
John Mellor-Crummey, Karthik Murthy,
 Dung Nguyen, Sriraj Paul, Scott Warren,

Chaoran Yang

Department of Computer Science
Rice University

Coarray Fortran 2.0

DEGAS Retreat 4 June 2013

2

Coarray Fortran (CAF)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—data movement
—synchronization

• Adopted in Fortran 2008 standard

P0

A(1:50)[0]

B(1:40)

P1

A(1:50)[1]

B(1:40)

A(1:50)[3]

B(1:40)

A(1:50)[2]

B(1:40)

P2 P3

Global view

Local view

Coarray Fortran 2.0 Goals

• Exploit multicore processors

• Enable development of portable high-performance programs

• Interoperate with legacy models such as MPI

• Facilitate construction of sophisticated parallel applications and
parallel libraries

• Support irregular and adaptive applications

• Hide communication latency

• Colocate computation with remote data

• Scale to exascale

3

4

Coarray Fortran 2.0 (CAF 2.0)

• Teams: process subsets, like MPI communicators
—formation using team_split
—collective communication (two-sided)
—barrier synchronization

• Coarrays: shared data allocated across processor subsets
—declaration: double precision :: a(:,:)[*]
—dynamic allocation: allocate(a(n,m)[@row_team])
—access: x(:,n+1) = x(:,0)[mod(team_rank()+1, team_size())]

• Latency tolerance
—hide: asynchronous copy, asynchronous collectives
—avoid: function shipping

• Synchronization
—event variables: point-to-point sync; async completion
—finish: SPMD construct inspired by X10

• Copointers: pointers to remote data

CAF 2.0
Features

Fortran
2008

Process Subsets: Teams

• Teams are first-class entities
—ordered sequences of process images
—namespace for indexing images by

rank r in team t
– r ∈ {0..team_size(t) - 1}

—domain for allocating coarrays
—substrate for collective

communication

• Teams need not be disjoint
—an image may be in multiple teams

5

0 1 2 3

2

Ocean Atmosphere

10

4

8

12

5

9

13

6

10

14

7

11

15

0

1

2

3

3

• Predefined teams
—team_world
—team_default

– used for any coarray operation that lacks an explicit team specification
– set via WITH TEAM / END WITH TEAM

 dynamically scoped, block structured

• Operations on teams
—team_rank(team)

– returns the 0-based relative rank of the current image within a team
—team_size(team)

– returns the number of images of a given team
—team_split (existing_team, color, key, new_team)

– images supplying the same color are assigned to the same team
– each image’s rank in the new team is determined by lexicographic order of

(key, parent team rank)

Teams and Operations

6

CAF 2.0 Team Representation

7

• Designed for scalability: representation is O(log S) per node
for a team of size s

• Based on the concept of pointer jumping

• Pointers to predecessors and successors at distance i = 2j,
j = 0 ..⎣log S⎦

0 1 2 3 4 5 6 7

20

22

21

Collective Example: Barrier

Dissemination algorithm

8

for k = 0 to ⎡log2 P⎤
 processor i signals processor (i + 2k) mod P with a PUT

 processor i waits for signal from (i - 2k) mod P

0 1 2 3 4 5 6 7

20

22

21

round 0

round 1

round 2

Collective Example: Broadcast

Binomial Tree

9

0 1 2 3 4 5 6 7

20

22

21

round 0

round 1

round 2

Accessing Coarrays on Teams

• Accessing a coarray relative to a team
—x(i,j)[p@ocean] ! p names a rank in team ocean

• Accessing a coarray relative to the default team
—x(i,j)[p] ! p names a rank in team_default
—x(i,j)[p@team_default] ! p names a rank in team_default

• Simplifying processor indexing using “with team”
 with team atmosphere ! set team_default to atmosphere within
 ! p is wrt team atmosphere, q is wrt team ocean
 x(:,0)[p] = y(:)[q@ocean]
 end with team

10

11

Rich Set of Collectives

• TEAM_ALLGATHER()

• TEAM_ALLREDUCE()

• TEAM_ALLTOALL()

• TEAM_BARRIER()

• TEAM_BROADCAST()

• TEAM_GATHER()

• TEAM_SCAN()

• TEAM_SCATTER()

• TEAM_SHIFT()

•User-defined reductions

üGenerally, should
consider MPI 3.0 set

üOptional team
argument uses
TEAM_DEFAULT if not
specified

üCompiler calculates
sizes of buffers to
simplify param lists

12

Redundancies

• NUM_IMAGES

—same as TEAM_SIZE(TEAM_WORLD)
• SYNC TEAM, SYNC ALL

—both supplanted by TEAM_BARRIER()

13

Events

• First-class event variables
—support safe synchronization space

• Uses
—point-to-point synchronization
—signal the readiness or completion of asynchronous operations

Coping with Latency

• Asynchronous operations for latency tolerance
—predicated asynchronous copy
—collectives
—split-phase synchronization

– barriers
– events

• Function shipping for latency avoidance
—co-locate data with computation

14

15

Predicated Asynchronous Copy

• Issue
— want communication/computation overlap like MPI_Isend/MPI_Irecv

for a one sided model

• Approach: predicated asynchronous copy

• Unified synchronization through events
—when copy may begin
—when source data may be overwritten
—when destination data may be read

• COPY_ASYNC(var_dest, var_src [,ev_dr][,ev_cr][,ev_sr])
—ev_dr = destination ready (write complete)
—ev_cr = copy ready (copy may start)
—ev_sr = source ready (source safe to overwrite)

16

Asynchronous Collectives

• Interface is same as proposed synchronous collectives
—one extra parameter: completion event

• Upon completion of collective, signal the supplied event

• Note: asynchronous barrier is the same as a split-phase barrier

• Unified synchronization through events

17

Copointers

integer, dimension(:), copointer :: p1, p2 ! copointer to array
 ! of integer
integer, dimension(10), cotarget :: a1[*] ! coarray of array
 ! of integer
…
p1 => a1 ! copointer to a1’s local coarray section
p2 => a1[9] ! copointer to a1 on image 9
p1(6) = 1 ! assigns sixth element of local section of a1
p2(6)[] = 42 ! assigns sixth element of a1 on image 9

• Pointers to remote coarray sections or remote shared data

Cotarget = allocated in shared space

• Accesses to remote data explicitly use []
—conforms to spirit of coarray Fortran extensions
—visual cues to mark remote operations

18

Other Features

• Atomic operations
—CAS, ADD, AND, OR, XOR, FADD, FAND, FOR, FXOR

• Team-based storage allocation
• Topologies: cartesian, graph
• Inter-team communication and coupling

—setup and utilization
—synchronization

– m X n collectives
—one-sided access to extra-team data

– normal coarray-style access
– m-gather-from-n

 interpolated or variable-sized results for doing own

• Function shipping
—call spawn

• Finish

HPC Challenge Benchmarks

• Priorities, in order
—performance, performance, performance
—source code volume

• Productivity = performance / (lines of code)
• Implementation sketch

—FFT
– use global transposes to keep computation local

—EP STREAM Triad
– outline a loop for best compiler optimization

—Randomaccess
– batch updates and use software routing for higher performance

—HPL
– operate on blocks to leverage a high performance DGEMM

—Unbalanced Tree Search (UTS)
– evaluate how CAF 2.0 supports dynamic load balancing
– use function shipping to implement work stealing and work sharing

19

• Radix 2 FFT implementation

• Block distribution of coarray “c” across all processors

• Sketch in CAF 2.0:
 complex, allocatable :: c(:,2)[*], spare(:)[*]
 ...
 ! permute data to bit-reversed indices (uses team_alltoall)
 call bitreverse(c, n_world_size, world_size, spare)

 ! local FFT computation for levels that fit in the memory of an image
 do l = 1, loc_comm-1 ...

 ! transpose from block to cyclic data distribution (uses team_alltoall)
 call transpose(c, n_world_size, world_size, spare)

 ! local FFT computation for remaining levels
 do l = loc_comm, levels ...

 ! transpose back from cyclic to block data distribution (uses team_alltoall)
 call transpose(c, n_world_size, n_local_size/world_size,spare)

FFT

20

double precision, allocatable :: a(:)[*], b(:)[*], c(:)[*]

...

! each processor in the default team allocates their own array parts
allocate(a(local_n)[], b(local_n)[], c(local_n)[])

...

! perform the calculation repeatedly to get reliable timings
do round = 1, rounds
 do j = 1, rep
 call triad(a,b,c,local_n,scalar)
 end do
 call team_barrier() ! synchronous barrier across images in the default team
end do

...

! perform the calculation with top performance
! assembly code is identical to that for sequential Fortran
subroutine triad(a, b, c, n ,scalar)
 double precision :: a(n), b(n), c(n), scalar
 a = b + scalar * c ! EP triad as a Fortran 90 vector operation
end subroutine triad

EP STREAM Triad

21

2

1

 event, allocatable :: delivered(:)[*],received(:)[*] !(stage)
 integer(i8), allocatable :: fwd(:,:,:)[*] ! (#,in/out,stage)
 ...
 ! hypercube-based routing: each processor has 1024 updates
 do i = world_logsize-1, 0, -1 ! log P stages in a route
 ...
 call split(retain(:,last), ret_sizes(last), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)

 if (i < world_logsize-1) then
 event_wait(delivered(i+1))
 call split(fwd(1:,in,i+1), fwd(0,in,i+1), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)
 event_notify(received(i+1)[from]) ! signal buffer is empty
 endif

 count = fwd(0,out,i)
 event_wait(received(i)) ! ensure buffer is empty from last route
 fwd(0:count,in,i)[partner] = fwd(0:count,out,i) ! send to partner
 event_notify(delivered(i)[partner]) ! notify partner data is there
 ...
 end do

Randomaccess Software Routing

22

Experimental Setup

• Rice Coarray Fortran 2.0
—source to source translation from CAF 2.0 to Fortran 90

– generated code compiled with Portland Group’s pgf90
—CAF 2.0 runtime system built upon GASNet (versions 1.14 .. 1.17)
—scalable implementation of teams, using O(log P) storage

• Experimental platforms: Cray XT4, XT5, and XE6
—systems

– Franklin - XT4 at NERSC
 2.3 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

– Jaguar - XT4 at ORNL
 2.1 GHz AMD quad-core Opteron, 2GB DDR2-800/core

– Jaguar - XT5 at ORNL
 2.6 GHz AMD “Istanbul” hex-core Opteron, 1.3GB DDR2-800/core

– Hopper - XE6 at NERSC
 2.1 GHz AMD dual-twelve cores Magnycours, 1.3GB DDR3-1333/core

—network topologies
– XT4, XT5: 3D Torus based on Seastar2 routers; XE6: Gemini

23

Unbalanced Tree Search (UTS)

• Exploration of an unbalanced implicit tree

• Fixed geometric distribution,
depth 18, 270 billion nodes

24

 ! while there is work to do
 do while(queue_count .gt. 0)
 call dequeue_back(descriptor)
 call process_work(descriptor)
 ...
 ! check if someone needs work
 if ((incoming_lifelines .ne. 0) .and. &
 (queue_count .ge. lifeline_threshold)) then
 call push_work()
 endif
 enddo

 ! attempt to steal work from another image
 victim = get_random_image()

 spawn steal_work()[victim]

 ! set up lifelines on hypercube neighbors
 do index = 0, max_neighbor_index-1
 neighbor = xor(my_rank, 2**index)
 spawn set_lifelines(my_rank, index)[neighbor]
 enddo

• Slope shows all PE working
• Tight grouping of lines

shows good load balance

Separate line for
each of 128 PEs

Total nodes
processed per PE

Cray XT5,
12 cores/node

• Block-cyclic data distribution
• Team based collective operations along rows and columns

—synchronous max reduction down columns of processors
—asynchronous broadcast of panels to all processors
type(paneltype) :: panels(1:NUMPANELS)

 event, allocatable :: delivered(:)[*]
 ...
 do j = pp, PROBLEMSIZE - 1, BLKSIZE
 cp = mod(j / BLKSIZE, 2) + 1
 ...
 event_wait(delivered(3-cp))
 ...
 if (mycol == cproc) then
 ...
 if (ncol > 0) ... ! update part of the trailing matrix
 call fact(m, n, cp) ! factor the next panel
 ...
 endif
 call team_broadcast_async(panels(cp)%buff(1:ub), panels(cp)%info(8), &

 delivered(cp))
 ! update rest of the trailing matrix
 if (nn-ncol>0) call update(m, n, col, nn-ncol, 3 - cp)
 ...
 end do

HPL

25

PROBLEMSIZE0

BLKSIZE

pp

Productivity = Performance / SLOC
Performance (on Cray XT4 and XT5)

Source lines of code

26

Benchmark Source
Lines

Reference
SLOC Reduction

Randomaccess 409 787 48%
EP STREAM 63 329 81%
Global HPL 786 8800 91%
Global FFT 450 1130 60%

UTS 544 n/a n/a

Notes
• STREAM: 82% of peak

memory bandwidth
• HPL: 49% of FP peak at @

4096 cores (uses dgemm)

of
cores

STREAM Triad*
(TByte/s)

RandomAccess‡(
GUP/s)

Global HPL†
(TFlop/s)

Global FFT†
(GFlop/s)

UTS*
(MNode/s)

64 0.17 0.08 0.36 6.69 163.1
256 0.67 0.24 1.36 22.82 645.0

1024 2.66 0.69 4.99 67.80 2371
4096 10.70 2.01 18.3 187.04 7818
8192 21.69 357.80 12286

HPC Challenge Benchmark

*Jaguar - XT5 ‡Jaguar - XT4 †Franklin - XT4

Relative Parallel Efficiency

27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64 256 1024 4096 8192

1 0.99

0.91

0.75

0.59

1

0.75

0.54

0.39

1.00

0.85

0.63

0.44 0.42

1.00 0.99 0.99 1.00 0.991.00

0.94

0.87

0.79

number of cores

re
la

tiv
e

pa
ra

lle
l e

ffi
ci

en
cy

EP STREAM Triad

HPL

FFT

Randomaccess

UTS

 ! post a receive
 do n=1,in_bndy%nmsg_ew_rcv
 bufsize = ny_block*nghost*in_bndy%nblocks_ew_rcv(n)
 call MPI_IRECV(buf_ew_rcv(1,1,1,n), bufsize, mpi_dbl, &
 in_bndy%ew_rcv_proc(n)-1, &
 mpitag_bndy_2d + in_bndy%ew_rcv_proc(n), &
 in_bndy%communicator, rcv_request(n), ierr)
 end do

 ! pack data and send data
 do n=1,in_bndy%nmsg_ew_snd
 bufsize = ny_block*nghost*in_bndy%nblocks_ew_snd(n)

 partner = in_bndy%ew_snd_proc(n)-1
 do i=1,in_bndy%nblocks_ew_snd(n)
 ib_src = in_bndy%ew_src_add(1,i,n)
 ie_src = ib_src + nghost - 1
 src_block = in_bndy%ew_src_block(i,n)
 buf_ew_snd(:,:,i,n) = ARRAY(ib_src:ie_src,:,src_block)
 end do

 call MPI_ISEND(buf_ew_snd(1,1,1,n), bufsize, mpi_dbl, &
 in_bndy%ew_snd_proc(n)-1, &
 mpitag_bndy_2d + my_task + 1, &
 in_bndy%communicator, snd_request(n), ierr)

 end do

 ! local updates
 ! wait to receive data and unpack data
 call MPI_WAITALL(in_bndy%nmsg_ew_rcv, rcv_request, rcv_status, ierr)

 do n=1,in_bndy%nmsg_ew_rcv
 partner = in_bndy%ew_rcv_proc(n) - 1
 do k=1,in_bndy%nblocks_ew_rcv(n)
 dst_block = in_bndy%ew_dst_block(k,n)
 ib_dst = in_bndy%ew_dst_add(1,k,n)
 ie_dst = ib_dst + nghost - 1
 ARRAY(ib_dst:ie_dst,:,dst_block) = buf_ew_rcv(:,:,k,n)
 end do
 end do

 ! wait send to finish
 call MPI_WAITALL(in_bndy%nmsg_ew_snd, snd_request, snd_status, ierr)

 ! notify each partner that my face is ready
 do face=1,bndy%rcv_faces
 call event_notify(bndy%incoming(face)%rcv_ready[])
 end do

 ! when each partner face is ready
 ! copy one of my faces to a partner’s face
 ! notify my partner’s event when the copy is complete
 do face=1,bndy%snd_faces
 copy_async(bndy%outgoing(face)%remote[], &
 bndy%outgoing(face)%local, &
 bndy%outgoing(face)%snd_done[], &
 bndy%outgoing(face)%snd_ready)
 end do

 ! wait for all of my incoming faces to arrive
 do face=1,bndy%rcv_faces
 call event_wait(bndy%incoming(face)%rcv_done)
 end do

MPI
CAF 2.0

 type :: outgoing_boundary
 double, copointer :: remote(:,:,:)[*]
 double, pointer :: local(:,:,:)
 event :: snd_ready[*]
 event, copointer :: snd_done[*]
 end type

 type :: incoming_boundary
 event, copointer :: rcv_ready[*]
 event :: rcv_done[*]
 end type

 type :: boundaries
 integer :: rcv_faces, snd_faces
 type(outgoing_boundary) :: outgoing(:)
 type(incoming_boundary) :: incoming(:)
 end type

 ! initialize outgoing boundary
 ! set remote to point to a partner’s incoming boundary face
 ! set local to point to one of my outgoing boundary faces
 ! set snd_done to point to rcv_done of a partner’s incoming boundary

 ! initialize incoming boundary
 ! set my face’s rcv_ready to point to my partner face’s snd_ready

Open Issues - I

• What hierararchical teams features are needed?
—split for shared memory domain?
—split for UMA domain?

• What about mapping teams onto whole systems?

• What should be the focus of DEGAS CAF compiler efforts?
—incorporate support for DSL for CA algorithms?
—generate code for throughput-oriented cores

– CUDA/OpenCL? 29

Mapping applications with collectives
over sub-communicators on torus
networks. Bhatele et al. (LLNL)

Proceedings of SC12

Open Issues - II

• Irregular computation
—global view?
—partitioning
—repartitioning
—communication/synchronization schedules
—computation schedules

• Multithreading
—managing asynchronous communication and progress
—managing function shipping

• Resilience

30

