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Context 
  Exascale systems will impose a fresh set of requirements 

on programming models including 
  targeting nodes with hundreds of homogeneous and 

heterogeneous cores with limited memory per core 
  severe bandwidth, energy, locality and resiliency 

constraints within and across nodes.   
  DEGAS = Dynamic Exascale Global Address Space 

DEGAS C++ lib 
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Programming Model Goals 
  Programmability: ease of use by application partners 
  Performance: effective exploitation of unique aspects of 

DEGAS stack 
 Dynamic + Hierarchical + One-sided 

  Portability:  
 Unified primitives for synchronization, communication 

and parallelism 
 Homogeneous/heterogeneous, intra-node/inter-node, 

SIMD/SIMT, SPMD/dynamic, synchronous/
asynchronous, … 

  Tight integration with leading-edge processors and 
interconnects from multiple vendors 

  Success: DEGAS programming systems used in production 
context on leading-edge hardware by application partners 
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Pushing the boundaries 
  Asynchrony 

 One-sided communications, function shipping 
 Data-driven tasks 
  PGAS, APGNS (Async Partitioned Global Name Space) 

  Hierarchy and Locality 
 Hierarchical Teams  
 Hierarchical CAF 
 Hierarchical Place Tree 
 Containment Domains 

  Heterogeneity 
  Automatic generation of CUDA & OpenCL 
 Dynamic scheduling for homogeneous and 

heterogeneous processors 
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DEGAS Programming System Gaps  
being addressed by other X-Stack projects 

 Domain Specific Languages 
 Debugging tools 
 Performance tools 
 Auto-tuning 
  . . . 

 … but we’re interested in these topics too! 
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Programming Model Talks 

 MG Code for language and system design 
(Sam, Nick) 

 Hierarchical teams (Amir) 
 CAF Overview (John) 
 DEGAS programming system via C++ library 

extension (Yili) 
 Future of Scientific Python (Fernando) 
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Background: Summary of Habanero-C (HC) 
•  HC is a parallel programming system (language + compiler + 

runtime) developed in the Rice Habanero Multicore Software 
research project  

•  Five classes of parallel programming primitives in HC: 
1.  Dynamic task creation & termination 

  async, finish, forasync 

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs) 
  await, put(), get() 

3.  Support for affinity control and heterogeneous processors 
  hierarchical places 

4.  Collective and point-to-point synchronization for SPMD parallelism 
  phasers 

5.  Distribution 
  Partitioned Global Name Space (PGNS) model with Distributed Data-

Driven Futures (DDDFs) 
  Integration of task parallelism with communication (HCMPI) 
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Productivity Benefits of Dataflow Programming 

•  “Macro-dataflow” = extension of dataflow model from instruction-level to 
task-level operations 
•  General idea: build an arbitrary task graph, but restrict all inter-task 
communications to single-assignment variables 
•  Static dataflow ==> graph fixed when program execution starts 
•  Dynamic dataflow ==> graph can grow dynamically 
•  Semantic guarantees: race-freedom, determinism 
•  Deadlocks are possible due to unavailable inputs (but they are deterministic) 

Communication via single-
assignment variable	
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Data-Driven Futures (DDFs) and  
Data-Driven Tasks (DDTs) 

DDF_t* ddfA = DDF_CREATE();!

  Allocate an instance of a data-driven-future object (container) 

async AWAIT(ddfA, ddfB, …) <Stmt>!

  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … 
become available (i.e., after task becomes “enabled”) 

DDF_PUT(ddfA, V); !

  Store object V in ddfA, thereby making ddfA available 

  Single-assignment rule: at most one put is permitted on a given DDF 

DDF_GET (ddfA) 

  Return value stored in ddfA 

  No blocking needed --- should only be performed by async’s that contain ddfA 
in their AWAIT clause, or when some other synchronization (e.g., finish) 
guarantees that DDF_PUT must have been performed. 

DDFs can be implemented more efficiently than classical futures 
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Example Habanero-C code fragment  
with Data-Driven Futures (Dag Parallelism) 

1.  DDF_t* left = DDF_CREATE();!
2.  DDF_t* right = DDF_CREATE();!
3.  finish {!
4.    async AWAIT(left) leftReader(DDF_GET(left)); // Task3!
5.    async AWAIT(right) rightReader(DDF_GET(right)); // Task5!
6.    async AWAIT(left,right) // Task4!
7.          bothReader(DDF_GET(left), DDF_GET(right)); !
8.    async DDF_PUT(left,leftWriter()); //Task1!
9.    async DDF_PUT(right,rightWriter());//Task2!
10.  }!

•  AWAIT clauses capture data flow relationships 
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Smith Waterman example (Single Node) 
finish { // matrix is a 2-D array of DDFs!
  for (i=0,i<H;++i) {!
    for (j=0,j<W;++j) {!
      DDF_t* curr = matrix[i][j];!
      DDF_t* above = matrix[i-1][j];!
      DDF_t* left = matrix[i][j-1];!
      DDF_t* uLeft = matrix[i-1][j-1];!
      async AWAIT (above, left, uLeft){!
          Elem* currElem = !
            init(DDF_GET(above),DDF_GET(left), DDF_GET(uLeft));!
          compute(currElem);!
          DDF_PUT(curr, currElem);!
        }/*async*/        !
    }/*for-j*/!
  }/*for-i*/!
}/*finish*/!
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Background: Summary of Habanero-C (HC) 
•  HC is a parallel programming system (language + compiler + 

runtime) developed in the Rice Habanero Multicore Software 
research project  

•  Five classes of parallel programming primitives in HC: 
1.  Dynamic task creation & termination 

  async, finish, forasync 

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs) 
  await, put(), get() 

3.  Support for affinity control and heterogeneous processors 
  hierarchical places 

4.  Collective and point-to-point synchronization 
  phasers 

5.  Extensions for distributed-memory parallelism 
  Partitioned Global Name Space (PGNS) model with Distributed Data-

Driven Futures (DDDFs) 
  Integration of task parallelism with communication (HCMPI) 
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Hierarchical Place Trees (HPT) 
  HPT approach 

  Hierarchical memory + Dynamic parallelism 
  Place denotes affinity group at memory hierarchy level 

  L1 cache, L2 cache, CPU memory, GPU memory, … 
  Leaf places include worker threads 

  e.g., W0, W1, W2, W3 
  Explore multiple HPT configurations 

  For same hardware and application 
  Trade-off between locality and load-balance 

“Hierarchical Place Trees: A Portable Abstraction for Task  
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009 
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Locality-aware Scheduling using the HPT  
(Logical View) 

  Workers attached to leaf places 
  Bind to hardware core 

  Each place has a queue 
  async at(<pl>) <stmt>: push task onto 

place pl’s queue  

  A worker executes tasks from ancestor places from 
bottom-up 
  W0 executes tasks from PL3, PL1, PL0 

  Tasks in a place queue can be executed by all workers 
in the place’s subtree 
  Task in PL2 can be executed by workers W2 or W3 

PL1 PL2 

PL0 

PL3 

w0 

PL4 

w1 

PL5 

w2 

PL6 

w3 
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q0 q1 q2 q3 q4 q5 q6 q7 

P0	  

P1	   P2	  

P3	   P4	   P5	   P6	  

P7	   P8	   P9	   P10	   P11	   P12	   P13	   P14	  
L1	  

w0	   w1	   w2	   w3	   w4	   w5	   w6	   w7	  

steal	  

push	  /	  pop	   async	  AT(p3)	  

L2	  

L3	  

DRAM	  

• 	  Each	  place	  has	  one	  queue	  per	  worker	  
• 	  Ensures	  non-‐synchronized	  push	  and	  pop	  

• 	  Workers	  bound	  to	  cores	  (leaf	  places)	  
• 	  Any	  worker	  can	  push	  a	  task	  at	  any	  place	  
• 	  Pop	  /	  steal	  access	  permiOed	  to	  subtree	  workers	  
• 	  Workers	  traverse	  path	  from	  leaf	  to	  root	  
• 	  Tries	  to	  pop,	  then	  steal,	  at	  every	  place	  
• 	  ARer	  successful	  pop	  /	  steal	  worker	  returns	  to	  leaf	  

Actual	  ImplementaTon	  
of	  HPT	  in	  Habanero-‐C	  

Example:	  Intel	  Xeon	  Dual	  Quad	  Core	  
-‐ 2	  sockets	  with	  shared	  L3	  
-‐ 2	  shared	  L2	  per	  socket	  
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HC Hierarchical Place Trees for Heterogeneous Architectures  
♦  Devices (GPU or FPGA) are 

represented as memory 
module places and agent 
workers 
  GPU memory configuration are 

fixed, while FPGA memory are 
reconfigurable at runtime 

♦  async at(P) S 
  Creates new activity to execute 

statement S at place P 

♦  Physically explicit data transfer 
between main memory and 
device memory 
  Use of IN and OUT clauses to 

improve programmability of data 
transfers 

♦  Device agent workers 
  Perform asynchronous data copy 

and task launching for device 

PL1 PL2 

PL3 PL4 PL5 PL6 

PL7 PL8 

W0 W1 W2 W3 

W4 W5 

PL0 

Physical memory 

Cache 

GPU memory 

Reconfigurable FPGA 

Implicit data movement 
Explicit data movement 

CPU computation worker 

Device agent worker 
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Hybrid Scheduling for Heterogeneous Nodes 
♦  Device place has two HC (half-concurrent) mailboxes: inbox 

(green) and outbox (red) 
  No locks – highly efficient 

♦  Inbox maintains asynchronous device tasks (with IN/OUT) 
  Concurrent enqueuing device tasks by CPU workers from tail 
  Sequential dequeuing tasks by device “proxy” worker 

♦  Outbox maintains continuation of the finish scope of tasks 
  Sequential enqueuing continuation by “proxy” worker 
  Concurrent dequeuing (steal) by CPU workers 

PL7 Continuations stolen 
by CPU workers 

W4 

Device tasks created from CPU 
worker via 

 async at(gpl) IN() OUT() { … } 
tail head tail head 

PL7 = GPU place 
  W4 = proxy worker at CPU  

for GPU device 
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Hybrid Scheduling with Cross-Platform Work Stealing 
♦  Steps are compiled for execution on CPU, GPU or FPGA 

  Same-source multiple-target compilation in future 

♦  Device inbox is now a concurrent queue and tasks can be 
stolen by CPU or other device workers 
  Multitasks, range stealing and range merging in future 

PL7 Continuations stolen 
by CPU workers 

W4 

tail head tail head 

Device tasks stolen by 
CPU and other device 
workers 

Device tasks created from CPU 
worker via 

 async at(gpl) IN() OUT() { … } 
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Intel® 
Xeon® 
Processor Intel® 

Memory 
Controller 
Hub (MCH) 

Intel® I/O 
Subsystem Memory Memory 

Application 
Engine Hub 
(AEH) 

Application Engines 
(AEs) 

Direct 
Data 
Port 

“Commodity” Intel Server Convey FPGA-based coprocessor 

Standard Intel® x86-64 Server 
 x86-64 Linux 

Convey coprocessor 
 FPGA-based 
 Shared cache-coherent memory 

Xeon Quad 
Core LV5408 
40W TDP 

Tesla C1060 
100GB/s off-chip bandwidth 
200W TDP 

XC6vlx760 FPGAs 
80GB/s off-chip bandwidth 
94W Design Power 

Convey HC-1ex Testbed 
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Experimental results 

•  Execution times and active energy with 
dynamic work stealing 
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Background: Summary of Habanero-C (HC) 
•  HC is a parallel programming system (language + compiler + 

runtime) developed in the Rice Habanero Multicore Software 
research project  

•  Five classes of parallel programming primitives in HC: 
1.  Dynamic task creation & termination 

  async, finish, forasync 

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs) 
  await, put(), get() 

3.  Support for affinity control and heterogeneous processors 
  hierarchical places 

4.  Collective and point-to-point synchronization 
  phasers 

5.  Extensions for distributed-memory parallelism 
  Asynchornos Partitioned Global Name Space (APGNS) model with 

Distributed Data-Driven Futures (DDDFs) 
  Integration of task parallelism with communication (HCMPI) 
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From Locality to Communication --- Integrating Inter-
node Communication with Intra-node Task Scheduling 

Ratio of computation to 
communication workers can be 

tuned for different platforms 
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APGNS Programming Model 

 Philosophy : 
  In the Asynchronous Partitioned Global Name Space 

(APGNS) programming model, distributed tasks 
communicate via distributed data-driven futures, each of 
which has a globally unique id/name (guid).  

  APGNS can be implemented on a wide range of 
communication runtimes including GASNet and MPI, 
regardless of whether or not a global address space is 
supported. 
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Distributed Data-Driven Futures (DDDFs) 
int DDF_HOME (int guid) {…}; !

  a globally unique DDDF id   home rank 
int DDF_SIZE (int guid) {…};!

  a globally unique DDDF id   size of DDDF in bytes 
DDF_t* ddfA = DDF_HANDLE(guid); (contrast with DDF_CREATE of shared memory)!

  Allocate an instance of a distributed data-driven-future object (container) 
  Every rank has a handle, home rank can put, every rank can get!
async AWAIT(ddfA, ddfB, …) <Stmt>!

  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … 
become available (i.e., after task becomes “enabled”) 

  Seamless usage of distributed and shared memory DDFs 
  Await registration handles the communication implicitly 
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Distributed Data-Driven Futures (DDDFs, contd) 

DDF_PUT(ddfA, V); !

  Store object V in ddfA, thereby making ddfA available 

  Single-assignment rule: at most one put is permitted on a given DDF 

  Restricted only to home rank 

  Handles communication to registrants implicitly 

DDF_GET (ddfA) 

  Return value stored in ddfA 

  Ensured to be safely performed by async’s that contain ddfA in their await 
clause 

  needs to be preceded by await clause on ddfA if the producer is remote  

  await can be in a different task provided local synchronization ensures the await 
precedes get 
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Multi-Node SmithWaterman 
#define DDF_HOME(guid) (guid%NPROC)!
#define DDF_SIZE(guid) (sizeof(Elem))!

for (i=0;i<H;++i) !
  for (j=0;j<W;++j)!
    matrix[i][j] = DDF_HANDLE(i*H+j);!

doInitialPuts(matrix);!
finish {!
  for (i=0,i<H;++i) {!
    for (j=0,j<W;++j) {!
      DDF_t* curr = matrix[i][j];!
      DDF_t* above = matrix[i-1][j];!
      DDF_t* left = matrix[i][j-1];!
      DDF_t* uLeft = matrix[i-1][j-1];!
      if ( isHome(i,j) ) {!
        async AWAIT (above, left, uLeft){!
          Elem* currElem = !
            init(DDF_GET(above),!
                 DDF_GET(left),!
                 DDF_GET(uLeft));!
          compute(currElem);!
          DDF_PUT(curr, currElem);!
        }/*async*/        !
      }/*if*/!
    }/*for*/!
  }/*for*/!
}/*finish*/!
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Results for APGNS version of SmithWaterman 
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Habanero Posters 
  Sanjay Chatterjee 

 The Habanero Asynchronous Partitioned Global 
Name Space (APGNS) Programming Model 

  Deepak Majeti 
 Programming Heterogeneous Platforms with 

Habanero-C  
  Nick Vrvilo 

 Comparison of MPI and UPC overheads for MG 
benchmarks 
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Programming Model Discussion Topics 
  How can Lithe be used to enable Habanero-UPC and H-

CAF to interoperate with MPI + OpenMP? 
  How should Containment Domains be integrated with 

DEGAS programming models? 
  Programming model and compiler support for CA? 
  Next steps 

 Demonstrations of DEGAS programming models on MG 
code 
 DEGAS C++ lib version 
 Habanero-UPC version 
 Hierarchical-CAF version 

  Integration of HClib with DEGAS C++ library? 
  . . . 


