DEGAS:
Dynamic Exascale Global Address Space

Katherine Yelick, LBNL PI
Vivek Sarkar & John Mellor-Crummey, Rice
James Demmel, Krste Asanovi¢c & Armando Fox, UC Berkeley
Mattan Erez, UT Austin
Dan Quinlan, LLNL
Surendra Byna, Paul Hargrove, Steven Hofmeyr, Costin lancu, Khaled
Ibrahim, Leonid Oliker, Eric Roman, John Shalf, David Skinner, Erich
Strohmaier, Samuel Williams, Yili Zheng, LBNL

Introductions

Brian VS Yili Zheng

Tony Erich Armando Steve Surendra David Frank Sam
Drummond Strohmaier Fox Hofmeyer Bayna Skinner Mueller Williams

DEGAS Mission

Mission Statement: To ensure the broad success of
Exascale systems through a unified programming
model that is productive, scalable, portable, and
interoperable, and meets the unique Exascale
demands of energy efficiency and resilience

 \r - : - YRR
v Hierarchical Programming
S I\ Models)
£ o[Communication-Avoiding || &
o .
€ | Compilers J 1

O\ . 1 —
a g Adaptive Interoperable @
~ @ _ v
> "\ Runtimes oc
— r c 3 :
v Lightweight One-Sided
LIJ . .

\ Communication J

XStack Review 3

DEGAS Proposal: Goals and Objectives

Scalability:
— Billion-way concurrency, thousand-way on chip with new architectures
Programmability:

— Convenient programming through a global address space and high-level
abstractions for parallelism, data movement and resilience

Performance Portability:

— Ensure applications can be moved across diverse machines using implicit
(automatic) compiler optimizations and runtime adaptation

Resilience:
— Integrated language support for capturing state and recovering from faults
Energy Efficiency:

— Avoid communication, which will dominate energy costs, and adapt to
performance heterogeneity due to system-level energy management

Interoperability:
— Encourage use of languages and features through incremental adoption

XStack Review 4

500

400 - I'SIMD
~1Single Proc.
g M Constellation
;‘7’;’. M Cluster
200 Programmed by = MPP
completely rethinking
100 algorithms and software
for parallelism
industrial use
0

199
199
199
199
199
199
199
200
200
200
200
200
200
200
200
200
200
201
201

Applications Drive Programming Models

Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing

Compute one piece and exchange Grab whatever / whenever

MPI, and many libraries UPC, CAF, X10, Chapel, Fortress, Titanium,

GlobalArrays

Science Problems Fit Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random

Independent Neighbor Simulations access, large

Jobs for Simulations data
Analysis and Analysis
Simulations

... often they fit in multiple categories

DEGAS: Dynamic Exascale Global Address Space

w B
% Models

£ o i Communication-Avoiding \ v
wc;’ _§ L Compilers) ,E)
é @ Adaptive Interoperable) E
% ¢ Runtimes J| =
& Lightweight One-Sided |

- L Communication)L J

UPC, Co-Array Fortran (CAF), Habanero-C, and libraries!

Partitioned Global Address Space PGAS

Global address space: directly read/write remote data
Partitioned: data is designated as local or global

Global address space

What’s important:

Global address space # cache coherent shared memory,
i.e., don’t cache remote data

Affinity control through partitioning = scalability
Improve bandwidth utilization through overlap

9

One-sided communication works everywhere

PGAS programming model

*pl = *p2 + 1;
A[i] = B[i];

upc_memput (A,B, 64) ;

B DALLAS A
DS1225Y

It is implemented using one-sided e s e
communication: put/get f-

Support for one-sided communication (DMA) appears in:

Fast one-sided network communication (RDMA, Remote DMA)

Move data to/from accelerators
Move data to/from 1/O system (Flash, disks,..)
Movement of data in/out of local-store (scratchpad) memory

Two Distinct Parallel Programming Questions

 What is the parallel control model?

) N P RN T
DEGAS: All three? With SPMD “default” plus
data

data parallel dynamic single program

(singe thread of control) threads multiple data (SPMD)
 What is the model for sharing/communication?

receive
store -~ =

send
DEGAS: If)ad/store W.Ith message passing
partitioning for locality ed (implicit) or separate (explicit)

11

Hierarchical PGAS (HPGAS) hierarchical memory & control

Beyond (Single Program Multiple

| ettty oo
i g | e

applications (e.g., multiphysics)

e Option 1: Dynamic parallelism creation

— Recursively divide until... you run out of work (or hardware)
e Option 2: Hierarchical SPMD with “Mix-ins”

— Hardware threads can be grouped into units hierarchically

— Add dynamic parallelism with voluntary tasking on a group
— Add data parallelism with collectives on a group

Two approaches: collecting vs spreading threads

Scalability of UPC with Dynamism of Habanero-C

Pure UPC Pure Habanero-C Mixed Habanero-
Code Code UPC Code

u Manual Translation

Habanero-C code w.
UPC Runtime Calls

Combined UPC and
Habanero-C demonstrated

Habanero-to-C
Translator

UPC-to-C
Translator

Two possible approaches
going forward: single
compiler or library with
overloading

Habanero-C
Libraries

UPC
Libraries

Habanero-UPC Executable

* Habanero-C offers asynchronous tasks scheduled dynamically

— Extended to work with MPI (Asynchronous Partitioned Global Name
Space, has core/node for communication) [Chatterjee et al, IPDPS 2013]

e UPC has static (SPMD) threading
* Phalanx (based on C++) uses PGAS ideas globally with GPU support
— Provides a UPC++ like library using overloading and UPC runtime

XStack Review 13

DEGAS: Hierarchical Programming Model

Goal: Programmability of exascale applications while providing
scalability, locality, energy efficiency, resilience, and portability

* Implicit constructs: parallel multidimensional loops, global distributed
data structures, adaptation for performance heterogeneity

e Explicit constructs: asynchronous tasks, phaser synchronization, locality
Built on scalability,
performance, and

asynchrony of PGAS models
* Language experience
from UPC, Habanero-C,
Co-Array Fortran,

Titanium § §
Both intra and inter-node;
focus is on node model

XStack Review 14

DEGAS: Hierarchical Programming Models

Languages demonstrate DEGAS programming model
 Habanero-UPC: Habanero’s intra-node model with UPC’s inter-node model
* Hierarchical Co-Array Fortran (CAF): CAF for on-chip scaling and more

* Exploration of high level languages: E.g., Python extended with H-PGAS

Language-independent H-PGAS Features:

e Hierarchical distributed arrays, asynchronous tasks, and compiler
specialization for hybrid (task/loop) parallelism and heterogeneity

* Semantic guarantees for deadlock avoidance, determinism, etc.
* Asynchronous collectives, function shipping, and hierarchical places

* End-to-end support for asynchrony (messaging, tasking, bandwidth utilization
through concurrency)

* Early concept exploration for applications and benchmarks

XStack Review 15

DEGAS: Hierarchical Programming Models

Language-independent H-PGAS
features

Languages demonstrate DEGAS
programming model

e Habanero-UPC: Habanero’s intra-
node model with UPC’s inter-node
model

* Hierarchical Co-Array Fortran (CAF):

CAF for on-chip scaling and more

* Exploration of high level languages:

E.g., Python extended with H-PGAS

First year: UPC+Habanero C
(possibly with C++ library
version)

Using namespace phalanx::gasnet;

// A static “int” type global variable

shared by all threads
global var_t<int> gv = 0;
global lock_t gv_1lock;
// All threads execute the update
function
void update() {
// shared data accesses with race
condition
for (int i=0; i<100; i++)
gv = gv + 1;
barrier();
// shared data accesses with lock
protection
for (int i=0; i<100; i++) {
gv_lock.lock(); gv = gv + 1;
gv_lock.unlock();
}
}

XStack Review 16

DEGAS: Dynamic Exascale Global Address Space

o [Hierarchical Programming J e
% Models

¥ :
£ _§ Compilers 5
é @ i Adaptive Interoperable) E
% "L Runtimes J| =
o Lightweight One-Sided

- s Communication)L)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

Co-Array Fortran (CAF) Demonstrates Efficiency of Overlap
from One-Sided Communication

* POP Ocean model has Co-Array version

— Communication-intensive (reductions
and halo ghost exchanges)

— Historical: CAF faster than MPI on Cray X1

 CAF 2.0 provides more programming

flexibility than original CAF LEKLFeslel esan Fiogrom
200 . ’ PO.P 1.4.3, x‘1 benchnl'lark
* CGPOP mini-App in CAF 2.0 o s /
H . : 160 -, ISBGIVII 2238(;[;?;2()1 3 GHz, HPS switch) //
— Using HPCToolkit for tuning e /
140 |- o HP AlphaServer SC (1.0 GHz)
—4— Cray X1 (orig. version) /

120 |~ e |BM SP (375 MH2)

— Limited by serial code (multi-
dimensional array pointers) and
parallel I/O (netCDF)

100

80

Simulation Years per Day

60

40

Worley et al results shown for historical context * ;
See also Lumsdaine et al for Graph500, SC12 1 . A 8 6 %2 e 128 25

Processors

XStack Review 18

Towards Communication-Avoiding Compilers:

-f'e- ElaiilaYa '.il_ N\ N

2.5D MM on BG/P (n=65,536)

10& T T

X 2.5D Broadcast-MM —+—
'T‘ k r 2.5D Cannon-MM —»%¢— 1

1 2D MM (Cannon) —%—
y 80 - . ScaLAPACK PDGEMM —&—
60 - N?:E

Z

'::..'. '.':.:: 2 0 \\‘
«—> j L 1]

0 | |
/' 256 512 1024 2048
#nodes

Percentage of machine peak

| <—
Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i, forj, for k CJi,j] ... All,k]... B[k,j] ...

These are not just “avoiding,” they are “communication-optimal”

Generalizing Communication Optimal Transformations to
Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce The same idea (replicate and
reduce) can be used on (direct)
000000 000000 Fo)
0000 1D decomposition = “1.5D”
000

Speedup of 1.5D N-Body over 1D

Does this work in general?

32K

e Yes, for certain loops and .
array expressions g 8K
e Relies on basic result in E 24K

group theory

e Compiler work TBD 3.7x

6K

A Communication-Optimal N-Body Algorithm for Direct Interactions, Driscoll et al, IPDPS’13

Generalizing Communication Lower Bounds and Optimal
Algorithms

* For serial matmul, we know #words_moved = Q (n3/M*/2),
attained by tile sizes M'/2x M1/2

— Where do all the %2’s come from?

 Thm (Christ,Demmel,Knight,Scanlon,Yelick): For any
program that “smells like” nested loops, accessing arrays
with subscripts that are linear functions of the loop indices,
#twords_moved = Q (#iterations/ Me), for some e we can
determine

« Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

* Long term goal: All compilers should generate
communication optimal code from nested loops

Communication Overlap Complements Avoidance

60000 Performance results on Cray XE6
(24K cores, 32k x 32k matrices)
50000
W 2.5D + Overlap
M 2.5D (Avoiding)
40000 ® 2D + Overlap
" B 2D (Original)
o
= 30000
O
20000
10000
0

SUMMA Cannon TRSM Cholesky

* Even with communication-optimal algorithms (minimized bandwidth) there are
still benefits to overlap and other things that speed up networks

« Communication Avoiding and Overlapping for Numerical Linear Algebra,
Georganas et al, SC12

DEGAS: Dynamic Exascale Global Address Space

o Hierarchical Programming |[
% Models)

E o Communication-Avoiding \ @
£ _§ Compilers J| @
é @ Adaptive Interoperable) E
% - Runtimes)| =
& Lightweight One-Sided |

- Communication)L)

Integrated stack extends PGAS to be:

* Hierarchical for machines and applications
e Communication-avoiding for performance and energy

Autotuning: Write Code Generators

Major Exascale issues are in the compute node (heterogeneity,
scratchpad memory, NVRAM,...)

Autotuning avoids two hard compiler problems:

1) dependence analysis and 2) accurate performance models

Popular in libraries: Atlas, FFTW, OSKI,...

Gflop/

wn 1281
641

Xeon X5550 (Nehalem)
et
5121

2567

Peak compute

iy

Vg U g Y, ', 1 2 4 8 16 32
Algorithmic intensity: Flops/Word

1024

ﬂﬂﬂﬂﬂﬂﬂﬂ

512
256
0128

(o}
O 64

=
O 32
16

OZ7;tSten dl

7pt Stenci
%‘: .GTCIpushi
1

SpMV/
/

1
7
1
1 'I
! ’
A}
A~

GT-C/chargei

N &~ 0

1

I I
lo e g Yy 1, 1 2 4 8 16 32
Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,...

24

Approaches to Autotuning

BLAS Library

How do we produce all of these (correct) versions?

DEGAS: node runtime for NUMA, Scratchpad,... SIMD?
Transform high level representation (FFTW, Spiral)

Compile a domain-specific language (D-TEC)
Compile a general-purpose language + annotations (X-Tune)

Dvnamic comnilation of a domain-snecific (SFIITS)

DEGAS: interoperability

25

Correctness Tools for Concurrency and Numerics

* Active Testing

— Phase 1: Static or dynamic analysis to find
potential concurrency bug patterns (data
races, deadlocks, etc.)

Delta Debugging for

— Phase 2: “Direct” testing (or model Floating Point code:
checking) based on the bug patterns ¢ How much precision
obtained from does each variable

Correctness tools for different programming models: need?
PGAS, MP|, d ic parallelism o Approach:
* Identify source of non-determinism in executions automatically rewrite
* Concurrency bugs include data races, atomicity violations, non- and test sensitivity

reproducible floating-point results, etc.

Concolic Testing ’ (concrete + symbolic execution)

* Synthesize inputs and simplified executions able to reproduce
bugs using the minimal amount of concurrency

DEGAS: Dynamic Exascale Global Address Space

o " Hierarchical Programming ||
% X Models)

E o i Communication-Avoiding \ @
£ é L Compilers J| @
3.
% - Runtimes o
& [Lightweight One-Sided J

- Communication)

LITHE, JUGGLE: adaptive and efficient runtime

Resource management will require adaptive runtime systems

1
Per Task Queue , Pool Queue '[Token |
I

Clients

NIC

Pool Level Node Level

* The value of throttling:

* the number of messages in flight per core provides up to 4X
performance improvements

* the number of active cores per node can provide additional 40%
performance improvement for

 Developing adaptation based on history and (user-supplied) intent

THOR: Throughput Oriented Runtime to Manage Resources

Juggle: Management of critical resources is increasingly important:
* Memory and network bandwidth limited by cost and energy

e Capacity limited at many levels: network buffers at interfaces, internal
network congestion are real and growing problems

InfiniBand - 8 byte Msg Throughput
35
30 =&=Proc —#—Hyb Pth
g - Processes (BUPC) A
=
< 20 2X
£ 3X
s 15)
- Hybrid \ 4
'§ 10 = ; -
5 Pthreads V¥ 5X ¢
0 ! T T T T T T)
4 8 12 16 20 24 28 32
Cores Active

Having more than 4 submitting processes can negatively impact performance by up to 4x

Lithe Scheduling Abstraction: “Harts”: Hardware Threads

POSIX Threads Harts
App 2 Hardware Partitions

App 1

§§ % % %% § % Virtualized
Threads »

Appl

:

Harts
(HW Thread Contexts)

OS oS
0O /'1 2 3 0O /'1 2 3
Hardware Hardware
* Merged resource and * More accurate
computation abstraction. resource abstraction.

Release planned for this spring with substantial rewrite
1) Separation of Lithe's APl from OS functionality

2) Restructuring to support future preemption work.
3) Updated OpenMP and TBB ports.

4) Documentation: lithe.eecs.berkeley.edu

30

DEGAS: Dynamic Exascale Global Address Space

4 . : . N\)
o Hierarchical Programming
c Models)
= (" . . . g)
E o Communication-Avoiding Q
U [
%g L Compilers)| ©
Ol .) —
9 Adaptive Interoperable s
LL . (a'
a0 I\ Runtimes)
| -
o Lightweight One-Sided
w . .
Communication | |

Next Generation GASNet

DEGAS: Lightweight Communication (GASNet-EX)

GASNet-EX plans:

* Congestion management: for 1-sided communication with ARTS
e Hierarchical: communication management for H-PGAS

* Resilience: globally consist states and fine-grained fault recovery

* Progress: new models for scalability and ﬁﬁﬁi
interoperatbility (oo [psooery J [pnainc]

GASNet

Leverage GASNet (redesigned) ow |

e Major changes for on-chip interconnects il [aad
e Each network has unique opportunities

* Interface under design: “Speak now or....”
— https://sites.google.com/a/lbl.eov/gasnet-ex-collaboration/.

XStack Review 32

New Systems with New Networks

* Upgrades in the DOE computing landscape
— XK7 (Gemini interconnect but combined with GPUs)

— BG/Q (IBM custom interconnect, PAMI interface)

=500

— Cascade (Cray Aries interconnect)
November 2012

Titan at ORNL Sequoia at LLNL Mira at ANL Cielo at LANL/SNL Hopper at LBNL
(#1, 17+ PF) (#2, 16+ PF) (#4, 8+ PF) (#18, 1+PF) (#19, 1+PF)

Performance increase on Gemini: 20% for CG, 40% for GUPPIE

DEGAS: Dynamic Exascale Global Address Space

o " Hierarchical Programming \

% g Models)

£ o i Communication-Avoiding \ v
wc;’ _§ L Compilers) ,E)
é @ Adaptive Interoperable) §
% ¢ Runtimes J| &«
o Lightweight One-Sided

- L Communication)

Containment Domans and BLCR (Berkeley Lab
Checkpoint Restart)

Resilience Approaches

* Containment Domains (CDs) for trees Root CD

— Flexible resilience techniques (mechanism not policy)

— Each CD provides own recovery mechanism

— Analytical model: 90%+ efficiency at 2 EF A

vs. 0% for conventional checkpointing

* Berkeley Lab Checkpoint Restart

— BLCR is a system-level Checkpoint/Restart - m
reserve RN .
* Job state written to filesystem or memory; works on : :

Domain

most HPC apps Body

Detect

— Checkpoint/Restart can be used for roll-back
recovery

..........

Recover

. . Child CD
* acourse-grained approach to resilience

- BLCR also enables use for job migration among | *® Preserve data on domain start
compute nodes * Compute (domain body)

* Detect faults before commit

— Requires support from the MPI implementation | | Recover from detected errors

— Impact: part of standard Linux release

35

DEGAS Software Stack

PyGAS Habanero-UPC H-CAF

ROSE Berkele

Energy / Performance Feedback - IPM,Roofline

Resilience Support - Containment Domains + BLCR

i Unfunded activity

