
The Future of GASNet
Paul H. Hargrove

 PHHargrove@lbl.gov

https://sites.google.com/a/lbl.gov/gasnet-ex-collaboration/

Overview

• High-level introduction
– GASNet’s role in DEGAS

• Mid-level introduction
– A survey of the current GASNet API

• The Future
– A survey of the GASNet-EX plans

HIGH-LEVEL INTRODUCTION

GASNet Background

• NOT an API for
applications authors

– Library/runtime authors
– Machine-generated code

• Rich set of one-sided
Put/Get interfaces

– Good mapping to
capabilities of modern
network H/W

• Active Messages
– “Function Shipping”
– “Remote Procedure Call”

• MPI-interoperable
– (most of the time)

Project Role for Communications

• “Communication is an artifact”
– We don’t communicate for its own sake

• Enable efficient implementation of
high-level language ideas

• Support communication needs of the other
project components (BLCR, IPM, etc.)

• Will need requirements gathering
– Already have feedback from

• Yili – re: Echelon/Sequioa & re: implementing collectives
• Rice – re: CAF runtime
• Cray – re: Chapel runtime (they’ve not complained yet)

To serve…

Evolutionary Work

• Better support for asynchronous runtimes
– Don’t assume ever library entry is a “yield”
– Finer-grained buffer management/ownership

• Better support for Active Messages clients
– More flexible “work flows”
– Better buffer management approach(es)

Revolutionary Work

• Support resilience and migration efforts
– “Consistent” checkpointing of GASNet jobs
– Enable migration (platform independent manner)

• Introspection and instrumentation
– For IPM, adaptation and autotuning

• Dynamic job membership
• Multi-client support (hybrid applications)
• More thread-centric (vs. process-centric)

SURVEY OF THE CURRENT
GASNET API

GASNet Core API

• GASNet Core API
– Job Control

• Init, Attach and Exit
– Active Messages

• Categories: Short, Medium and Long
• Request and Reply

– Atomicity Control
• Handler-Safe Locks and No-Interrupt Sections

GASNet Core: Job Control

• gasnet_init()
– Analogous to MPI_Init()
– Might spawn processes on some platforms
– Call exactly once per process (“node”)

• gasnet_attach()
– Roughly analogous to MPI_Win_create()
– Allocates the GASNet segment
– Call exactly once per process

• ganet_exit()
– Roughly like MPI_Finalize() with a timeout

GASNet Core: Active Messages I

• An Active Message (AM) is a remote procedure call
– Specify node on which to run
– Specify function by index (established at attach)
– Some number of 32-bit integer arguments
– Optional payload determined by “category”

• Three “Categories” of AM
– Short: no payload
– Medium: payload in GASNet-managed buffer
– Long: payload in caller-specified location

• Location must be “in-segment”

GASNet Core: Active Messages II

• Initiating an AM Request (where M is an integer):
– gasnet_AMRequestShortM()
– gasnet_AMRequestMediumM()
– gasnet_AMRequestLongM()
– gasnet_AMRequestLongAsyncM()

• Initiator specifies target node, args and payload
• Medium and Long block until payload is reusable
• LongAsync may return before payload is reusable

– A Reply is required to release the payload

GASNet Core: Active Messages III

• An Active Message “handler”
– Client-provided code runs on the target node
– May run “synchronously”

• Client should occasionally call gasnet_AMPoll()
– GASNet may run handlers asynchronously

• True even if client is single-threaded

• Client provide the handler code matching template
prototype, which includes:

– An opaque “token”
– Payload address and length (Medium and Long)
– The 32-bit handler arguments

GASNet Core: Active Messages IV

• A Request Handler (the code run remotely)
– May use Handler-Safe Locks

• More on this later
– May reply at most once to the initiator

• Reply functions have a token arg in place of node
– May make a limited set of other GASNet calls

• NOT permitted to make AM Requests
• NOT permitted to make Extended API calls

• Issuing Replies (where M is an integer)
– gasnet_AMReplyShortM()
– gasnet_AMReplyMediumM()
– gasnet_AMReplyLongM()

GASNet Core: Atomicity Control

• Handler-Safe Locks (aka HSLs)
– Like pthread mutexes with usage restrictions
– AM handler may acquire an HSL, but must
release before return

– While holding an HSL a client must not
• Make GASNet communication calls
• Make calls to gasnet_AMPoll()

– May not be acquired recursively
– Must be released in reverse order of acquisition

• No-Interrupt Sections
– Suspends interrupt-driven handler execution
– Similar to blocking POSIX signals

GASNet Survey: Extended API

• The Extended API
– Put and Get

• Memory-to-memory and Register-based
• Blocking, Explicit-handle NB, Implicit-handle NB
• Bulk and non-bulk

– Barrier
– Unofficial additions

• A “reference implementation” implements the
entire Extended API in terms of the Core

– Network/platform specific code can individually
replace portions with optimized versions

Extended API: memory and registers

• Memory-to-memory transfers:
– Destination of a Put must be in-segment
– Source of a Get must be in-segment
– Local address is unconstrained

• Register-to-memory and memory-to-register:
– Can Put values passed by-value
– Can Get values as function return value
– Remote address must be in-segment
– Limited to 1, 2, 4 or 8-byte quantities

Extended API: blocking and non-blocking

• Three variants of most Put and Get calls
– Blocking

• Calls return when data movement is complete
– Explicit-handle non-blocking (“nb”)

• Calls return a handle used to block/poll for the
completion of data movement

• Can try or wait single, “some” or “all” handles
– Implicit-handle non-blocking (“nbi”)

• Calls have void return type
• Synchronize (wait or try) for outstanding nbi

operations (Put, Gets or All)
• Can use “access regions” to convert a series of

nbi operation into a single explicit handle

Extended API: bulk and non-bulk

• Two “flavors” of Put and Get call
– Independent of blocking, nb and nbi

• Bulk
– No requirement on alignment of address or size
– For non-blocking Put, the source buffer is not
safe to reuse until the operation is completed

• Non-bulk
– Address and size must be “aligned”
– Non-blocking Puts don’t return until the source
buffer is safe to reuse

Extended API: Barrier

• GASNet’s barrier is modeled after UPC’s
• Barrier is “split-phased”

– Step 1: Notify
• Imagine incrementing an arrival counter

– Step 2: Wait or Try
• Imagine blocking or polling the counter

– Client can do work between these steps
• Barrier is optionally “named”

– Each node may independently specify an
integer value or the “anonymous” flag

– If more than one distinct value is passed then an
error code is returned from the wait or try call

Extended API: Unofficial Extras

• VIS: Vector, Indexed and Strided
– Calls to Put or Get non-contiguous data
– Vector: array of (addr,len) pairs
– Indexed: array of indices and a single length
– Strided: slices of multi-dimensional arrays

• Collectives
– Based on UPC data-movement collectives

• Broadcast, scatter, gather, gather-all, exchange
– Non-blocking and blocking
– Specialized interfaces for threaded clients
– “Teams” support almost complete

SURVEY OF FUTURE WORK
(GASNET-EX)

Future: High-Level I

• Multi-client support
– No longer limited to single Init and Attach
– Can have multiple segments (memory regions)
– Can have multiple AM handler tables

• Resilience and migration support
– Implementation-level work to “run-through”
– Mechanisms to expose errors to client

• Return codes and error callbacks
• Sparse naming of nodes (processes)

• Dynamic job membership
– Can add and remove compute nodes

Future: High-Level II

• Unofficial features become official
– Document the VIS extensions
– Complete Collectives with simpler interface

• Remove unused/unimplemented features
– No-interrupt sections

• No client uses them correctly anyway!
• Never had an interrupt-driven platform

– PARSYNC (like MPI_THREAD_SERIALIZED)
• Not aware of any client for this mode
• Never implemented better than PAR

Future: High-Level III

• Progress Functions
– Client-provided code which GASNet runs when
blocked

• Non-communicating work for ANY context
• Communicating work for non-handler context

Future: Active Messages I

• Issue: fixed-argument Request and Reply calls
– Makes for messy client code when passing
pointer or size_t arguments as either 1 or 2
32-bit arguments

• Solution: add varargs Request and Reply calls
– The “M” becomes an argument instead of part of
the function name

Future: Active Messages II

• Issue: multiple copies in constructing AM payload
– The “user” code passes args to some runtime
– The runtime copies user’s data to a buffer to
marshal it together with its own data

– This buffer is passed to AMReqestMedium
– GASNet copies the buffer again

• To expedite return of control to caller
• Possibly to pre-pinned memory
• To marshal with its own header

• Solution 1: add a MediumAsync request
• Solution 2: add call to allocate buffer from GASNet

Future: Active Messages III

• Issue: LongAsync requires a Reply
– Use of any other synchronization disallowed
– At least one current platform truly requires this

• Solution: drop this requirement from the spec
– Replace with rule that source buffer is safe to
reuse as soon as handler begins execution

• Reply is one option
• Handler might set a flag that another thread uses

to signal (via AM, Put, barrier, etc.)
– Implementation will be responsible for the
additional work to ensure this works

• NOTE: will apply to MediumAsync if such is added

Future: Active Messages IV

• Issue: Reply-at-most-once rule is limiting
– Request Handler cannot send to a third party
– Reply Handler cannot communicate at all

• Solution: Multiple independent virtual networks
– Each Attach may instantiate another network
– The reply-at-most-once still applies per-network
– Handlers may Request on “higher” networks
– Implementation still needs only finite resources
per-network to ensure deadlock freedom

Future: Active Messages V

• Issue: largest Medium may under utilize network
– Typical implementation has a fixed-sized buffer
for assembly of AM Medium (header+payload)

– The max size of a Medium is often determined
by reserving space for the max number of args

– Mediums with less than the max arguments may
therefore waste up to 10% of the buffer space

– An issue in fragmentation/reassembly scenarios
• Solution: variable-length AM Medium

– Implementation sends as much as it can fit and
returns the count of bytes sent

– Work very much like short-writes to sockets

Future: Put/Get I

• Issue: even non-blocking calls might block
– Will spin-pool to progress the lower-level API if
there are insufficient resources available

– While polling it may or may not be possible to
run AM Reply handlers, but little else

• Solution 1: “now-or-never” flag
– Caller can request that instead of spin polling,
the call return a failure code

– Caller may reissue call later or use some
alternative that doesn’t require this
communication

• Solution 2: progress functions (described earlier)

Future: Put/Get II

• Issue: “trysync” of an NB handle runs progress
engine

– Client wants to call gasnet_AMPoll() once in
its own progress loop

– Client then has many handles (not marshaled in
an array for a “trysome” call) to test

– Client want to amortize the GASNet progress
costs over all the handles it must test

• Solution: add “test” calls that don’t try to progress
– Already implemented as undocumented
“try_*_nopoll” calls in current release

Future: Put/Get III

• Issue: “bulk” conflates alignment with the buffer
lifetime/ownership of Puts (but not of Gets)

• Solution: separate these two concepts
– “Bulk” will assert only alignment
– Use a flag to Puts to determine when to return
– Most implementations don’t care about the
alignment anyway

Future: Put/Get IV

• Issue: client needs a “fence” between ops
– Blocking for first op is undesirable
– Tracking of handles is burdensome OR not
possible due to use of nbi operations.

• Solution: add “dependent” operations
– Completion of an operation will initiate any
dependent operation(s)

– Can map to lower-level API in some cases

Future: Handles I

• Issue: nb handles are thread-specific
– Prevents client-level progress threads
– Complicates reference implementation of barrier
and collectives

• Solution: remove the thread-specific restriction
– Current implementations don’t have any true
thread-specific nature to the handles

– This rule does have the advantage of ensuring
no locking required to sync (try or wait), and
implementation will need to address the loss of
this assurance

Future: Handles II

• Issue: spec only allows 65536 outstanding ops per
thread

– At most this many nb handles outstanding on
any thread

– At most this many nbi operations outstanding
on any thread

– Not sure current clients are aware of the nbi
restriction

• Solution: remove the limit for nbi (keep for nb)
– All modern architectures can support this with
zero overhead relative to the current code

Future: Barrier

• Issue: UPC semantics are very heavy weight
– Can’t use h/w barrier on any current system

• Solution 1: Introduce UNNAMED barrier flag
– Must be passed by all callers or by none
– Turns off name matching entirely
– Sufficient to use many h/w barriers (e.g. BG/Q)

• Solution 2: Introduce single-phase barrier
– Can be more efficient than split-phase
– May enable use of additional h/w support (FCA)

THANK YOU

I will be at the poster session with these slides as my poster.
I am very open to questions, comments and discussion.

