:
Z

fFfrereer

A

BERKELEY LAB

Lawrence Berkeley National Laboratory

U.S. DEPARTMENT OF

ENERGY

UNIVERSITY OF
CALIFORNIA

-~
A
Frrercrerer it

BERKELEY LAB Lawrence Berkeley National Laboratory

& i\
{0) ENERGY

Eric Roman
Resilient Runtimes for

Global Address
Languages

DEGAS Retreat

June 4, 2013

Introduction

Describe resilience efforts in DEGAS project

BLCR
Motivation: High-level requirements from a simple performance model

Design: Role of software components

Project goal
Deliver a resilient programming environment for PGAS applications

Activities
Performance models
Resiliency support for communications layer and language runtime
Integrated checkpoint/restart
Programming model for resilience

Frercerr ‘Iﬁ

BERKELEY LAB

BLCR Goals

Provide checkpoint/restart for Linux systems running scientific workloads.
Checkpoint and restart shell scripts running MPI applications.

Fit easily into production systems
Run unmodified application source.
Run unmodified binaries. If possible, users should not have to relink codes.

Run on unpatched kernels.
Run with unmodified system libraries. (e.g. libc)

Unrelated features (ptrace, Unix domain sockets) have low implementation priority

Why checkpoint?

We see three main scenarios: scheduling, fault tolerance and debugging.

Frercerr ‘Iﬁ

BERKELEY LAB

Example: Migrating A
Process

n2001% ssh pcp-x-2

Last login: Wed May 14 14:58:12 2008 from old

Have a lot of fun...

pcp-x-2% module load blcr

pcp-x-2% cd /home/pcpl/eroman/src/lbnl cr/build.pcp-x-1/examples/counting
pcp-x-2% 1ls

context.3382 counting counting.o Makefile

pcp-x-2% cr_restart context.3382

Count =
Count
Count

5
6
7

........................ pcp-x-2% []

r)(gaius:~ <2> g@ [E]
pcp-x-1% ./counting
Counting demo starting with pid 3382
Count = @
Count =1
Count = 2
Count = 3
Count = 4
[1] 3382 killed ./counting
pcp-x-1% []
X xterm E]E] E]

Frercerr ‘Iﬁ

BERKELEY LAB

Fault Tolerance

Rollback recovery
Not every application can checkpoint itself.
BLCR tries to make every process checkpointable.

Periodic checkpoints
Checkpoint the job at regular intervals.

On system startup, restart jobs from their last complete
checkpoint.

Useful for systems with long jobs, fast |/O, and/or high node
failure rates.

Status

Processes, process groups and sessions
Shell scripts (bash, tcsh, python, perl, ruby, ...)
Multithreaded processes (pthreads with standard NPTL)
Resources shared between processes are restored.
Restore PID and parent PID.

Files
Reopen files during restart: open, truncate, and seek.
Pipes and named FIFOs
Files must exist in same location on filesystem
Memory mapped files are remapped.
Option to save shared libraries and executable.
File path relocation

Frercerr ‘Iﬁ

BERKELEY LAB

Supported Platforms

Linux kernel 2.6 Queue Systems
test with kernels from kernel.org, Torque support available as
Fedora, SUSE, and Ubuntu of Torque 2.4.
support of custom patched ghold, grls, and periodic
kernels through autoconf checkpoints tested.
Architectures BLCR, Condor and Parrot
x86, x86-64, ppc, ppcb4 and HOWTO available.
ARM SLURM
Xen dom0 and domU
MPI
MVAPICH2
MPICH-V 1.0.x with sockets
OpenMPI
Cray Portals
MPICH?2
QR

VJ1

Frercerr ‘Iﬁ

BERKELEY LAB

MPI

Normal execution with Open MPI

" gaiusi~<2> ©
pcp-x-1% !mpir
mpirun -am ft-enable-cr -np 2 lu.A.2

NAS Parallel Benchmarks 2.2 -- LU Benchmark

Size: 64x 64X 64
Iterations: 250
Number of processes: 2

Time step 1
Time step 20
mpirun: killing job...

mpirun was unable to cleanly terminate the daemons on the nodes shown
below. Additional manual cleanup may be required - please refer to
the "orte-clean" tool for assistance.

Frercerr ‘Iﬁ

BERKELEY LAB

MP

I: Checkpoint/Restart

pcp-X-

eroman
nable-
eroman

pcp-X-

pcp-x-

pcp-x-
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

FX gaius:~ <3>

1% !ps

ps auxw | grep mpirun

4188 0.2 0.7 114188 3712 pts/e S1+
cr -np 2 1u.A.2

4196 ©.0 ©.1 9252 828 pts/3 R+
1% ompi-checkpoint 4188

Snapshot Ref.: © ompi_global snapshot 4188.ckpt

1% kill 4188
1% ompi-restart ompi global snapshot 4188.ckpt
step 40
step 6@
step 8@
step 100
step 120
step 140
step 160
step 180
step 200
step 220

21:17

21:17

=Je) (]

0:00 mpirun -am ft-e

©:00 grep mpirun

Frercerr ‘Iﬁ

BERKELEY LAB

Recent BLCR Activity

Queue system support
BLCR, Torque, and OpenMPI
Preemptive scheduling via priority queues under Maui
Incremental checkpointing

Optimizations
(1) Combining small I/O requests yields greater I/O efficiency.

(2) In-kernel compression of checkpoint data reduces transfer times and storage
requirements.

(3) Incremental checkpointing reduces transfer times and storage requirements by
recording only the state that has changed since the previous checkpoint.

(4) Memory-exclusion hints enable user-space code (such as an MPI implementation) to
exclude “unimportant” memory from the checkpoint (such as empty receive buffers in an MPI
implementation).

(5) “Live-migration” moves a still-running process from one compute node to another
without need for any intermediate storage.

(6) In-place rollback allows the recovery step to return an existing process to state
recorded in an earlier checkpoint without the overhead of destroying the process and creating
a new one.

Frercerr ‘Iﬁ

BERKELEY LAB

Resiliency Modeling Approach

Start from fairly general model, proceed to special cases
Construct finite state models of system and express as timed automata
Approximate timed automata with continuous Markov model

Use methods from reliability engineering to derive performance parameters

Model Method
1. Stochastic timed automata Discrete event simulation
2. Markov model Laplace transform and matrix algebra to solve first-
order ODEs
3. Analytic model Taylor expansion to first order in failure rate
4. Algebraic model Back of an envelope

Frercerr ‘Iﬁ

BERKELEY LAB

Three-State Checkpoint Model

Symbol Rate Description
A Failure rate Inverse of failure rate
) Checkpoint rate Inverse of checkpoint interval
L4 Checkpoint speed Inverse of checkpoint time
0 Recovery speed Inverse of restart and rework time b+ ¢/2

Checkpoint
@
o

Work

@
I,
When app handles some failures,

then interpret A as how often to restart

Availability in the Three-State Model

Steady-state probability of being in each state given by vector I

m b+t/2 (m/t)c
m+b+t/2+ (m/t)c’ m+b+t/2+ (m/t)e’ m+b+t/2+ (m/t)c

Working Restart and rework Checkpointing
Optimal checkpoint interval:

Working state probability has an optimum value of t.

tg = Vv 2mec.
m b+ 2t V24

H: ? ?
m+b+ V2t m+b+ 2ty m+b+ 2t

If Checkpoint and Restart Times Equal

1. Assume c=b

2. Introduce “dimensionless” checkpoint interval 1 = t/m = (2¢/m)™?

B 1 T/2+72%/2 T/2
|14 T T2/ 1T+ T2/27 1T+ T2)2
Working Restart and rework Checkpointing

To first order:
M~ [1—7,17/2, 7/2]

In terms of the checkpoint time, we have:

0 -1 [2¢ & &]
~ m’ 2m’ \ 2m’

Optimal Availability by Checkpoint Speed

Thin lines show a first-order

: : Optimal availabilities with equal checkpoint and restart times.
approximation.

1

~ working (X=1) ———

e = (MTTF/c)1/2 checkpointin —
restart an rk (X=3) ——
0.8 + 1
Only two parameters are x¢
MTTF and c. %
»w 06 |
=

100X increase in MTTF/c.
for 10X decrease in
overhead.

©
N

Probability

0.2

10% overhead @ MTTF/c = 200
50% overhnead @ MTTF/c=4 ¢

1 bound 10 100 1000
Checkpoint speed (MTTF/c)

Frercerr ‘Iﬁ

BERKELEY LAB

Overview of Effort

Checkpoint/restart
Containment Domains

BLCR

GASNet

UPC Runtime

Modeling for performance requirements
Load balancing

Two new components:

Logging
Replica Management

