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Coarray Fortran (CAF)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—data movement
—synchronization

• Adopted in Fortran 2008 standard
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Coarray Fortran 2.0 Goals

• Exploit multicore processors

• Enable development of portable high-performance programs

• Interoperate with legacy models such as MPI 

• Facilitate construction of sophisticated parallel applications and 
parallel libraries

• Support irregular and adaptive applications

• Hide communication latency

• Colocate computation with remote data

• Scale to exascale
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Coarray Fortran 2.0 (CAF 2.0)

• Teams: process subsets, like MPI communicators
—formation using team_split 
—collective communication (two-sided)
—barrier synchronization

• Coarrays: shared data allocated across processor subsets
—declaration:                double precision :: a(:,:)[*]
—dynamic allocation:   allocate(a(n,m)[@row_team])
—access:                       x(:,n+1) = x(:,0)[mod(team_rank()+1, team_size())] 

• Latency tolerance
—hide: asynchronous copy, asynchronous collectives
—avoid: function shipping

• Synchronization
—event variables: point-to-point sync; async completion
—finish: SPMD construct inspired by X10

• Copointers: pointers to remote data

CAF 2.0
Features

Fortran 
2008



Process Subsets: Teams

• Teams are first-class entities 
—ordered sequences of process images
—namespace for indexing images by 

rank r in team t  
– r ∈ {0..team_size(t) - 1}

—domain for allocating coarrays
—substrate for collective 

communication

• Teams need not be disjoint
—an image may be in multiple teams
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• Predefined teams
—team_world
—team_default

– used for any coarray operation that lacks an explicit team specification
– set via WITH TEAM / END WITH TEAM

 dynamically scoped, block structured

• Operations on teams
—team_rank(team)

– returns the 0-based relative rank of the current image within a team
—team_size(team)

– returns the number of images of a given team
—team_split (existing_team, color, key, new_team)

– images supplying the same color are assigned to the same team
– each image’s rank in the new team is determined by lexicographic order of 

(key, parent team rank)

Teams and Operations
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CAF 2.0 Team Representation
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• Designed for scalability: representation is O(log S) per node 
for a team of size s

• Based on the concept of pointer jumping

• Pointers to predecessors and successors at distance i = 2j, 
j = 0 ..⎣log S⎦
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Collective Example: Barrier

Dissemination algorithm
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for k = 0 to ⎡log2 P⎤
   processor i signals processor (i + 2k) mod P with a PUT

   processor i waits for signal from (i - 2k) mod P
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Collective Example: Broadcast

Binomial Tree
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Accessing Coarrays on Teams

• Accessing a coarray relative to a team
—x(i,j)[p@ocean]                  ! p names a rank in team ocean

• Accessing a coarray relative to the default team
—x(i,j)[p]                               ! p names a rank in team_default
—x(i,j)[p@team_default]     ! p names a rank in team_default

• Simplifying processor indexing using “with team”
 with team atmosphere ! set team_default to atmosphere within 
     ! p is wrt team atmosphere, q is wrt team ocean
     x(:,0)[p] = y(:)[q@ocean] 
 end with team
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Rich Set of Collectives

• TEAM_ALLGATHER()

• TEAM_ALLREDUCE()

• TEAM_ALLTOALL()

• TEAM_BARRIER()

• TEAM_BROADCAST()

• TEAM_GATHER()

• TEAM_SCAN()

• TEAM_SCATTER()

• TEAM_SHIFT()

•User-defined reductions

üGenerally, should 
consider MPI 3.0 set

üOptional team 
argument uses 
TEAM_DEFAULT if not 
specified

üCompiler calculates 
sizes of buffers to 
simplify param lists
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Redundancies

• NUM_IMAGES

—same as TEAM_SIZE(TEAM_WORLD)
• SYNC TEAM, SYNC ALL

—both supplanted by TEAM_BARRIER()
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Events

• First-class event variables
—support safe synchronization space

• Uses
—point-to-point synchronization
—signal the readiness or completion of asynchronous operations



Coping with Latency

• Asynchronous operations for latency tolerance
—predicated asynchronous copy
—collectives
—split-phase synchronization

– barriers
– events

• Function shipping for latency avoidance
—co-locate data with computation
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Predicated Asynchronous Copy

• Issue
— want communication/computation overlap like MPI_Isend/MPI_Irecv 

for a one sided model

• Approach: predicated asynchronous copy

• Unified synchronization through events 
—when copy may begin
—when source data may be overwritten
—when destination data may be read

• COPY_ASYNC(var_dest, var_src [,ev_dr][,ev_cr][,ev_sr])
—ev_dr = destination ready (write complete)
—ev_cr = copy ready (copy may start)
—ev_sr = source ready (source safe to overwrite)
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Asynchronous Collectives

• Interface is same as proposed synchronous collectives
—one extra parameter: completion event

• Upon completion of collective, signal the supplied event

• Note: asynchronous barrier is the same as a split-phase barrier

• Unified synchronization through events
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Copointers

integer, dimension(:), copointer :: p1, p2  ! copointer to array
                                            ! of integer
integer, dimension(10), cotarget :: a1[*]   ! coarray of array 
                                            ! of integer
…
p1 => a1       ! copointer to a1’s local coarray section
p2 => a1[9]    ! copointer to a1 on image 9
p1(6) = 1      ! assigns sixth element of local section of a1
p2(6)[] = 42   ! assigns sixth element of a1 on image 9

• Pointers to remote coarray sections or remote shared data

Cotarget = allocated in shared space 

• Accesses to remote data explicitly use [ ]
—conforms to spirit of coarray Fortran extensions
—visual cues to mark remote operations
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Other Features

• Atomic operations
—CAS, ADD, AND, OR, XOR, FADD, FAND, FOR, FXOR

• Team-based storage allocation
• Topologies: cartesian, graph
• Inter-team communication and coupling

—setup and utilization
—synchronization

– m X n collectives
—one-sided access to extra-team data

– normal coarray-style access
– m-gather-from-n

 interpolated or variable-sized results for doing own

• Function shipping
—call spawn

• Finish



HPC Challenge Benchmarks

• Priorities, in order
—performance, performance, performance
—source code volume

• Productivity = performance / (lines of code)
• Implementation sketch

—FFT
– use global transposes to keep computation local

—EP STREAM Triad
– outline a loop for best compiler optimization

—Randomaccess
– batch updates and use software routing for higher performance

—HPL
– operate on blocks to leverage a high performance DGEMM

—Unbalanced Tree Search (UTS)
– evaluate how CAF 2.0 supports dynamic load balancing
– use function shipping to implement work stealing and work sharing
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• Radix 2 FFT implementation

• Block distribution of coarray “c” across all processors

• Sketch in CAF 2.0:
  complex, allocatable :: c(:,2)[*], spare(:)[*]   
 ...
 ! permute data to bit-reversed indices (uses team_alltoall)
 call bitreverse(c, n_world_size, world_size, spare)

 ! local FFT computation for levels that fit in the memory of an image  
 do l = 1, loc_comm-1 ...

 ! transpose from block to cyclic data distribution (uses team_alltoall)
 call transpose(c, n_world_size, world_size, spare)

 ! local FFT computation for remaining levels
 do l = loc_comm, levels ...

 ! transpose back from cyclic to block data distribution (uses team_alltoall)
 call transpose(c, n_world_size, n_local_size/world_size,spare)

FFT

20



double precision, allocatable :: a(:)[*], b(:)[*], c(:)[*]

...

! each processor in the default team allocates their own array parts
allocate(a(local_n)[], b(local_n)[], c(local_n)[])

...

! perform the calculation repeatedly to get reliable timings
do round = 1, rounds
  do j = 1, rep
    call triad(a,b,c,local_n,scalar)
  end do
  call team_barrier() ! synchronous barrier across images in the default team
end do

...

! perform the calculation with top performance
! assembly code is identical to that for sequential Fortran 
subroutine triad(a, b, c, n ,scalar)
  double precision :: a(n), b(n), c(n), scalar
  a = b + scalar * c  ! EP triad as a Fortran 90 vector operation
end subroutine triad

EP STREAM Triad
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 event, allocatable :: delivered(:)[*],received(:)[*] !(stage)
 integer(i8), allocatable :: fwd(:,:,:)[*] ! (#,in/out,stage)
 ...
 ! hypercube-based routing: each processor has 1024 updates
 do i = world_logsize-1, 0, -1  ! log P stages in a route
   ...
   call split(retain(:,last), ret_sizes(last), &
              retain(:,current), ret_sizes(current), &
              fwd(1:,out,i), fwd(0,out,i), bufsize, dist)

   if (i < world_logsize-1) then
     event_wait(delivered(i+1))
     call split(fwd(1:,in,i+1), fwd(0,in,i+1), &
                retain(:,current), ret_sizes(current), &
                fwd(1:,out,i), fwd(0,out,i), bufsize, dist)
     event_notify(received(i+1)[from]) ! signal buffer is empty
   endif

   count = fwd(0,out,i)
   event_wait(received(i)) ! ensure buffer is empty from last route
   fwd(0:count,in,i)[partner] = fwd(0:count,out,i) ! send to partner
   event_notify(delivered(i)[partner]) ! notify partner data is there
   ...
 end do

Randomaccess Software Routing
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Experimental Setup

• Rice Coarray Fortran 2.0
—source to source translation from CAF 2.0 to Fortran 90

– generated code compiled with Portland Group’s pgf90
—CAF 2.0 runtime system built upon GASNet (versions 1.14 .. 1.17)
—scalable implementation of teams, using O(log P) storage

• Experimental platforms: Cray XT4, XT5, and XE6
—systems

– Franklin - XT4 at NERSC
 2.3 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

– Jaguar - XT4 at ORNL
 2.1 GHz AMD quad-core Opteron, 2GB DDR2-800/core 

– Jaguar - XT5 at ORNL
 2.6 GHz AMD “Istanbul” hex-core Opteron, 1.3GB DDR2-800/core 

– Hopper - XE6 at NERSC
 2.1 GHz AMD dual-twelve cores Magnycours, 1.3GB DDR3-1333/core 

—network topologies
– XT4, XT5: 3D Torus based on Seastar2 routers; XE6: Gemini
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Unbalanced Tree Search (UTS)

• Exploration of an unbalanced implicit tree

• Fixed geometric distribution, 
depth 18, 270 billion nodes
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 ! while there is work to do
 do while(queue_count .gt. 0)
   call dequeue_back(descriptor)
   call process_work(descriptor)
   ...   
   ! check if someone needs work
   if ((incoming_lifelines .ne. 0) .and.  &
       (queue_count .ge. lifeline_threshold)) then
      call push_work()
   endif
 enddo

 ! attempt to steal work from another image
 victim = get_random_image()

 spawn steal_work()[victim]

 ! set up lifelines on hypercube neighbors
 do index = 0, max_neighbor_index-1
    neighbor = xor(my_rank, 2**index)
    spawn set_lifelines(my_rank, index)[neighbor]
 enddo

• Slope shows all PE working
• Tight grouping of lines 

shows good load balance

Separate line for 
each of 128 PEs

Total nodes 
processed per PE

Cray XT5, 
12 cores/node



• Block-cyclic data distribution
• Team based collective operations along rows and columns

—synchronous max reduction down columns of processors
—asynchronous broadcast of panels to all processors
type(paneltype) :: panels(1:NUMPANELS)

   event, allocatable :: delivered(:)[*]
   ...
   do j = pp, PROBLEMSIZE - 1, BLKSIZE
     cp = mod(j / BLKSIZE, 2) + 1
     ...
     event_wait(delivered(3-cp))
     ...
     if (mycol == cproc) then
       ...                 
       if (ncol > 0) ...   ! update part of the trailing matrix
       call fact(m, n, cp) ! factor the next panel
       ...                 
     endif
     call team_broadcast_async(panels(cp)%buff(1:ub), panels(cp)%info(8), &

                    delivered(cp))
     ! update rest of the trailing matrix
     if (nn-ncol>0) call update(m, n, col, nn-ncol, 3 - cp)
     ...
   end do

HPL

25

PROBLEMSIZE0

BLKSIZE

pp



Productivity = Performance / SLOC
Performance (on Cray XT4 and XT5)

Source lines of code

26

Benchmark Source 
Lines 

Reference
SLOC Reduction

Randomaccess 409 787 48%
EP STREAM 63 329 81%
Global HPL 786 8800 91%
Global FFT 450 1130 60%

UTS 544 n/a n/a

Notes
• STREAM: 82% of peak 

memory bandwidth
• HPL: 49% of FP peak at @ 

4096 cores (uses dgemm)

# of
cores

STREAM Triad*
(TByte/s)

RandomAccess‡(
GUP/s)

Global HPL†
(TFlop/s)

Global FFT†
(GFlop/s)

UTS*
(MNode/s)

64 0.17 0.08 0.36 6.69 163.1
256 0.67 0.24 1.36 22.82 645.0

1024 2.66 0.69 4.99 67.80 2371
4096 10.70 2.01 18.3 187.04 7818
8192 21.69 357.80 12286

HPC Challenge Benchmark

*Jaguar - XT5    ‡Jaguar - XT4    †Franklin - XT4 



Relative Parallel Efficiency
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   ! post a receive
   do n=1,in_bndy%nmsg_ew_rcv
      bufsize = ny_block*nghost*in_bndy%nblocks_ew_rcv(n)
      call MPI_IRECV(buf_ew_rcv(1,1,1,n), bufsize, mpi_dbl,   &
                     in_bndy%ew_rcv_proc(n)-1,                &
                     mpitag_bndy_2d + in_bndy%ew_rcv_proc(n), &
                     in_bndy%communicator, rcv_request(n), ierr)
   end do

   ! pack data and send data
   do n=1,in_bndy%nmsg_ew_snd
      bufsize = ny_block*nghost*in_bndy%nblocks_ew_snd(n)

      partner = in_bndy%ew_snd_proc(n)-1
      do i=1,in_bndy%nblocks_ew_snd(n)
         ib_src    = in_bndy%ew_src_add(1,i,n)
         ie_src    = ib_src + nghost - 1
         src_block = in_bndy%ew_src_block(i,n)
         buf_ew_snd(:,:,i,n) = ARRAY(ib_src:ie_src,:,src_block)
      end do

      call MPI_ISEND(buf_ew_snd(1,1,1,n), bufsize, mpi_dbl, &
                    in_bndy%ew_snd_proc(n)-1, &
                    mpitag_bndy_2d + my_task + 1, &
                    in_bndy%communicator, snd_request(n), ierr)

   end do

   ! local updates
   ! wait to receive data and unpack data
   call MPI_WAITALL(in_bndy%nmsg_ew_rcv, rcv_request, rcv_status, ierr)

   do n=1,in_bndy%nmsg_ew_rcv
      partner = in_bndy%ew_rcv_proc(n) - 1
      do k=1,in_bndy%nblocks_ew_rcv(n)
         dst_block = in_bndy%ew_dst_block(k,n)
         ib_dst = in_bndy%ew_dst_add(1,k,n)
         ie_dst = ib_dst + nghost - 1
         ARRAY(ib_dst:ie_dst,:,dst_block) = buf_ew_rcv(:,:,k,n)
      end do
   end do

   ! wait send to finish
   call MPI_WAITALL(in_bndy%nmsg_ew_snd, snd_request, snd_status, ierr)

   ! notify each partner that my face is ready
   do face=1,bndy%rcv_faces
      call event_notify(bndy%incoming(face)%rcv_ready[])
   end do

   ! when each partner face is ready
   !     copy one of my faces to a partner’s face
   !     notify my partner’s event when the copy is complete
   do face=1,bndy%snd_faces
        copy_async(bndy%outgoing(face)%remote[], &
                          bndy%outgoing(face)%local,  &
                          bndy%outgoing(face)%snd_done[], &
                          bndy%outgoing(face)%snd_ready)
   end do

   ! wait for all of my incoming faces to arrive
   do face=1,bndy%rcv_faces
      call event_wait(bndy%incoming(face)%rcv_done)
   end do

MPI
CAF 2.0

  type :: outgoing_boundary
     double, copointer :: remote(:,:,:)[*]
     double, pointer :: local(:,:,:)
     event :: snd_ready[*]
     event, copointer :: snd_done[*]
  end type

  type :: incoming_boundary
     event, copointer :: rcv_ready[*]
     event :: rcv_done[*]
  end type

  type :: boundaries
     integer :: rcv_faces, snd_faces
     type(outgoing_boundary) :: outgoing(:)
     type(incoming_boundary) :: incoming(:)
  end type

  ! initialize outgoing boundary
  !    set remote to point to a partner’s incoming boundary face
  !    set local to point to one of my outgoing boundary faces
  !    set snd_done to point to rcv_done of a partner’s incoming boundary

  ! initialize incoming boundary
  !    set my face’s rcv_ready to point to my partner face’s snd_ready



Open Issues - I

• What hierararchical teams features are needed?
—split for shared memory domain?
—split for UMA domain?

• What about mapping teams onto whole systems?

• What should be the focus of DEGAS CAF compiler efforts?
—incorporate support for DSL for CA algorithms?
—generate code for throughput-oriented cores 

– CUDA/OpenCL? 29

Mapping applications with collectives 
over sub-communicators on torus 
networks. Bhatele et al. (LLNL) 

Proceedings of SC12 



Open Issues - II

• Irregular computation
—global view?
—partitioning
—repartitioning
—communication/synchronization schedules
—computation schedules

• Multithreading
—managing asynchronous communication and progress
—managing function shipping

• Resilience
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