% R George R. Brown
A RICE &85
Overview of DEGAS
Programming Models area

Vivek Sarkar
Rice University
June 3, 2013

PRICE 1 6

» Exascale systems will impose a fresh set of requirements

Context

on programming models including

» targeting nodes with hundreds of homogeneous and
heterogeneous cores with limited memory per core

= severe bandwidth, energy, locality and resiliency
constraints within and across nodes.

» DEGAS = Dynamic Exascale Global Address Space

RICE Accelerators

P cations, Numerical Libraries
AS Habanero-UPC H-CAF DEGAS C++ lib
Python | —SEHFS— ROSE BUPC
Energy / Performance Feedback — Roofline
Dynami Containment Domains + BLCR
Control
Qdystem/J ARTS: Adaptive Run-Time System
Lithe Resource Manager GASNet-EX
__Hardware Threads comm.
General Cores Network + 1/0
[] Unfunded activity

Programming Model Goals

= Programmability: ease of use by application partners

» Performance: effective exploitation of unique aspects of
DEGAS stack

» Dynamic + Hierarchical + One-sided
Portability:

= Unified primitives for synchronization, communication
and parallelism

* Homogeneous/heterogeneous, intra-node/inter-node,
SIMD/SIMT, SPMD/dynamic, synchronous/
asynchronous, ...

= Tight integration with leading-edge processors and
interconnects from multiple vendors

= Success: DEGAS programming systems used in production
context on leading-edge hardware by application partners

3 b

Pushing the boundaries

= Asynchrony
* One-sided communications, function shipping
= Data-driven tasks
» PGAS, APGNS (Async Partitioned Global Name Space)
= Hierarchy and Locality
» Hierarchical Teams
= Hierarchical CAF
= Hierarchical Place Tree
= Containment Domains
= Heterogeneity
» Automatic generation of CUDA & OpenCL

* Dynamic scheduling for homogeneous and
heterogeneous processors

% RICE 4

DEGAS Programming System Gaps
being addressed by other X-Stack projects

= Domain Specific Languages
= Debugging tools

» Performance tools

= Auto-tuning

= ... but we're interested in these topics too!

Programming Model Talks

» MG Code for language and system design
(Sam, Nick)

» Hierarchical teams (Amir)
= CAF Overview (John)

» DEGAS programming system via C++ library
extension (Yili)

» Future of Scientific Python (Fernando)

% RICE 5

Background: Summary of Habanero-C (HC)

- HC is a parallel programming system (language + compiler +
runtime) developed in the Rice Habanero Multicore Software
research project

 Five classes of parallel programming primitives in HC:

1. Dynamic task creation & termination
= async, finish, forasync

2. Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs)
= await, put(), get()

3. Support for affinity control and heterogeneous processors
» hierarchical places

4. Collective and point-to-point synchronization for SPMD parallelism
= phasers

5. Distribution

= Partitioned Global Name Space (PGNS) model with Distributed Data-
Driven Futures (DDDFs)

% RICE = Integration of task parallelism V\%ith communication (HCMPI)

W
z

Productivity Benefits of Dataflow Programming

=» main = Taska = Taskg

~ askc—>
§\Tasks § §/T k

; Communication via single-
-> . .
§ Taska assignment variable

* “Macro-dataflow” = extension of dataflow model from instruction-level to
task-level operations

* General idea: build an arbitrary task graph, but restrict all inter-task
communications to single-assignment variables

* Static dataflow ==> graph fixed when program execution starts

* Dynamic dataflow ==> graph can grow dynamically

* Semantic guarantees: race-freedom, determinism

* Deadlocks are possible due to unavailable inputs (but they are deterministic)

s b

Data-Driven Futures (DDFs) and
Data-Driven Tasks (DDTs)

DDF_t* ddfA = DDF_CREATE();

» Allocate an instance of a data-driven-future object (container)

async AWAIT(ddfA, ddfB, ..) <Stmt>

» Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, ...
become available (i.e., after task becomes “enabled™)

DDF_PUT(ddfA, V);

= Store object V in ddfA, thereby making ddfA available

» Single-assignment rule: at most one put is permitted on a given DDF
DDF_GET (ddfA)

» Return value stored in ddfA

= No blocking needed --- should only be performed by async’s that contain ddfA
in their AWAIT clause, or when some other synchronization (e.g., finish)
guarantees that DDF_PUT must have been performed.

DDFs can be implemented more efficiently than classical futures

9

Example Habanero-C code fragment
with Data-Driven Futures (Dag Parallelism)

. DDF_t* left = DDF_CREATE();
. DDF_t* right = DDF_CREATE();
. finish {
async AWAIT(left) leftReader (DDF_GET(left)); // Task3
async AWAIT(right) rightReader (DDF_GET(right)); // Task5
async AWAIT(left,right) // Task4
bothReader (DDF_GET(left), DDF_GET(right));
async DDF_PUT(left,leftWriter()); //Taskl
async DDF_PUT(right,rightWriter());//Task2

OW 00 N 6 U1 b W N B

[
(@) .
(W

Task1 Taska

I\ /)

® AWAIT clauses capture data flow relationships = Tasks Tasks Tasks

. b

Smith Waterman example (Single Node)

finish { // matrix is a 2-D array of DDFs
for (i=0,i<H;++i) {
for (J=0,J<W;++3J)
DDF t* curr = matrix[i][]];

DDF _t* above = matrix[i-1]1[]];
DDF t* left
DDF_t* uLeft = matrix[i-1][]-11];
async AWAIT (above, left, ulLeft)({
Elem* currElem =
init (DDF_GET (above),DDF GET(left), DDF_GET(uLeft));
compute(currElem);
DDF_PUT(curr, currElem);
}/*async*/
}/*for-j*/
}/*for-i*/
}/*finish*/

matrix[i][J-1];

: b

Background: Summary of Habanero-C (HC)

- HC is a parallel programming system (language + compiler +
runtime) developed in the Rice Habanero Multicore Software
research project

 Five classes of parallel programming primitives in HC:

1.

W
z

Dynamic task creation & termination
= async, finish, forasync

Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs)
= await, put(), get()

Support for affinity control and heterogeneous processors

» hierarchical places

Collective and point-to-point synchronization
= phasers

Extensions for distributed-memory parallelism

= Partitioned Global Name Space (PGNS) model with Distributed Data-
Driven Futures (DDDFs)

% RICE = Integration of task parallelism \‘/lvéth communication (HCMPI)

Hierarchical Place Trees (HPT)

= HPT approach

= Hierarchical memory + Dynamic parallelism

= Place denotes affinity group at memory hierarchy level
= L1 cache, L2 cache, CPU memory, GPU memory, ...

= |eaf places include worker threads [venry |

= e.g., WO, W1, W2, W3 FraiET.
= Explore multiple HPT configurations o) (o] [0][]

= For same hardware and application e [u

= Trade-off between locality and load-balance | Pla;Q'"m"T j—

W W
“Hierarchical Place Trees: A Portable Abstraction for Task EE I ©
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009 P;: P:: P;z P;: | Placeo |
(a) PL1 PL2

WO | (W1 W2 W3

RICE 13 “

Locality-aware Scheduling using the HPT
(Logical View)
= Workers attached to leaf places
= Bind to hardware core

= Each place has a queue 2
= async at(<p/>) <stmt>: push task onto Eyg i pu,/ 1 [P
place pl's queue w0 o w2 w3

= A worker executes tasks from ancestor places from
bottom-up

= W0 executes tasks from PL3, PL1, PLO

= Tasks in a place queue can be executed by all workers
In the place’s subtree

= Task in PL2 can be executed by workers W2 or W3
S RICE y 6

Actual |mp|ementat—ion Example: Intel Xeon Dual Quad Core

. I -2 sockets with shared L3
of HPT in Habanero-C PO -2 shared L2 per socket
P1

P2

P3 P4 P5 P6

11 il 1l @il Il bl Il il

P7: P8 . P9 P10 P11 P12 P13 P14
wO: wl w2 w3 w4 w5 w6 w7

- * Each place has one queue per worker
steal ~ * Ensures non-synchronized push and pop
» Workers bound to cores (leaf places)
* Any worker can push a task at any place
* Pop / steal access permitted to subtree workers
90 |91 {9293 |q4 | a5 | g6 ar » Workers traverse path from leaf to root
* Tries to pop, then steal, at every place

* After successful pop / steal worker returns to leafg,
async AT(p3) 15

HC Hierarchical Place Trees for Heterogeneous Architectures

¢ Devices (GPU or FPGA) are
represented as memory
module places and agent

PLO

s~
S~
/ ~\~
~

-
~~

W5

workers Rt T S
= GPU memory configuration are PL1 PL2 PL7
fixed, while FPGA memory are
reconfigurable at runtime /\ /\ w4
= Creates new activity to execute | W0 w1 W2 W3
statement S at place P
¢ Physically explicit data transfer
between main memory and [Physical memory
device memory [] cache
= Use of IN and OUT clauses to) GPU memory
improve programmability of data [Reconfigurable FPGA
transfers — Implicit data movement
* D . t k = = Explicit data movement
evice agen WOrKers |:| CPU computation worker
= Perform asynchronous data copy B} Device agent worker
and task launching for device
B
% RICE 16

Hybrid Scheduling for Heterogeneous Nodes

¢ Device place has two HC (half-concurrent) mailboxes: inbox
(green) and outbox (red)
= No locks — highly efficient
¢ Inbox maintains asynchronous device tasks (with IN/OUT)

= Concurrent enqueuing device tasks by CPU workers from tail
» Sequential dequeuing tasks by device “proxy” worker

¢ Outbox maintains continuation of the finish scope of tasks

= Sequential enqueuing continuation by “proxy” worker
= Concurrent dequeuing (steal) by CPU workers

__

Device tasks created from CPU o | Continuations stolen
worker via o | | by CPU workers
. tail head tal head !
async at(gp!) IN() OUT(){ ... } \ :
PL7 = GPU place ' Wa }
W4 = proxy workeratCPU " “—>F7I

RICE for GPU device 17

Hybrid Scheduling with Cross-Platform Work Stealing
¢ Steps are compiled for execution on CPU, GPU or FPGA

= Same-source multiple-target compilation in future
¢ Device inbox is now a concurrent queue and tasks can be
stolen by CPU or other device workers
= Multitasks, range stealing and range merging in future

Device tasks stolen by
CPU and other device
workers

__

PL7 Continuations stolen

Device tasks created from CPU by CPU workers

worker via tal head
async at(gpl) IN() OUT() { ...} \\»

__

Intel®
Xeon® &
Processor

Convey HC-1ex Testbed

———————————————— - —

Xeon Quad I

Core LV5408
40W TDP

Intel® 1/0
Subsystem

r

o ———————————————— - -

(Standard Intel® x86-64 Server

“Commodity” Intel Server __________ p Convey. EPGAbased coprocessor .

Application
Engine Hub (AEs)
(AEH) =

>) \~

Convey coprocessor
FPGA-based

Shared cache-coherent memory

(Tesla C1060

_200W TDP

|

Appllcatlon Engines

A Y

Direct
Data
Port

and

100GB/s off-chip bandwidth j

19

19

Experimental results

« Execution times and active energy with
dynamic work stealing

Execution of the medical imaging pipeline

Time(s) ogg with CnC and work-stealing runtime Energy(KJ)
276 100
251 M Execution time 90
250 698 Estimated active energy 80
200 o 193 gg
' 49.4

150 129 50
36.1 40
100 30
50 20
10

0 0

CPU only (4 cores) GPU only CPU+GPU CPU+GPU+FPGA CPU+GPU+FPGA

(3 cores; dynamic) (2 cores; dynamic) (2 cores; static)

N RICE 20 ﬁ

Background: Summary of Habanero-C (HC)

- HC is a parallel programming system (language + compiler +
runtime) developed in the Rice Habanero Multicore Software
research project

 Five classes of parallel programming primitives in HC:

1.

8
W
z

Dynamic task creation & termination
= async, finish, forasync
Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs)
= await, put(), get()
Support for affinity control and heterogeneous processors
» hierarchical places
Collective and point-to-point synchronization
= phasers
Extensions for distributed-memory parallelism

= Asynchornos Partitioned Global Name Space (APGNS) model with
Distributed Data-Driven Futures (DDDFs)

,“ RICE = Integration of task parallelism \év%th communication (HCMPI)

From Locality to Communication --- Integrating Inter-
node Communication with Intra-node Task Scheduling

Inter-Node
IO TV SUOTUUUUUUPPURTUUUTUTUTTUrl [RRRRRORRPRRTORIURTUROIY ST SRR Ratlo Of Computatlon to
Intra-Node
, ‘ communication workers can be

Communication Worker tuned for different platforms
Insert new . -’\ '1_.\
Communication Communication Task
Task Push BContinuation Status
Type
Continuation

Continuations

- | | Steal -

Computation Computation o000 Computation
Worker Worker Worker

Work-Stealing
22

APGNS Programming Model
= Philosophy :

= |n the Asynchronous Partitioned Global Name Space
(APGNS) programming model, distributed tasks

communicate via distributed data-driven futures, each of
which has a globally unique id/name (guid).

» APGNS can be implemented on a wide range of
communication runtimes including GASNet and MPI,
regardless of whether or not a global address space is
supported.

% RICE 2

Distributed Data-Driven Futures (DDDFs)

int DDF_HOME (int guid) {..};

» aglobally unique DDDF id =» home rank

int DDF_SIZE (int guid) {..};

= a globally unique DDDF id =» size of DDDF in bytes

DDF_t* ddfA = DDF_HANDLE (guid); (contrast with DDF_CREATE of shared memory)
= Allocate an instance of a distributed data-driven-future object (container)

= Every rank has a handle, home rank can put, everyrank can get
async AWAIT(ddfA, ddfB, ..) <Stmt>

= Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, ...
become available (i.e., after task becomes “enabled”)

» Seamless usage of distributed and shared memory DDFs
= Await registration handles the communication implicitly

Distributed Data-Driven Futures (DDDFs, contd)

DDF_PUT(ddfA, V);

= Store object V in ddfA, thereby making ddfA available

» Single-assignment rule: at most one put is permitted on a given DDF
= Restricted only to home rank

» Handles communication to registrants implicitly

DDF_GET (ddfA)

» Return value stored in ddfA

= Ensured to be safely performed by async’s that contain ddfA in their await
clause

» needs to be preceded by await clause on ddfA if the producer is remote

= await can be in a different task provided local synchronization ensures the await
precedes get

Multi-Node SmithWaterman

O->O0->m->0
VN NN
HE DOF |O-O->0->0

VN VN YN
Il DDDF IS LN
VN VN YN

[executed M running

Cl->C1>C1>3

#define DDF_HOME (guid) (guid$NPROC)
#define DDF_SIZE(guid) (sizeof(Elem))

for (i=0;i<H;++1i)
for (3=0;j<wW;++j)
matrix[i][j] = DDF_HANDLE(i*H+7j);

doInitialPuts(matrix);
finish {
for (i=0,i<H;++i) {
for (3j=0,3j<wW;++j) {
DDF t* curr = matrix[i][]];
DDF_t* above = matrix[i-1][]];
DDF_t* left = matrix[i][j-11;
DDF_t* uLeft = matrix[i-1][]-1];
if (isHome(i,j)) {
async AWAIT (above, left, ulLeft){
Elem* currElem =
init (DDF_GET (above),
DDF_GET(left),
DDF_GET (uLeft));
compute(currElem);
DDF_PUT(curr, currElem);
}/*async*/
Y/ *ifx/
}/*for*/
}/*for*/
}/*finish*/

26

Results for APGNS version of Smith\Waterman

5000 SmithWaterman Scaling (1.856M by 1.92M)
=2 Cores
—_ =4 Cores
(7))
‘; 8 Cores
£ =+=12 Cores
-
[oT4]
o
200
20
8 16 32 64 % 128
7 Nodes
u{:\\ AMLE 27

Habanero Posters

= Sanjay Chatterjee

= The Habanero Asynchronous Partitioned Global
Name Space (APGNS) Programming Model

» Deepak Majeti

» Programming Heterogeneous Platforms with
Habanero-C

= Nick Vrvilo

= Comparison of MPI and UPC overheads for MG
benchmarks

% RICE 2%

Programming Model Discussion Topics

= How can Lithe be used to enable Habanero-UPC and H-
CAF to interoperate with MPI + OpenMP?

= How should Containment Domains be integrated with
DEGAS programming models?

* Programming model and compiler support for CA?
= Next steps

* Demonstrations of DEGAS programming models on MG
code

= DEGAS C++ lib version
= Habanero-UPC version

= Hierarchical-CAF version
» |ntegration of HCIib with DEGAS C++ library?

VRICE ’

