>

reeoeocee| |

One-sided vs. Two-sided
Communication Paradigms on
Relaxed Ordering Interconnects

Khaled Ibrahim

Paul Hargrove, Costin lancu, Kathy Yelick

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

recee) 'ﬁ\ Overview

< Application performance of one-sided vs. two-sided on Cray XEOQ6
(Gemini Interconnect).

< Brief Overview of Cray software stack and hardware on Hopper.
= Support of Relaxation

< Performance comparison of communication primitives using strict
and relaxed ordering.

< Single-sided vs. two-sided communication paradigms interaction
with relaxed ordering.

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



— D
,f% Motivation

250%

1256 procs

I B 64 procs

200% =

40%

30%

20%

-—
o o
X X
| |

Harmonic mean

Percentage UPC over MPI speedup

Also, why Gasnet is not matching vendor performance?
Why single-sided performs better than two-sided MPI?

LAWRENCE BERKELEY NATIONAL LABORATORY =—




>

Cray Software Stack

< UGNI Multiple LU —
communication protocols

libpgas
« RDMA (Block Transfer MP'CH2 S =
Engine (BTE)).
» Optimized for large :
messages GNI : DMAPP
= FMA
» Optimized for small
messages 5 i i
< DMAPP communication o donn - E
protocol ) )
= High-level protocol for o Tore
Single-sided Generic Hardware Abstraction Layer (GHAL)

communication
= support collectives

Hardware (Gemini/Arie)

LAWRENCE BERKELEY NATIONAL LABORATORY



~S

A
j% Hopper Hardware

Hopper Node Hopper Node
(Cray XE 6)

2 twelve-core AMD 'MagnyCours'
2.1-GHz processors per node.

Four DDR3 1333-MHz memory
channels per twelve-core
'MagnyCours' processor

201.6 Gflops/node

L1: 64 KB, L2 caches::512KB

6-MB L3 cache shared between 6
cores.

NetLink
Block
48 port YARC Router

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



- A -
%Relaxatlon of Memory Transfers

» Hypertransport transactions terms
= Posted (writes without ack)

= Non-Posted (reads or writes with Ack)
<+ Relaxation on Gemini
= Strict (no reodering)
= Default (non-posted get pass posted writes)
= Relaxed (all non-posted pass posted writes)
< Relaxation affects both in-node memory transactions and remote
memory transactions
< Interconnect Relaxation: How to?
= Dynamic Routing
= Multiple virtual channels
» Why?

» Performance: easier way to improve throughput (BW), than to improve
latency (wire delay)

= Resilience and fault tolerance.

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

frereeer ‘m

BERKELEY LAB

Node 0&1
UPCT,
UPCT,

UPCT,,

1€

Microbenchmark

Node 2&3

— UPCT,,,,

IS

s UPCT,,,.

UPCT,,,

)
0’0

R/
0’0

.0

Objective:

» Compare the performance of low-

level APls vs. high level runtimes.

Dialects

= uGNI (FMA & BTE)

= DMAPP

= Berkeley UPC

= Cray UPC

= OSU MBW (MPI)

Ranks: m

Window: w number of outstanding
non-blocking operations.

Testbed: default

= Dbidirectional
» 48 communication pairs

= Multiple outstanding messages
(Window size)
Default 1

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

«««< DMAPP vs. uGNI (FMA and BTE) - strict

BERKELEY LAB

1 —E— DMAPP strict —e— FMA strict - 4- BTE strict - 16000
10000 -
A- -A
: . 12000
‘A- -A- -A —
- _e _.'..... -0 ~o _‘ W~ ®
= o AR —'/.\__--" =
= / , =
— 1000 £
= =}
= . 8000 T
2 A 3
= S
© c
S ®
D 400 “ A “
1 STV R SV 4000
/ 0 -0-—0-0-0-0-0-—g—o -
| | | | | | | | | | | | | | | | | | | | | | | |
8 16 32 64 128256 512 1K 2K 4K 8K 16K
D R SR IR
Msg Size SO R

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



DMAPP vs. uGNI (FMA and BTE)- Relaxed

. —®—DMAPP relaxed — e— FMA relaxed- 4- BTE relaxed 16000
1 —
10000 - . ._;._:"7‘.‘—"—‘. A- A- -A\'A}-,-‘—— e -A- -A- -A |

] /7 A
— A / ‘ ’a
2 'A' ‘ E
m : =
Z 1000 . -0 =
5 ‘ 8000 5
3 \ 3
2 Y 2
A ©
m N -

100 f "® —@ —9 —0 —0—0—0—0 | 4000

8 16 32 64 128 256 512 1K 2K 4K 8K 16K

DMAPP can hide complexity of uGNI (FMA and BTE)
s L AWRENCE BERKELEY NATIONAL LABORATORY =—



>

A
3| Strict Ordering and Concurrenc
° d

Concurrency (proc/node): —8—1—0—2- A- 4—v—38 16- 4--24
10000 A- A- -A- -A- -A- -A
5 S p— O o o et 3
- ! < ‘ A° /. - o
g < wl P ,/'
| D ! -/ 12000
2 1000 ’ | g
S . 4 :
: v"/ = 8000 3
i - __v .E
:§ /A /0/ \v ANy YV —y -:
; (
S 100 5 ; :
m : 7 = 4000
- . / 4 - - .‘ 4 s< - '4 N A
: B REIVEARRE VR &
10 FMA transport BTE transport _
| T T T T

| | | |
N P ~1~4~ ééé\
MsgS|zg R Q’ <o N

8 16 32 64 128256512 1K 2K 4K 8K 16K

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

A =
,dl\\ Relaxed Ordering and Concurrency

Concurrency (proc/node): —8—1 —@— 2- A- 4—v—§ 16--4--24
10000
12000
1
Q g
) 1000 :
s $
< 8000 3
S i
E §
i ¢
S 100 - o
m -
4000
FMA transport BTE transport |
10 | | | | | | | | | | | | | | | | | | | | | | | |
8 16 32 64 128 256 512 1K 2K 4K 8K 16K
I I MO M N N
N SR D\ U RO ™
Msg Size N O 4R v

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

Low-Level APl Summary

DMAPP hides switching
complexity between FMA and BTE

= |t also provides collectives

Relaxed ordering improves
performance (expected).

Strict ordering hurts performance
MOSTLY under high concurrency.

Registration is an expensive
memory operations that better be
removed from critical path of
execution.

| Fortran, C | |

UPC

| MPICH2 | | SHMEM

| [

libpgas

GNI

DMAPP

1100l

Kernel Level
GNI (kGNI)

1034d1a

GNI Core |

1034ia

Performance Difference between |

Generic Hardware Abstraction Layer (GHAL)

One-sided and Two sided is NOT

Hardware (Gemini/Arie)

due to different Performance of
low-level APIs.

LAWRENCE BERKELEY NATIONAL LABORATORY



>

recoceee| |

Communication Paradigms

One-sided UPC Two-sided MPI

PO P1 PO P1

v

iiiiiiii

e

EHHHHHHH

put/get operations send/recv operations
meeeeeeeseesssms [ AWRENCE BERKELEY NATIONAL LABORATORY ="



g D _ _
cecee) | Communication Paradigm Territory

Traditional

< Shared Memory - Coherent
Caches

= One-sided load/store

= Default to relaxed ordering
« Strict for synchronization

<+ Message Passing - no
coherence
= Send/recv matching
= Strict matching

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



Traditional PGAS

< Shared Memory - Coherent < Shared Memory - Coherent
Caches Caches
= One-sided load/store = One-sided load/store
= Default to relaxed ordering = Default to relaxed ordering
« Strict for synchronization « Strict for synchronization

L
o oo

<+ Message Passing - no < Partition Global Address space
coherence between nodes = One-sided put/get
= |oad/store matching = strict ordering if blocking
= Strict matching  Relaxed if non-blocking.

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



Traditional MPI+MPI

< Shared Memory - Coherent < Shared Memory - Coherent
Caches Caches
= One-sided load/store = Send/recv matching
= Default to relaxed ordering = Shared memory bypass

« Strict for synchronization

<+ Message Passing - no < Message passing
coherence between nodes = Send/recv Matching
= Send/recv matching = Matching strict, progress is not

= Strict matching
s L AWRENCE BERKELEY NATIONAL LABORATORY =—



>

Relaxed Ordering and
Communication Paradio

frereeer ‘m‘

< Requirement to service multiple outstanding requests
= Minimal remote-end involvement
= Unambiguous destination

< HPC runtime expectation from Device Driver APls
» point-to-point ordering
* Node-to-node ordering
» Rank-to-rank ordering (multi-core makes it different from node-to-node)

= Or, relaxed ordering, with multiple completion semantic (local and
global)

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

Regqistration

Registration (Resolving remote ambiguity):
Prevents memory swapping
Allows offloading communication to NIC
Allows out-of-order progress of many transf%gg, a) Registration
Expensive (hopefully not frequent)
Limited and shared resources

100
PO P1 PO :

u sec

10

13

L
2 ae b b b o ,Lq,‘l~ 6(,‘1\ 6,\1‘6 AN g o
Memory segment size

putiget UPC LAWRENCEeélggle(cl:i\ll.lléﬂYPhATIONAL LABORATORY m—



>

UPC Shared Memory Ordering Challenge-

Example

< Cray definition of “Global Completion”
» GASnet Heisenbug!

PO: Globally address Memory

01: Get (m(Aog,0) <M(A1,0)) Memory Address: Anoge, offset

02: m(Aoq,0)¢<—m(Ag,0)+1 All initialized to zeros

03: PUt(m(Ao,o)—)m(ALo»

04: m(A0,1)<—1 P
0

Gemini — P2
NIC

Gemini
NIC

P1:
11: Wait until m(Ag,1) =1
12: Get (m(Ao,z) (—m(A1,o))

13: Print m(Ao,2) A0,1 \03/’ A1,1

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

w2 § MPI Ordering

< Non-overtake rule (determinism)

= |f a sender sends two messages (Message 1 and Message 2) in succession
to the same destination, and both match the same receive, the receive
operation will receive Message 1 before Message 2.

= |f a receiver posts two receives (Receive 1 and Receive 2), in succession,
and both are looking for the same message, Receive 1 will receive the
message before Receive 2.

. @order
Send: S source rank—dest rank
R

2 1 0 e ROTder 0 1 2
S%-2 | S04 | S0z Receive: R source rank ANY | S'a54 | Roany

Po o - P2
HT3 Gmlm GET(;N HT3
P1 L ]

Gemini HT3 — P4
NIC

LAWRENCE BERKELEY NATIONAL LABORATORY



.~ Cray MPI Method to Exploit

Gemini Relaxed Ordering

Typical eager vs. rendezvous
Cray’s
Two eager modes
Two rendezvous mode
Switching is controlled based on Message size
Registration cache is used
(may not be able to tell which memory will be used for communication)

-EO E1 RO R1

50 512 }1K 2K 4K 8K} 16K 32K 64K 128K 256K} 512K 1MB 4MBE

MPICH_GNI_MAX_VSHORT_MSG_SIZE
I
MPICH_GNI_MAX_EAGER_MSG_SIZE

I
MPICH_GNI_NDREG_MAXSIZE

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

e § MPI Eager 0

Sender SMSG Receiver
B TEO)_ Mailboxes _(PE1)
\ 1 GN/ .........................
(i eadS SG Senq
er+data) — P

Completion
Queue

Max size change
with the number of ranks.

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

A
’% MPI Eager 1

Sender Receiver
(PO SMSG (PE1)
N _ MailboxesPEn - —_ —

g . '
2 ' i

§ 3« e

Qo

(/)]

c

o

®©

o

Q

: N

< Pre-allocated . RDMA FMA 3

(registered) GET I c;)

Runtime buffers /
<«—5. GNI SMSG (Recv Done)

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



3 A
/f% MPI Rendezvous 0

Sender Receiver
(PEO) SMSG pg (PE1)
. Mailboxes N
MS .......................... 4 Register
(headeg Sénd P ' receive data
T e (or lookup in

cache)

5. RDMA BTE
GET

1. Register
send data

<«—6. GNI SMSG (Recv Done)

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

MPI Rendezvous 1

Sender Receiver
PEO PE1
_ PO oo PER e
— .Gy sy ailboxes
(he SG senq 3. Register
ader) —, PEQ_" il receive data
4 (in chunks)
G/V/S
I (CTS)GSGnd ?‘)\> I
DIDe//ned GN/
4. Register RDMA BT
send data 6. G Ery
. NI sy,
(in chunks) SG Send(
dOne)

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



- A .
/dl\\ Two-sided Summary of Challenges

< Remote involvement

» Rank-to-rank strict ordering can cause
» Node-to-node strict ordering by hardware
* How to handle message cancellation?!

= Message size ambiguity

« int MPI_Irecv(buf, count,datatype, source, tag, ...)
— count reflects buffer size NOT msg size.
— Receiver cannot tell what protocol will be used before matching

* Probing obstruct relaxed ordering progress.
<+ Remote readiness for transfer
= All memory space default to local

» Registration is on-demand
 Variability of performance based on hit/miss in registration cache.

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



~S

A

/\l H MPI vs. UPC 8B Transactions

MPI default UPC shared dest
8B 8B

16

100%
87.5%
75.0%

62.5%
. 50.0%
37.5%
25.0%

12.5%
0.00%

window size
window size

1 2 4 8 16 24
Concurrency

I

< Experiment:
= Vary number of messages per rank.
= Vary the number of ranks per node.

LAWRENCE BERKELEY NATIONAL LABORATORY =—



>

. UPC 8KB Transactions

MPI Default UPC shared dest
8KB . . 8KB

16 1

window size
window size

1
1 2 4 8 16 24 1 2 4 8 16 24

Application developer perspective:

What level of concurrency should | use?
What is the implication for intra-node communications?

LAWRENCE BERKELEY NATIONAL LABORATORY =—



>

MPI vs. UPC 2MB Transactions

2 MB  MPI Default 2 MIB UPC shared dest

100%

90.6%
81.3%
71.9%
62.5%
53.1%
43.8%
34.4%
25.0%

4

window size
window size

1 2 4 8 16 24 1 2 4 8 16

Concurrency Concurrency

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

A
Two-sided MPI vs. One-sided UPC

B UPC shared[[ ] UPC non-shared [l MPI

100%‘_ window size =1
Difference is NOT due: 90% 7
L

Runtime optimization ESM
Registration overhead B 70%
. 4+ o
or, Copying 2 60%
o 50%

Q ]

Difference is due to: 340% _
. o)) o

language semantic g 30% -
and ability to exploit relaxed S 20%

ordering. & 10% -

0% -

meeessssssssssssss [ AWRENCE BERKELEY NATIONAL LABORATORY m—



>

. .
% Conclusion

< One-sided communication exploits relaxed ordering with ease
» Communicate-able memory is easier to identify
« annotated shared - can be registered upfront.
» Relaxed vs. strict ordering is explicitly specified
* by programmer (or programming language). (Default to relaxed)

» Large percentage of the peak performance for different communication
patterns

< Two-sided faces the following challenges

= Strict matching between send and receives (large startup overhead)
= Locality notion (everything default to local)

» Expensive to prepare buffer for communication (registration).
» Receiver ambiguity about transactions (probing or over allocation)

» Performance may need high node concurrency (problematic to in-node
communication).

LAWRENCE BERKELEY NATIONAL LABORATORY





