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Abstract—With experimental facilities data production
rates exponentially increasing, there is a greater need to move
computation closer to the experimental source. To this end,
we have developed the Berkeley eXtensible Processing Engine
(BXPE) Framework, which allows experimentalists to utilize
FPGAs stitched into the network pipeline to process data in
real-time as it flows over the network. We provide a Python-
tooling front-end to allow for development of algorithms using
this framework. In this particular design, we ported the NCEM
Center-of-Mass and the ALS convolution applications to this
edge computing framework.

I. Motivation
Experimental facilities like the Advanced Light Source

(ALS) and National Center for Electron Microscopy
(NCEM) are experiencing double-exponential increases
in data production rates from emerging detectors. The
volume and rate of these increasingly large experimental
dataset threatens to overwhelm both wide area networks
and HPC center ingest rates, as shown in Fig. 1. For
example, the 4D Camera at NCEM utilizes 48 10Gb/s in-
terfaces for transmitting data acquired from the A/D over
the link. Much like how experiments today benefit from
custom sensors and associated accelerators/algorithms,
future experiments will benefit from specialized compute
to analyze and reduce the incoming data. Edge computing
techniques offer an opportunity to reduce the load by
moving some of the preprocessing closer to the detectors.

We asked our collaborators for examples of prepro-
cessing currently in use. NCEM provided us a phase
contrast electron microscopy imaging technique based on
the Center-of-Mass of many detector frames, as shown
in Fig. 2, as well as a sample of data obtained from
their detector. ALS similarly provided us a Convolution

Fig. 1: Current HPC Centers cannot keep up with current
data rates. [1]
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Fig. 2: Example Center-of-Mass Application Jupyter
Notebook from NCEM.

application, as well as sample data. Both of these were
implemented as Jupyter Notebooks, which provides a
simple Python interface for their application. Since most of
their development is in Python, maintaining that interface
is critical for ease of use.

However, developing directly on FPGA hardware typ-
ically requires a hardware-design background, and it is
outside the scope for domain scientists. There is great need
to efficiently migrate algorithms developed in Python to
the FPGA. Thus any developed framework must provide
an easy interface for domain scientists to develop and to
test their algorithms on this framework, as shown in Fig. 3.

We developed the Berkeley eXtensible Processing En-
gine (BXPE) Framework, an FPGA-based edge network
processing pipeline for real-time data processing. Based
on the Xilinx Alveo U250/U280 FPGA-based accelerator
cards [2, 3], this edge computing framework provides two
100Gb/s Ethernet connections as well as up to ~10,000
DSP primitives. To provide access to these resources, we
developed a Python-based tooling to allow users to port
their algorithms to this framework with a software-based
simulator and compiler, as well as configuring the FPGA-
based hardware array. Using a co-design methodology,
we developed a DSP processing engine with the BXPE
framework based on the NCEM Center-of-Mass and ALS
convolution applications.
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II. State-of-the-Art FPGA Infrastructure
As previously mentioned, we are working closely with

Xilinx to bring up the FPGA architecture needed for
this project. Using SuperMicro compute boxes, we built a
number of testbeds to test our FPGA designs, the chief of
which being a server with up to eight U250/U280 FPGA
cards. We currently have a number of these servers set
up at ESnet, CRD (soon to move to NERSC), NCEM,
and ALS. Utilizing the existing high-speed network links
in the lab, we are able to closely couple our processing
pipeline with the experimental pipeline. Fig. 4 diagrams
the deployed hardware and the network nodes.

III. BXPE DSP Framework Description
A. Network System Architecture

In order to effectively utilize the resources on the
FPGAs, we make use of the ESnet and Xilinx jointly de-
veloped OpenNIC Shell [4]. The OpenNIC Shell integrates
the Network Processing Unit (NPU) with the two 100GbE
interfaces on each FPGA card, allowing the FPGA to read
Ethernet packets. In addition to providing the network
interface, the OpenNIC Shell also provides a host sideband
interface over PCIe for controlling the design contained
within the User Logic Block. A detailed block diagram of
the contents of OpenNIC Shell is shown in Fig. 5. This
interface allows the user to read various control registers
within the design, as well as to load static data and
programs for the array of processors. The shell provides
standard AXI4-Stream and AXI4-Lite interfaces for these
connections, allowing for a modular design methodology.
An example of how we used OpenNIC Shell is shown in
Fig. 6.

This modular nature allows us to scale these processing
arrays across multiple FPGA cards as well, allowing us to
install the same array across multiple FPGAs.

B. Python Tooling Frontend
To facilitate easier use of the BXPE DSP Array, we

developed an extensive Python-based Tooling Frontend

Fig. 3: The edge is part of a continuum of computing
workflows. [1]

Fig. 4: Network Infrastructure of LBL FPGA deployment
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Fig. 5: Block diagram of the modified OpenNIC Shell

which provides three main components: (a) a functionally
accurate simulator, (b) a compiler, and (c) a software
frontend for the array.

1) Simulator & Compiler: Since the programming
model of the array is very different from standard HPC
systems, it was critical to build a simulator to easily
demonstrate the architecture. As a result, we developed
a functionally accurate Python simulator of the FPGA
array. We analyzed the computation in each example
application and ported them to this system using this
simulator, comparing the simulators results with HPC
results to ensure correctness. Being written in Python,
we could demonstrate the use of the array in Jupyter
Notebooks.

The DSP programs for the example applications are gen-
erated with Python functions. The multiply-accumulate
DSP program is shown in Listing 1, which is the central
part of the Center-Of-Mass algorithm. The convolution
program is shown in Listing 2, which uses the multiply-
accumulate function to generate the required instructions.

1 def macc_program( shape ) :
2 prog = l i s t ( )
3 f o r j in range ( shape [ 1 ] ) :
4 f o r i in range ( shape [ 0 ] ) :
5 i f ( i , j ) == (0 , 0) :
6 prog . append ( ( ”MULT” , (0 , 0) ) )
7 e l s e :
8 prog . append ( ( ”MACC” , ( i , j ) ) )
9 prog . append ( ( ”SAVE” , (0 , 0) ) )

10 prog . append ( ( ”NOOP” , (0 , 0) ) )
11 return prog

Listing 1: Multiply-Accumulate DSP Program Generator
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1 def convolution_program ( rows_per_thread ,
image_len , ker_shape , bottom_threshold ,
top_threshold ) :

2 prog = l i s t ( )
3 prog . append ( ( ”CLIP” , 1) )
4 prog . append ( ( ”BTHS” , bottom_threshold ) )
5 prog . append ( ( ”TTHS” , top_threshold ) )
6 prog . append ( ( ”BPTR” , ( image_len ,

rows_per_thread ) ) )
7 prog += macc_program( ker_shape )
8 return prog

Listing 2: Convolution DSP Program Generator

Once satisfied that the algorithm was working correctly
on the simulator, we then compile the program and export
the kernels for the given computation to be loaded on
the FPGA array. We used this frontend to accelerate
the development of the Center-of-Mass application for
NCEM and a Convolution application for ALS. For these
applications, we converted the data from floating point to
fixed point, and compared the simulation results against
the baseline Jupyter Notebook application, guaranteeing
correctness of the simulator against the real application.

2) FPGA Frontend: When the FPGA is loaded with
the DSP Array design, the program and kernel memories
must be loaded in the array. This frontend allows users to
load each tile of the array with the program to be run and
corresponding the kernel. Once loaded, the user can then
trigger the start of computation, and upon computation
completion, the output memories of each tile are read
back out. This data result is then compared against the
simulator result, to again guarantee correctness of the
computation against the Jupyter Notebook.

3) Packet Generation: Using the provided sample data,
we generated PCAP files that sent the sample data over a
100GbE interface on a host to the FPGA. In the NCEM
case, their data consists of a series of 576px×576px frames.
As a result, the generated packets correspond to a full
576px× 576px frame, as though it were in series with the
detector.

C. Proof-of-Concept DSP Tile and Array

1) DSP Array Architecture: Housed inside the Open-
NIC Shell, the architecture of the array consists of three
main modules: the packet buffers, pixel addressable se-
quencers, and the DSP Tile itself, as shown in Fig. 6.

Sensor data are transmitted as a segmented series of
network packets. Incoming packets get parsed to deter-
mine the relevant header information including network
addresses and the description of the payload. For example,
the payload description includes a frame number and a
sequence number for the data. These incoming payloads
get stored in a packet buffer using a number of Xilinx
URAM memory primitives. On the ingress side, a full
NCEM frame (5.0625Mb for each 576px × 576px frame)
is striped over nine banks of the packet buffer. Once a
complete image frame has been buffered, the system then
triggers the sequencer stage.

The pixel addressable sequencer is a programmable
switch that reads individual pixels from an input memory
and writes them to a given pixel addressable output
memory. This allows us to pre-program read/write address
patterns for the particular algorithm. For the first stage of
the array pipeline, we exploit spatial parallelism for the
computation. We assigned ranges of DSPs to 2D slices
of the frame data, as well as a square raster of pixels
assigned to each thread in the DSP, shown in Fig. 8.
In this diagram the packet buffer has been simplified for
illustration purposes to show coarse grain slices of the
image frames.

For the NCEM Center-of-Mass application, we partition
and distribute a full NCEM frame across 36 DSP Tiles;
this is done to distribute the Center-of-Mass computa-
tion across the many DSP elements on the FPGA. To
implement the parallel data movement between buffers
and the DSP processing stages, we created modules called
sequencers that move pixels and partial computation
results between (a) buffers and DSP tiles and (b) between
DSP tile stages, shown in Fig. 6. The pixel addressable
sequencer partitions the full frame into 96px × 96px
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Fig. 6: Functional Diagram of DSP Array in an FPGA
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sequence to each tile thread.

sequential subframes and distributes them across the
first stage of DSP tiles. These subframes are further
distributed in a 2×2 raster across each thread of the tile,
corresponding to 4 × 48px × 48px subsubframes. Fig. 8
describes how a frame is partitioned and distributed in
the first stage.

Given that the Center-of-Mass is a reduction algorithm,
each stage further reduces the data until in the final stage
only a single tile remains. The final result of one frame
calculation is contained in the output memory, which is
buffered by the last sequencer into a packet buffer to be
sent.

For the ALS Convolution application, the image size
was smaller (192px× 484px). Since the application treats
this image as a series of 192 independent 1D vectors 484px
long, we repack the 1D arrays to utilize 24 of the first stage
DSPs. Each DSPs thread is loaded sequentially with 2
rows of the original image. The DSPs write an equally
sized vector in it’s output memory, which is read out by
the host sideband interface.

2) DSP Tile Architecture: For our proof-of-concept
design, we built a compact architecture centered on the
Xilinx DSP48E2 [5] primitive on the FPGA. A block
diagram of the design is shown in Fig. 7. Our development
target is the Xilinx Alveo U250/U280 Acceleration Cards
which provide up to ~10,000 DSP primitives. To maximize
the three cycle pipeline of the DSP primitive, each tile has
four independent threads operating on its ring buffers.
There are three data ring buffers: Image, Kernel, and

TABLE I: DSP Tile Instructions

OPCODE
Inst[23:20]

Immediate
Inst[19:0]

NOOP
4′h0

Reserved
20b

SAVE
4′h1

Reserved
8b

X Address
6b

Y Address
6b

BPTR
4′h2

Reserved
8b

X Iterations
6b

Y Iterations
6b

MULT
4′h3

Reserved
8b

X Address
6b

Y Address
6b

MACC
4′h4

Reserved
8b

X Address
6b

Y Address
6b

BTHS
4′h5

Bottom Threshold
20b

TTHS
4′h6

Top Threshold
20b

CLIP
4′h7

Reserved
19b

True/False
1b

TABLE II: OPCODE Description
NOOP No Operation
SAVE Save DSP Output to address (X, Y)
BPTR Loop the loaded program by iterating the base pointer

of the ring buffers in the given direction (required for
convolution)

MULT Multiply the Image and Kernel at the address (X, Y)
(From Fig 7, P = A×B)

MACC Multiply the Image and Kernel at the address (X, Y),
and accumulate with the previous result (From Fig 7,
P = A×B + C)

BTHS Bottom threshold for Image values going into the DSP
(Default: 20′b0)

TTHS Top threshold for Image values going into the DSP
(Default: 20′h7FFFF )

CLIP Clip the Image values to the threshold values

Output. All three memories are addressed by pixel location
in a 64px × 64px processed frame, which corresponds to
the address being processed by each thread. The Image
Ring Buffer supports 20-bit pixels, and when multiplied
by the 4 threads, the total size is 320Kb. The Kernel
Ring Buffer supports 16-bit pixels for a total size of
256Kb. The Output Ring Buffer has a 48-bit pixel width
for a size of 768Kb. The control of the DSP is handled
with instructions loaded into the Program memory. The
instruction format is a 4-bit opcode followed by a 20-bit
immediate. A detailed list of the instructions and their
description is in Tab. I and Tab. II, respectively.

3) FPGA Layout: Fig. 9 shows the full system design
run through Xilinx Vivado tools.

IV. Future Work
It should be noted that the design described here is a

proof-of-concept design. This design was built for compact
placement on the FPGA and has not been optimized for
processing speed. Further architecture exploration would
provide a more optimum design for different applications.

To address the flexibility requirement of a future ar-
chitecture and extend the design for high-level operation
parallelism, we consider so-called MOVE or Transport
Triggered Architecture (TTA) [6]. The key concept of
TTA is that it has only one type of operation, which
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Fig. 9: FPGA Layout of 46 DSP Tile Array, with each tile
color coded.
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Fig. 10: Potential Transport Triggered Architecture (TTA)
Exploration

transfers data from one Functional Unit (FU) to another
triggering the computations on that data implicitly. The
architecture can have a large number of simple functional
units with different operations connected by a network-
in-core. Here are the major characteristics of the TTA
that make it a promising candidate for the DSP tile
architecture exploration.

• The control over the data movement falls onto
the compiler that schedules the data transfers with
respect to dependencies and efficient resource uti-
lization. That creates a straightforward interface in
between the data-flow graph that represents the
application and the architecture execution flow. With
enough variability in operation types and a large
number of FU’s, such a DSP tile can be easily used for
a large variety of DSP applications using the compiler
to re-schedule the data movement.

• Since the instruction set is composed of a single
type of operation, it has the potential to implement
the VLIW approach. It is crucial to keep the DSP
functional unit usage at a high rate to provide high
throughput for the data processing.

• While the TTA can be seen as relatively simple
compared to the traditional scalar and vector archi-
tectures, it heavily relies on the compiler and func-
tional unit interconnect. The interconnect topology
and reconfigurability will be a crucial components to
make the design practically useful. Given the specifics
of the FPGA technology, there is a potential for
architecture research in this direction.

• There are previous works that explore TTA for real-
time DSP applications [7, 8] that indicate it is a
promising architecture concept.

An example of the DSP tile as a TTA is shown in Fig. 10.
Instead of having a tile that can do multiple operations,
we hard-code each tile to perform a specific operation (i.e.
MULT, MACC, CLIP, etc.). The data is then read out
from each corresponding memory and streamed through
the interconnect among the tiles. This interconnect is
configured for the desired application, filtering the data to
correct tile. The resultant output would then be written
to an output memory. It reduces the number of memory
blocks within each tile, which has been a bottleneck for the
current design. It also utilizes more of the DSP primitives
on the FPGA.

V. Conclusion

In the project, we set out to create an edge-based FPGA
framework to accelerate the sample applications of Center-
of-Mass and Convolution. We have a scalable network
shell called OpenNIC Shell, which provides the basics for
connecting an FPGA to a network. We then build the
BXPE DSP Array which performs compute for the given
applications and a Python interface to control the engines.
While this is a proof-of-concept and not very performant,
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we would like to explore more performance driven designs,
like transport triggered architectures.
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