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Context 
  Exascale systems will impose a fresh set of requirements 

on programming models including 
  targeting nodes with hundreds of homogeneous and 

heterogeneous cores with limited memory per core 
  severe bandwidth, energy, locality and resiliency 

constraints within and across nodes.   
  DEGAS = Dynamic Exascale Global Address Space 

DEGAS C++ lib 
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Programming Model Goals 
  Programmability: ease of use by application partners 
  Performance: effective exploitation of unique aspects of 

DEGAS stack 
 Dynamic + Hierarchical + One-sided 

  Portability:  
 Unified primitives for synchronization, communication 

and parallelism 
 Homogeneous/heterogeneous, intra-node/inter-node, 

SIMD/SIMT, SPMD/dynamic, synchronous/
asynchronous, … 

  Tight integration with leading-edge processors and 
interconnects from multiple vendors 

  Success: DEGAS programming systems used in production 
context on leading-edge hardware by application partners 
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Pushing the boundaries 
  Asynchrony 

 One-sided communications, function shipping 
 Data-driven tasks 
  PGAS, APGNS (Async Partitioned Global Name Space) 

  Hierarchy and Locality 
 Hierarchical Teams  
 Hierarchical CAF 
 Hierarchical Place Tree 
 Containment Domains 

  Heterogeneity 
  Automatic generation of CUDA & OpenCL 
 Dynamic scheduling for homogeneous and 

heterogeneous processors 
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DEGAS Programming System Gaps  
being addressed by other X-Stack projects 

 Domain Specific Languages 
 Debugging tools 
 Performance tools 
 Auto-tuning 
  . . . 

 … but we’re interested in these topics too! 
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Programming Model Talks 

 MG Code for language and system design 
(Sam, Nick) 

 Hierarchical teams (Amir) 
 CAF Overview (John) 
 DEGAS programming system via C++ library 

extension (Yili) 
 Future of Scientific Python (Fernando) 
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Background: Summary of Habanero-C (HC) 
•  HC is a parallel programming system (language + compiler + 

runtime) developed in the Rice Habanero Multicore Software 
research project  

•  Five classes of parallel programming primitives in HC: 
1.  Dynamic task creation & termination 

  async, finish, forasync 

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs) 
  await, put(), get() 

3.  Support for affinity control and heterogeneous processors 
  hierarchical places 

4.  Collective and point-to-point synchronization for SPMD parallelism 
  phasers 

5.  Distribution 
  Partitioned Global Name Space (PGNS) model with Distributed Data-

Driven Futures (DDDFs) 
  Integration of task parallelism with communication (HCMPI) 
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Productivity Benefits of Dataflow Programming 

•  “Macro-dataflow” = extension of dataflow model from instruction-level to 
task-level operations 
•  General idea: build an arbitrary task graph, but restrict all inter-task 
communications to single-assignment variables 
•  Static dataflow ==> graph fixed when program execution starts 
•  Dynamic dataflow ==> graph can grow dynamically 
•  Semantic guarantees: race-freedom, determinism 
•  Deadlocks are possible due to unavailable inputs (but they are deterministic) 

Communication via single-
assignment variable	
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Data-Driven Futures (DDFs) and  
Data-Driven Tasks (DDTs) 

DDF_t* ddfA = DDF_CREATE();!

  Allocate an instance of a data-driven-future object (container) 

async AWAIT(ddfA, ddfB, …) <Stmt>!

  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … 
become available (i.e., after task becomes “enabled”) 

DDF_PUT(ddfA, V); !

  Store object V in ddfA, thereby making ddfA available 

  Single-assignment rule: at most one put is permitted on a given DDF 

DDF_GET (ddfA) 

  Return value stored in ddfA 

  No blocking needed --- should only be performed by async’s that contain ddfA 
in their AWAIT clause, or when some other synchronization (e.g., finish) 
guarantees that DDF_PUT must have been performed. 

DDFs can be implemented more efficiently than classical futures 
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Example Habanero-C code fragment  
with Data-Driven Futures (Dag Parallelism) 

1.  DDF_t* left = DDF_CREATE();!
2.  DDF_t* right = DDF_CREATE();!
3.  finish {!
4.    async AWAIT(left) leftReader(DDF_GET(left)); // Task3!
5.    async AWAIT(right) rightReader(DDF_GET(right)); // Task5!
6.    async AWAIT(left,right) // Task4!
7.          bothReader(DDF_GET(left), DDF_GET(right)); !
8.    async DDF_PUT(left,leftWriter()); //Task1!
9.    async DDF_PUT(right,rightWriter());//Task2!
10.  }!

•  AWAIT clauses capture data flow relationships 
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Smith Waterman example (Single Node) 
finish { // matrix is a 2-D array of DDFs!
  for (i=0,i<H;++i) {!
    for (j=0,j<W;++j) {!
      DDF_t* curr = matrix[i][j];!
      DDF_t* above = matrix[i-1][j];!
      DDF_t* left = matrix[i][j-1];!
      DDF_t* uLeft = matrix[i-1][j-1];!
      async AWAIT (above, left, uLeft){!
          Elem* currElem = !
            init(DDF_GET(above),DDF_GET(left), DDF_GET(uLeft));!
          compute(currElem);!
          DDF_PUT(curr, currElem);!
        }/*async*/        !
    }/*for-j*/!
  }/*for-i*/!
}/*finish*/!
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Background: Summary of Habanero-C (HC) 
•  HC is a parallel programming system (language + compiler + 

runtime) developed in the Rice Habanero Multicore Software 
research project  

•  Five classes of parallel programming primitives in HC: 
1.  Dynamic task creation & termination 

  async, finish, forasync 

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs) 
  await, put(), get() 

3.  Support for affinity control and heterogeneous processors 
  hierarchical places 

4.  Collective and point-to-point synchronization 
  phasers 

5.  Extensions for distributed-memory parallelism 
  Partitioned Global Name Space (PGNS) model with Distributed Data-

Driven Futures (DDDFs) 
  Integration of task parallelism with communication (HCMPI) 
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Hierarchical Place Trees (HPT) 
  HPT approach 

  Hierarchical memory + Dynamic parallelism 
  Place denotes affinity group at memory hierarchy level 

  L1 cache, L2 cache, CPU memory, GPU memory, … 
  Leaf places include worker threads 

  e.g., W0, W1, W2, W3 
  Explore multiple HPT configurations 

  For same hardware and application 
  Trade-off between locality and load-balance 

“Hierarchical Place Trees: A Portable Abstraction for Task  
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009 
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Locality-aware Scheduling using the HPT  
(Logical View) 

  Workers attached to leaf places 
  Bind to hardware core 

  Each place has a queue 
  async at(<pl>) <stmt>: push task onto 

place pl’s queue  

  A worker executes tasks from ancestor places from 
bottom-up 
  W0 executes tasks from PL3, PL1, PL0 

  Tasks in a place queue can be executed by all workers 
in the place’s subtree 
  Task in PL2 can be executed by workers W2 or W3 

PL1 PL2 

PL0 

PL3 

w0 

PL4 

w1 

PL5 

w2 

PL6 

w3 
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HC Hierarchical Place Trees for Heterogeneous Architectures  
♦  Devices (GPU or FPGA) are 

represented as memory 
module places and agent 
workers 
  GPU memory configuration are 

fixed, while FPGA memory are 
reconfigurable at runtime 

♦  async at(P) S 
  Creates new activity to execute 

statement S at place P 

♦  Physically explicit data transfer 
between main memory and 
device memory 
  Use of IN and OUT clauses to 

improve programmability of data 
transfers 

♦  Device agent workers 
  Perform asynchronous data copy 

and task launching for device 

PL1 PL2 

PL3 PL4 PL5 PL6 

PL7 PL8 

W0 W1 W2 W3 

W4 W5 

PL0 

Physical memory 

Cache 

GPU memory 

Reconfigurable FPGA 

Implicit data movement 
Explicit data movement 

CPU computation worker 

Device agent worker 



17 

Hybrid Scheduling for Heterogeneous Nodes 
♦  Device place has two HC (half-concurrent) mailboxes: inbox 

(green) and outbox (red) 
  No locks – highly efficient 

♦  Inbox maintains asynchronous device tasks (with IN/OUT) 
  Concurrent enqueuing device tasks by CPU workers from tail 
  Sequential dequeuing tasks by device “proxy” worker 

♦  Outbox maintains continuation of the finish scope of tasks 
  Sequential enqueuing continuation by “proxy” worker 
  Concurrent dequeuing (steal) by CPU workers 

PL7 Continuations stolen 
by CPU workers 

W4 

Device tasks created from CPU 
worker via 

 async at(gpl) IN() OUT() { … } 
tail head tail head 

PL7 = GPU place 
  W4 = proxy worker at CPU  

for GPU device 
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Hybrid Scheduling with Cross-Platform Work Stealing 
♦  Steps are compiled for execution on CPU, GPU or FPGA 

  Same-source multiple-target compilation in future 

♦  Device inbox is now a concurrent queue and tasks can be 
stolen by CPU or other device workers 
  Multitasks, range stealing and range merging in future 

PL7 Continuations stolen 
by CPU workers 

W4 

tail head tail head 

Device tasks stolen by 
CPU and other device 
workers 

Device tasks created from CPU 
worker via 

 async at(gpl) IN() OUT() { … } 
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Intel® 
Xeon® 
Processor Intel® 

Memory 
Controller 
Hub (MCH) 

Intel® I/O 
Subsystem Memory Memory 

Application 
Engine Hub 
(AEH) 

Application Engines 
(AEs) 

Direct 
Data 
Port 

“Commodity” Intel Server Convey FPGA-based coprocessor 

Standard Intel® x86-64 Server 
 x86-64 Linux 

Convey coprocessor 
 FPGA-based 
 Shared cache-coherent memory 

Xeon Quad 
Core LV5408 
40W TDP 

Tesla C1060 
100GB/s off-chip bandwidth 
200W TDP 

XC6vlx760 FPGAs 
80GB/s off-chip bandwidth 
94W Design Power 

Convey HC-1ex Testbed 
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Experimental results 

•  Execution times and active energy with 
dynamic work stealing 
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Background: Summary of Habanero-C (HC) 
•  HC is a parallel programming system (language + compiler + 

runtime) developed in the Rice Habanero Multicore Software 
research project  

•  Five classes of parallel programming primitives in HC: 
1.  Dynamic task creation & termination 

  async, finish, forasync 

2.  Data-Driven Tasks (DDTs) and Data-Driven Futures (DDFs) 
  await, put(), get() 

3.  Support for affinity control and heterogeneous processors 
  hierarchical places 

4.  Collective and point-to-point synchronization 
  phasers 

5.  Extensions for distributed-memory parallelism 
  Asynchornos Partitioned Global Name Space (APGNS) model with 

Distributed Data-Driven Futures (DDDFs) 
  Integration of task parallelism with communication (HCMPI) 
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From Locality to Communication --- Integrating Inter-
node Communication with Intra-node Task Scheduling 

Ratio of computation to 
communication workers can be 

tuned for different platforms 
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APGNS Programming Model 

 Philosophy : 
  In the Asynchronous Partitioned Global Name Space 

(APGNS) programming model, distributed tasks 
communicate via distributed data-driven futures, each of 
which has a globally unique id/name (guid).  

  APGNS can be implemented on a wide range of 
communication runtimes including GASNet and MPI, 
regardless of whether or not a global address space is 
supported. 
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Distributed Data-Driven Futures (DDDFs) 
int DDF_HOME (int guid) {…}; !

  a globally unique DDDF id   home rank 
int DDF_SIZE (int guid) {…};!

  a globally unique DDDF id   size of DDDF in bytes 
DDF_t* ddfA = DDF_HANDLE(guid); (contrast with DDF_CREATE of shared memory)!

  Allocate an instance of a distributed data-driven-future object (container) 
  Every rank has a handle, home rank can put, every rank can get!
async AWAIT(ddfA, ddfB, …) <Stmt>!

  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … 
become available (i.e., after task becomes “enabled”) 

  Seamless usage of distributed and shared memory DDFs 
  Await registration handles the communication implicitly 
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Distributed Data-Driven Futures (DDDFs, contd) 

DDF_PUT(ddfA, V); !

  Store object V in ddfA, thereby making ddfA available 

  Single-assignment rule: at most one put is permitted on a given DDF 

  Restricted only to home rank 

  Handles communication to registrants implicitly 

DDF_GET (ddfA) 

  Return value stored in ddfA 

  Ensured to be safely performed by async’s that contain ddfA in their await 
clause 

  needs to be preceded by await clause on ddfA if the producer is remote  

  await can be in a different task provided local synchronization ensures the await 
precedes get 
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Multi-Node SmithWaterman 
#define DDF_HOME(guid) (guid%NPROC)!
#define DDF_SIZE(guid) (sizeof(Elem))!

for (i=0;i<H;++i) !
  for (j=0;j<W;++j)!
    matrix[i][j] = DDF_HANDLE(i*H+j);!

doInitialPuts(matrix);!
finish {!
  for (i=0,i<H;++i) {!
    for (j=0,j<W;++j) {!
      DDF_t* curr = matrix[i][j];!
      DDF_t* above = matrix[i-1][j];!
      DDF_t* left = matrix[i][j-1];!
      DDF_t* uLeft = matrix[i-1][j-1];!
      if ( isHome(i,j) ) {!
        async AWAIT (above, left, uLeft){!
          Elem* currElem = !
            init(DDF_GET(above),!
                 DDF_GET(left),!
                 DDF_GET(uLeft));!
          compute(currElem);!
          DDF_PUT(curr, currElem);!
        }/*async*/        !
      }/*if*/!
    }/*for*/!
  }/*for*/!
}/*finish*/!
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Results for APGNS version of SmithWaterman 
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Habanero Posters 
  Sanjay Chatterjee 

 The Habanero Asynchronous Partitioned Global 
Name Space (APGNS) Programming Model 

  Deepak Majeti 
 Programming Heterogeneous Platforms with 

Habanero-C  
  Nick Vrvilo 

 Comparison of MPI and UPC overheads for MG 
benchmarks 
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Programming Model Discussion Topics 
  How can Lithe be used to enable Habanero-UPC and H-

CAF to interoperate with MPI + OpenMP? 
  How should Containment Domains be integrated with 

DEGAS programming models? 
  Programming model and compiler support for CA? 
  Next steps 

 Demonstrations of DEGAS programming models on MG 
code 
 DEGAS C++ lib version 
 Habanero-UPC version 
 Hierarchical-CAF version 

  Integration of HClib with DEGAS C++ library? 
  . . . 


