint itself.

 BLCR tries to make every process checkpointable.

Periodic checkpoints

 Checkpoint the job at regular intervals.

 On system startup, restart jobs from their last complete
checkpoint.

 Useful for systems with long jobs, fast I/O, and/or high node
failure rates.

DEGAS

Status

Processes, process groups and sessions

 Shell scripts (bash, tcsh, python, perl, ruby, ...)

 Multithreaded processes (pthreads with standard NPTL)

 Resources shared between processes are restored.

 Restore PID and parent PID.

Files

 Reopen files during restart: open, truncate, and seek.

 Pipes and named FIFOs

 Files must exist in same location on filesystem

 Memory mapped files are remapped.

 Option to save shared libraries and executable.

 File path relocation

DEGAS

Supported Platforms

Linux kernel 2.6

test with kernels from kernel.org,
Fedora, SuSE, and Ubuntu

support of custom patched
kernels through autoconf

Architectures

x86, x86-64, ppc, ppc64 and
ARM

Xen dom0 and domU
MPI

MVAPICH2

MPICH-V 1.0.x with sockets

OpenMPI

Cray Portals

MPICH2

SGI

Queue Systems

Torque support available as
of Torque 2.4.

qhold, qrls, and periodic
checkpoints tested.

BLCR, Condor and Parrot
HOWTO available.

SLURM

DEGAS

MPI

Normal execution with Open MPI

DEGAS

MPI: Checkpoint/Restart

DEGAS

Recent BLCR Activity
Queue system support

 BLCR, Torque, and OpenMPI

 Preemptive scheduling via priority queues under Maui

 Incremental checkpointing

Optimizations

 (1) Combining small I/O requests yields greater I/O efficiency.

 (2) In-kernel compression of checkpoint data reduces transfer times and storage
requirements.

 (3) Incremental checkpointing reduces transfer times and storage requirements by
recording only the state that has changed since the previous checkpoint.

 (4) Memory-exclusion hints enable user-space code (such as an MPI implementation) to
exclude “unimportant” memory from the checkpoint (such as empty receive buffers in an MPI
implementation).

 (5) “Live-migration” moves a still-running process from one compute node to another
without need for any intermediate storage.

 (6) In-place rollback allows the recovery step to return an existing process to state
recorded in an earlier checkpoint without the overhead of destroying the process and creating
a new one.

DEGAS

Resiliency Modeling Approach
Start from fairly general model, proceed to special cases

Construct finite state models of system and express as timed automata
Approximate timed automata with continuous Markov model

Use methods from reliability engineering to derive performance parameters

Model Method

1. Stochastic timed automata Discrete event simulation

2. Markov model Laplace transform and matrix algebra to solve first-
order ODEs

3. Analytic model Taylor expansion to first order in failure rate

4. Algebraic model Back of an envelope

DEGAS

Three-State Checkpoint Model

Checkpoint

Work

μ

λ
ρ

δ

RestartWhen app handles some failures,
then interpret λ as how often to restart

DEGAS

Availability in the Three-State Model
Steady-state probability of being in each state given by vector Π

Working Restart and rework Checkpointing

Optimal checkpoint interval:

Working state probability has an optimum value of t.

DEGAS

If Checkpoint and Restart Times Equal
1. Assume c=b
2. Introduce “dimensionless” checkpoint interval τ = t/m = (2c/m)1/2

Working Restart and rework Checkpointing

To first order:

In terms of the checkpoint time, we have:

DEGAS

Optimal Availability by Checkpoint Speed
Thin lines show a first-order
 approximation.

e = (MTTF/c)1/2

Only two parameters are
MTTF and c.

100X increase in MTTF/c
for 10X decrease in
overhead.

10% overhead @ MTTF/c = 200
50% overhead @ MTTF/c = 4

DEGAS

Overview of Effort

Checkpoint/restart
Containment Domains

BLCR
GASNet
UPC Runtime
Modeling for performance requirements
Load balancing

Two new components:
Logging
Replica Management

