
1

Vivek Sarkar

Rice University

June 3, 2013

Overview of DEGAS ���
Programming Models area	

2

Context
  Exascale systems will impose a fresh set of requirements

on programming models including
  targeting nodes with hundreds of homogeneous and

heterogeneous cores with limited memory per core
  severe bandwidth, energy, locality and resiliency

constraints within and across nodes.
  DEGAS = Dynamic Exascale Global Address Space

DEGAS C++ lib

3

Programming Model Goals
  Programmability: ease of use by application partners
  Performance: effective exploitation of unique aspects of

DEGAS stack
 Dynamic + Hierarchical + One-sided

  Portability:
 Unified primitives for synchronization, communication

and parallelism
 Homogeneous/heterogeneous, intra-node/inter-node,

SIMD/SIMT, SPMD/dynamic, synchronous/
asynchronous, …

  Tight integration with leading-edge processors and
interconnects from multiple vendors

  Success: DEGAS programming systems used in production
context on leading-edge hardware by application partners

4

Pushing the boundaries
  Asynchrony

 One-sided communications, function shipping
 Data-driven tasks
  PGAS, APGNS (Async Partitioned Global Name Space)

  Hierarchy and Locality
 Hierarchical Teams
 Hierarchical CAF
 Hierarchical Place Tree
 Containment Domains

  Heterogeneity
  Automatic generation of CUDA & OpenCL
 Dynamic scheduling for homogeneous and

heterogeneous processors

5

DEGAS Programming System Gaps
being addressed by other X-Stack projects

 Domain Specific Languages
 Debugging tools
 Performance tools
 Auto-tuning
  . . .

 … but we’re interested in these topics too!

6

Programming Model Talks

 MG Code for language and system design
(Sam, Nick)

 Hierarchical teams (Amir)
 CAF Overview (John)
 DEGAS programming system via C++ library

extension (Yili)
 Future of Scientific Python (Fernando)

7

Background: Summary of Habanero-C (HC)
•  HC is a parallel programming system (language + compiler +

runtime) developed in the Rice Habanero Multicore Software
research project

•  Five classes of parallel programming primitives in HC:
1.  Dynamic task creation & termination

  async, finish, forasync

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs)
  await, put(), get()

3.  Support for affinity control and heterogeneous processors
  hierarchical places

4.  Collective and point-to-point synchronization for SPMD parallelism
  phasers

5.  Distribution
  Partitioned Global Name Space (PGNS) model with Distributed Data-

Driven Futures (DDDFs)
  Integration of task parallelism with communication (HCMPI)

8

Productivity Benefits of Dataflow Programming

•  “Macro-dataflow” = extension of dataflow model from instruction-level to
task-level operations
•  General idea: build an arbitrary task graph, but restrict all inter-task
communications to single-assignment variables
•  Static dataflow ==> graph fixed when program execution starts
•  Dynamic dataflow ==> graph can grow dynamically
•  Semantic guarantees: race-freedom, determinism
•  Deadlocks are possible due to unavailable inputs (but they are deterministic)

Communication via single-
assignment variable	

9

Data-Driven Futures (DDFs) and
Data-Driven Tasks (DDTs)

DDF_t* ddfA = DDF_CREATE();!

  Allocate an instance of a data-driven-future object (container)

async AWAIT(ddfA, ddfB, …) <Stmt>!

  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, …
become available (i.e., after task becomes “enabled”)

DDF_PUT(ddfA, V); !

  Store object V in ddfA, thereby making ddfA available

  Single-assignment rule: at most one put is permitted on a given DDF

DDF_GET (ddfA)

  Return value stored in ddfA

  No blocking needed --- should only be performed by async’s that contain ddfA
in their AWAIT clause, or when some other synchronization (e.g., finish)
guarantees that DDF_PUT must have been performed.

DDFs can be implemented more efficiently than classical futures

10

Example Habanero-C code fragment
with Data-Driven Futures (Dag Parallelism)

1.  DDF_t* left = DDF_CREATE();!
2.  DDF_t* right = DDF_CREATE();!
3.  finish {!
4.  async AWAIT(left) leftReader(DDF_GET(left)); // Task3!
5.  async AWAIT(right) rightReader(DDF_GET(right)); // Task5!
6.  async AWAIT(left,right) // Task4!
7.  bothReader(DDF_GET(left), DDF_GET(right)); !
8.  async DDF_PUT(left,leftWriter()); //Task1!
9.  async DDF_PUT(right,rightWriter());//Task2!
10.  }!

•  AWAIT clauses capture data flow relationships

11

Smith Waterman example (Single Node)
finish { // matrix is a 2-D array of DDFs!
 for (i=0,i<H;++i) {!
 for (j=0,j<W;++j) {!
 DDF_t* curr = matrix[i][j];!
 DDF_t* above = matrix[i-1][j];!
 DDF_t* left = matrix[i][j-1];!
 DDF_t* uLeft = matrix[i-1][j-1];!
 async AWAIT (above, left, uLeft){!
 Elem* currElem = !
 init(DDF_GET(above),DDF_GET(left), DDF_GET(uLeft));!
 compute(currElem);!
 DDF_PUT(curr, currElem);!
 }/*async*/ !
 }/*for-j*/!
 }/*for-i*/!
}/*finish*/!

12

Background: Summary of Habanero-C (HC)
•  HC is a parallel programming system (language + compiler +

runtime) developed in the Rice Habanero Multicore Software
research project

•  Five classes of parallel programming primitives in HC:
1.  Dynamic task creation & termination

  async, finish, forasync

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs)
  await, put(), get()

3.  Support for affinity control and heterogeneous processors
  hierarchical places

4.  Collective and point-to-point synchronization
  phasers

5.  Extensions for distributed-memory parallelism
  Partitioned Global Name Space (PGNS) model with Distributed Data-

Driven Futures (DDDFs)
  Integration of task parallelism with communication (HCMPI)

13

Hierarchical Place Trees (HPT)
  HPT approach

  Hierarchical memory + Dynamic parallelism
  Place denotes affinity group at memory hierarchy level

  L1 cache, L2 cache, CPU memory, GPU memory, …
  Leaf places include worker threads

  e.g., W0, W1, W2, W3
  Explore multiple HPT configurations

  For same hardware and application
  Trade-off between locality and load-balance

“Hierarchical Place Trees: A Portable Abstraction for Task
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009

14

Locality-aware Scheduling using the HPT
(Logical View)

  Workers attached to leaf places
  Bind to hardware core

  Each place has a queue
  async at(<pl>) <stmt>: push task onto

place pl’s queue

  A worker executes tasks from ancestor places from
bottom-up
  W0 executes tasks from PL3, PL1, PL0

  Tasks in a place queue can be executed by all workers
in the place’s subtree
  Task in PL2 can be executed by workers W2 or W3

PL1 PL2

PL0

PL3

w0

PL4

w1

PL5

w2

PL6

w3

15

q0 q1 q2 q3 q4 q5 q6 q7

P0	

P1	
 P2	

P3	
 P4	
 P5	
 P6	

P7	
 P8	
 P9	
 P10	
 P11	
 P12	
 P13	
 P14	

L1	

w0	
 w1	
 w2	
 w3	
 w4	
 w5	
 w6	
 w7	

steal	

push	
 /	
 pop	
 async	
 AT(p3)	

L2	

L3	

DRAM	

• 	
 Each	
 place	
 has	
 one	
 queue	
 per	
 worker	

• 	
 Ensures	
 non-­‐synchronized	
 push	
 and	
 pop	

• 	
 Workers	
 bound	
 to	
 cores	
 (leaf	
 places)	

• 	
 Any	
 worker	
 can	
 push	
 a	
 task	
 at	
 any	
 place	

• 	
 Pop	
 /	
 steal	
 access	
 permiOed	
 to	
 subtree	
 workers	

• 	
 Workers	
 traverse	
 path	
 from	
 leaf	
 to	
 root	

• 	
 Tries	
 to	
 pop,	
 then	
 steal,	
 at	
 every	
 place	

• 	
 ARer	
 successful	
 pop	
 /	
 steal	
 worker	
 returns	
 to	
 leaf	

Actual	
 ImplementaTon	

of	
 HPT	
 in	
 Habanero-­‐C	

Example:	
 Intel	
 Xeon	
 Dual	
 Quad	
 Core	

-­‐ 2	
 sockets	
 with	
 shared	
 L3	

-­‐ 2	
 shared	
 L2	
 per	
 socket	

16

HC Hierarchical Place Trees for Heterogeneous Architectures
♦  Devices (GPU or FPGA) are

represented as memory
module places and agent
workers
  GPU memory configuration are

fixed, while FPGA memory are
reconfigurable at runtime

♦  async at(P) S
  Creates new activity to execute

statement S at place P

♦  Physically explicit data transfer
between main memory and
device memory
  Use of IN and OUT clauses to

improve programmability of data
transfers

♦  Device agent workers
  Perform asynchronous data copy

and task launching for device

PL1 PL2

PL3 PL4 PL5 PL6

PL7 PL8

W0 W1 W2 W3

W4 W5

PL0

Physical memory

Cache

GPU memory

Reconfigurable FPGA

Implicit data movement
Explicit data movement

CPU computation worker

Device agent worker

17

Hybrid Scheduling for Heterogeneous Nodes
♦  Device place has two HC (half-concurrent) mailboxes: inbox

(green) and outbox (red)
  No locks – highly efficient

♦  Inbox maintains asynchronous device tasks (with IN/OUT)
  Concurrent enqueuing device tasks by CPU workers from tail
  Sequential dequeuing tasks by device “proxy” worker

♦  Outbox maintains continuation of the finish scope of tasks
  Sequential enqueuing continuation by “proxy” worker
  Concurrent dequeuing (steal) by CPU workers

PL7 Continuations stolen
by CPU workers

W4

Device tasks created from CPU
worker via

 async at(gpl) IN() OUT() { … }
tail head tail head

PL7 = GPU place
 W4 = proxy worker at CPU

for GPU device

18

Hybrid Scheduling with Cross-Platform Work Stealing
♦  Steps are compiled for execution on CPU, GPU or FPGA

  Same-source multiple-target compilation in future

♦  Device inbox is now a concurrent queue and tasks can be
stolen by CPU or other device workers
  Multitasks, range stealing and range merging in future

PL7 Continuations stolen
by CPU workers

W4

tail head tail head

Device tasks stolen by
CPU and other device
workers

Device tasks created from CPU
worker via

 async at(gpl) IN() OUT() { … }

19

Intel®
Xeon®
Processor Intel®

Memory
Controller
Hub (MCH)

Intel® I/O
Subsystem Memory Memory

Application
Engine Hub
(AEH)

Application Engines
(AEs)

Direct
Data
Port

“Commodity” Intel Server Convey FPGA-based coprocessor

Standard Intel® x86-64 Server
 x86-64 Linux

Convey coprocessor
 FPGA-based
 Shared cache-coherent memory

Xeon Quad
Core LV5408
40W TDP

Tesla C1060
100GB/s off-chip bandwidth
200W TDP

XC6vlx760 FPGAs
80GB/s off-chip bandwidth
94W Design Power

Convey HC-1ex Testbed

19

20

Experimental results

•  Execution times and active energy with
dynamic work stealing

21

Background: Summary of Habanero-C (HC)
•  HC is a parallel programming system (language + compiler +

runtime) developed in the Rice Habanero Multicore Software
research project

•  Five classes of parallel programming primitives in HC:
1.  Dynamic task creation & termination

  async, finish, forasync

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs)
  await, put(), get()

3.  Support for affinity control and heterogeneous processors
  hierarchical places

4.  Collective and point-to-point synchronization
  phasers

5.  Extensions for distributed-memory parallelism
  Asynchornos Partitioned Global Name Space (APGNS) model with

Distributed Data-Driven Futures (DDDFs)
  Integration of task parallelism with communication (HCMPI)

22

From Locality to Communication --- Integrating Inter-
node Communication with Intra-node Task Scheduling

Ratio of computation to
communication workers can be

tuned for different platforms

23

APGNS Programming Model

 Philosophy :
  In the Asynchronous Partitioned Global Name Space

(APGNS) programming model, distributed tasks
communicate via distributed data-driven futures, each of
which has a globally unique id/name (guid).

  APGNS can be implemented on a wide range of
communication runtimes including GASNet and MPI,
regardless of whether or not a global address space is
supported.

24

Distributed Data-Driven Futures (DDDFs)
int DDF_HOME (int guid) {…}; !

  a globally unique DDDF id  home rank
int DDF_SIZE (int guid) {…};!

  a globally unique DDDF id  size of DDDF in bytes
DDF_t* ddfA = DDF_HANDLE(guid); (contrast with DDF_CREATE of shared memory)!

  Allocate an instance of a distributed data-driven-future object (container)
  Every rank has a handle, home rank can put, every rank can get!
async AWAIT(ddfA, ddfB, …) <Stmt>!

  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, …
become available (i.e., after task becomes “enabled”)

  Seamless usage of distributed and shared memory DDFs
  Await registration handles the communication implicitly

25

Distributed Data-Driven Futures (DDDFs, contd)

DDF_PUT(ddfA, V); !

  Store object V in ddfA, thereby making ddfA available

  Single-assignment rule: at most one put is permitted on a given DDF

  Restricted only to home rank

  Handles communication to registrants implicitly

DDF_GET (ddfA)

  Return value stored in ddfA

  Ensured to be safely performed by async’s that contain ddfA in their await
clause

  needs to be preceded by await clause on ddfA if the producer is remote

  await can be in a different task provided local synchronization ensures the await
precedes get

26

Multi-Node SmithWaterman
#define DDF_HOME(guid) (guid%NPROC)!
#define DDF_SIZE(guid) (sizeof(Elem))!

for (i=0;i<H;++i) !
 for (j=0;j<W;++j)!
 matrix[i][j] = DDF_HANDLE(i*H+j);!

doInitialPuts(matrix);!
finish {!
 for (i=0,i<H;++i) {!
 for (j=0,j<W;++j) {!
 DDF_t* curr = matrix[i][j];!
 DDF_t* above = matrix[i-1][j];!
 DDF_t* left = matrix[i][j-1];!
 DDF_t* uLeft = matrix[i-1][j-1];!
 if (isHome(i,j)) {!
 async AWAIT (above, left, uLeft){!
 Elem* currElem = !
 init(DDF_GET(above),!
 DDF_GET(left),!
 DDF_GET(uLeft));!
 compute(currElem);!
 DDF_PUT(curr, currElem);!
 }/*async*/ !
 }/*if*/!
 }/*for*/!
 }/*for*/!
}/*finish*/!

27

Results for APGNS version of SmithWaterman

28

Habanero Posters
  Sanjay Chatterjee

 The Habanero Asynchronous Partitioned Global
Name Space (APGNS) Programming Model

  Deepak Majeti
 Programming Heterogeneous Platforms with

Habanero-C
  Nick Vrvilo

 Comparison of MPI and UPC overheads for MG
benchmarks

29

Programming Model Discussion Topics
  How can Lithe be used to enable Habanero-UPC and H-

CAF to interoperate with MPI + OpenMP?
  How should Containment Domains be integrated with

DEGAS programming models?
  Programming model and compiler support for CA?
  Next steps

 Demonstrations of DEGAS programming models on MG
code
 DEGAS C++ lib version
 Habanero-UPC version
 Hierarchical-CAF version

  Integration of HClib with DEGAS C++ library?
  . . .

