
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE
769

Evaluating Performance Trade-offs of Caching
Strategies for AI-Powered Querying Systems

Hyunju Oh1, Wei Zhang2, Christopher D. Rickett3, Sreenivas R. Sukumar3, Suren Byna1

1The Ohio State University, 2Lawrence Berkeley National Laboratory, 3Hewlett Packard Enterprise
oh.693@osu.edu, zhangwei217245@lbl.gov,

chris.rickett@hpe.com, sreenivas.sukumar@hpe.com, byna.1@osu.edu

Abstract—With the rapid growth of accumulated data from
various scientific domains, traditional data management systems
face challenges in supporting complicated queries, such as pattern
search, on massive amounts of data. To serve sophisticated
queries through capturing precise features from data, recent
data management systems seek to use artificial intelligence
(AI) within the querying process. However, the characteristic
of AI inference workflow within the querying process, such as
intensive computation and expensive requirements for computing
resources, becomes a bottleneck of the AI-powered query systems.

In this paper, we provide a generalization of AI inference
workflow in the context of AI-powered data discovery and we
introduce three different caching strategies corresponding to
each stage in the AI inference workflow. We provide in-depth
performance evaluation on the impact of these caching strategies
through a series of strong scaling experiments. Our experimental
results show that the AI-powered data querying performance can
be significantly improved by applying different caching strategies.

Index Terms—AI-powered Feature Querying, Caching

I. INTRODUCTION

With the exponential growth of data in recent years, the
development of efficient and effective data discovery meth-
ods has become necessary [1]–[5]. Traditional data discovery
techniques, such as relational database management systems-
based indexing and querying, struggle to keep pace with the
increasing demands of modern massive volume datasets [6].
More importantly, the conventional querying methods fail to
capture sophisticated patterns and features inherent in large
datasets, limiting their ability to provide meaningful insights.

With the recent advancements in artificial intelligence (AI)
and data management systems, some data discovery solutions
with AI inference capability have emerged as powerful tools
for extracting patterns and providing insights from massive
datasets [7]–[10]. These solutions facilitate immediate data
analysis and querying, thereby significantly enhancing the ef-
fectiveness of data discovery processes. In such a system [11],
queries can contain user-defined filters utilizing AI inference
to refine results based on specific ranges or patterns over the
properties of objects in the graph.

However, with the AI inference process, these query systems
face several challenges. First of all, the AI inference models
usually incur intensive computations [12], [13], which can
significantly slow down the query execution process. Secondly,
many AI inference procedures may require expensive com-
puting resources, including GPUs and memories, which may

not always be affordable in various scenarios. In addition,
due to the recursive characteristic of AI-powered query, the
queries that are searching through multiple features can lead to
repetitive raw data loading for the AI inference process, which
can significantly strain the I/O bandwidth of the underlying
storage system.

Facing these challenges in AI-powered query systems, it is
essential to seek effective caching strategies that can help with
boosting the performance of the AI-powered queries. There-
fore, in this research, we propose different caching strategies
based on the general steps involved in the AI inference process,
and we aim to explore the impact of these caching strategies on
the AI-powered query systems for performance improvement.
Specifically, through this study, we seek to find answers to the
following key questions:

• What data should be cached considering the AI inference
workflow of the query systems?

• How does caching affect the overall performance of AI-
powered queries?

• What are the merits and costs of different caching strate-
gies for AI-powered queries?

• Which caching strategies are most effective for AI-
powered queries?

Targeting these questions, our main contributions are:
Generalized View of AI Inference Workflow: we present

a generalized view of AI inference workflow within the AI-
powered query system considering the utilization of AI.

Caching Strategies for AI Inference Workflow: we intro-
duce 3 different caching strategies that can be applied in an
AI-powered query to balance performance improvement and
dynamism of the querying system.

Thorough Evaluation of Caching Strategies: we evaluate
the query performance in-depth providing thorough compari-
son between different caching strategies.

Insight from Observation: we present our observations on
the impact of caching strategies for AI-powered queries and
share insights regarding potential query performance improve-
ments and associated trade-offs.

The rest of the paper is organized as follows. In Section II,
we review related works of the AI-powered query. Then, in
Section III, we identify the AI inference workflow and propose
different cache levels for mitigating the AI inference overhead
in the query processing stage. We show our experimental
results in Section IV. Finally, we conclude in Section V.

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-6

24
8-

0/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a6

23
23

.2
02

4.
10

82
58

19

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

770

II. BACKGROUND

In this section, we will review the AI-powered query for
scientific data discovery and related works.

A. The Need of AI-powered Data Discovery

The application of artificial intelligence is nowadays rev-
olutionizing various domain sciences such as biometric au-
thentication, biodiversity, medical, and astronomy research,
etc [14]–[20]. With the widespread application of AI in domain
sciences, there is a growing need for data discovery with a fo-
cus on particular features of interest, especially when the fea-
tures are dynamically captured by AI inference process [19],
[21]–[23]. While many traditional database management sys-
tems [24]–[29] do not directly provide data query capability
that captures the underlying features or patterns in the data, in
the past few years, several solutions, including MADlib [30],
Spark SQL [10], and Cray Graph Engine (CGE) [31], are
emerging with the support of AI-powered data querying. In
these solutions, the query execution process will include a
dynamic data filtering step implemented as a user-defined
function (UDF) where relevant data samples are selected based
on the features of interest that are automatically captured
by ML/DL models in real-time. This practice highlights the
innovative use of databases with UDF features, indicating great
potential for AI-powered data discovery.

However, there are two major challenges in these systems
to provide AI-powered query capabilities. The AI-inference
process is known to require significant computing power,
and generally it is a time-consuming process iterating over
multiple phases [10], [32]. These drawbacks consequently
result in higher resource requirements for the machines that
can host such systems, which hinders the prevalence and
maintainability of these systems. Furthermore, the repetitive
characteristic of AI inference leads to multiple rounds of data
loading, and this can cause excessive data loading within the
real-time AI-powered query processing which results in in-
creased query duration. Therefore, there is a need to accelerate
the AI-powered query processing, minimizing the resource
requirement of such system, and to avoid excessive data
loading that can overwhelm the underlying storage system.

B. Data Pipelines of AI-powered Data Discovery

To understand how AI-powered data discovery works, we
study the data pipeline of AI-powered data discovery in
Cray Graph Engine (CGE) [11]. Since CGE combines high-
performance graph processing with AI inference, we consider
it as a well-suited example for demonstrating the scalability
and efficiency of AI-powered data discovery systems.

1. Data Ingestion: The data ingestion process begins with
loading input data, typically large and unstructured, into the
system. During ingestion, the user-defined load operations are
executed by the ranks in the CGE instance. These operations
are custom user programs designed to extract relevant features
or relationships from the input data. Once the user program
completes, it returns edges representing these features, which
are then inserted into the graph structure for future queries.

2. Query Execution: This stage consists of accepting an
input query from the user, which in the case of CGE is written
in SPARQL, translating the query to a set of operations (e.g.,
scan, join and filter) and coordinating amongst the parallel
processes to execute the operations. In query execution of
CGE, the UDFs enable users to apply domain specific AI
models to capture the features of the data owned by each rank,
and compare it with the query condition in the specified filter
of the given query.

III. CACHING STRATEGIES IN THE AI INFERENCE
WORKFLOW OF AI-POWERED DATA DISCOVERY

In this section, we will review the AI inference workflow
in AI-powered data discovery and elaborate on the caching
strategies corresponding to different steps in the AI inference
workflow.

A. AI Inference Workflow

In real-world applications, to achieve optimal result, the
AI inference process usually utilizes a pipeline of structured,
focused, and refined AI inference steps. Typically, these steps
can be generalized as 3 major stages as illustrated in Fig-
ure 1, including 1) Object Extraction (i.e., OE), 2) Target
Identification (i.e., TI), and 3) Feature Extraction (i.e., FE).
While the last two can sometimes be optional, in AI-powered
data discovery where query conditions are specified to hit the
features of the objects, we consider that these 3 steps are
generally applicable in the AI-powered data discovery process.
Such practice also ensures the modularity of AI inference
process, making it possible to reuse the AI inference result
at certain step in the process. Here, we present each stage :

1) Object Extraction (OE): The first stage in the AI
inference workflow is object extraction, where the system
identifies and extracts relevant objects from the raw data.
This approach significantly improves efficiency by reducing
unnecessary computation and ensuring that subsequent stages
work only on relevant data. The benefits of having an object
extraction stage are manifold. First, it significantly reduces
the complexity of the data processing pipeline by allowing
subsequent stages to work on recognizable objects, rather
than being overwhelmed by noises in the background. As
illustrated in the crime analysis application in Figure 1, in
the entire AI inference workflow that aims to extract the
age and gender feature of potential criminals in the video
frames of surveillance footage, the object extraction stage
is design to first extract the recognizable objects such as
people, sofa, and bookshelf. Hence, for generally collected
datasets, retrieving the data containing the desired objects is
necessary. Additionally, object extraction enables modularity
and reuse, as once the bounding boxes and object information
are stored, they can be reused for different queries or analyses
without having to recompute or reprocess the raw data. This
not only increases the efficiency of AI-powered queries but
also supports flexibility in multi-query environments, enabling
faster response times and more dynamic data discovery.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

771

Target Identification Feature Extraction

Feature ExtractionTarget Cache

Feature Cache

Object Cache

{
 "family": "Felidae",
 "genus": "Panthera"
}

{
 "age": "27",
 "gender": "Male"
}

Raw Data Object Extraction Target Identification Feature Extraction

AI Inference Workflow Crime Analysis Animal ConservationData Ingestion Query Processing

Figure 1. An overview of AI inference workflow and caching strategies

2) Target Identification (TI): With the partial image of
the objects, the second stage of AI inference workflow is
to identify targets of interest among these objects to further
narrow down the system’s attention to the specific objects
that are most likely to meet the requirements of the query.
As depicted in Figure 1, in crime analysis, particularly in
facial recognition systems, this stage helps the system focus
on human faces extracted from video frames. It eliminates
non-human objects and ensures that the subsequent analysis
is carried out only on faces, which is essential for tasks like
identifying potential suspects. Similarly, in animal conserva-
tion, when searching for a specific species, this step enables
the system to isolate the relevant animals from the Felidae
family, ignoring other elements like people or plants in the
environment. Target identification ensures that only relevant
data passes to the next stage, making the entire process more
efficient and focused.

This step is crucial since it significantly refines the interme-
diate results, ensuring that only relevant objects proceed to the
next step for further analysis. By filtering out unrelated objects,
such as furniture when searching for people or identifying
animal instead of humans when searching for species, the
system can perform AI inference with better efficiency and
accuracy. While this step is not always mandatory, in AI-
powered data discovery workflows, target identification greatly
enhances the relevance of the results. However, since this stage
still involves AI inference that is computationally expensive,
when the system responds to huge amount of queries, it will
also play a crucial role in straining the resources and slowing
down the queries.

3) Feature Extraction (FE): The necessity of the feature
extraction stage comes down to the requirement that the users
should be able to find data objects that have certain features.

Since the query condition against the feature is usually in the
form of text, this step typically involves the procedure that
performs AI inference on top of the relevant objects identified
by the previous stage and generates descriptive feature labels.
For example, in the crime analysis scenario, after human faces
are identified, the feature extraction stage will run specific AI
models to identify properties and generate descriptive labels
such as “gender: Male” and “age: (25-32)”. Similarly, in the
animal conservation example, based on the identified animals,
the feature extraction stage will perform animal taxonomy
inference to generate species taxonomy labels, such as “family:
Felidae” and “genus: Panthera”.

This stage transforms identified targets of interest into
searchable insights that can be queried. Without feature ex-
traction, user will only be able to locate objects of broad
categories, such as “people” and “animal”, but won’t be able
to refine their search based on the attribute labels such as age
and gender, or family and genus. However, depending on the
AI models in this stage, the computation can still be intensive
and hence strains computing powers and degrades the query
performance.

B. Caching Strategies
Given the three stages of the AI inference workflow, we

consider caching objects, identified targets, and extracted
features strategically, so that we can minimize the overhead
associated with repetitive AI inference steps, thereby acceler-
ating the overall query execution while maintaining precision.
Specifically, these caching strategies are:

1) Object Caching: Object caching refers to the process
of storing the results of the object extraction stage in the
AI inference workflow. With this, the extracted objects can
be reused for future queries without repetitively running the
object extraction procedure. In CGE, although the bounding

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

772

boxes of the identified objects are already stored as metadata
of the objects, the object extraction step in the AI-powered
query execution still need to perform raw image file loading,
image cropping, and other necessary preprocessing operations,
such as RGB channel transformations, necessary resolution
adjustment, etc. While these operations are less expensive
than re-running the object identification model, they can still
be resource-intensive, particularly when the raw image files
are large. By storing the preprocessed objects, future queries
can bypass the object extraction stage by directly loading the
cached objects.

2) Target Caching: Target caching is a strategy that stores
the results of the target identification process, where the system
determines whether the object data contains the specific targets
required by the query. In AI-powered data discovery, target
identification is crucial because it filters relevant objects based
on the query’s focus, such as faces in crime analysis or specific
animals in animal conservation scenario. By caching this target
data, applications can bypass the repetitive and often resource-
intensive process of target identification, directly retrieving ob-
jects that match the specified targets. This significantly reduces
the computational load during subsequent queries, allowing
the system to efficiently move to the feature extraction stage
without unnecessary delays.

3) Feature Caching: Feature caching focuses on storing
the results obtained from the feature extraction process in AI-
powered queries. The ultimate goal for the AI-powered query
is to retrieve data containing specific features, such as age,
gender, or species classification, which are extracted through
the AI inference models. By caching the extracted features, the
system can skip the entire pipeline - object extraction, target
identification and feature extraction - by directly loading the
cached feature matching with the query condition. This can
lead to significant performance gains.

4) Necessity of Each Caching Strategy: While feature
caching seems to provide the maximum benefit by allowing the
query execution bypassing the entire AI inference pipeline, it
is not always sufficient on its own. Object caching and target
caching remains valuable when queries are not only asking
about the fully processed feature, but sometimes even the
information in the intermediate results. For instance, when new
data is constantly ingested, features may not be immediately
available in the cache. In such case, object caching and target
caching still can help with accelerating the AI inference work-
flow and hence the entire query execution pipeline. Moreover,
new attributes or features can always be introduced into the
system that were not part of the original feature extraction
process. For example, if original cached facial features only
include age and gender, and the new query requires extracting
a different feature like facial expression, the system would
need to go back to the object and target data to perform new
feature extraction tasks. Therefore, all the caching strategies
we have discussed here can be useful depending on the
performance, flexibility and scalability requirements of the
querying system.

IV. EVALUATION

To evaluate the impact of different caching strategies on
AI inference and AI-powered data queries, in this section, we
show our evaluation result and provide analytical discussions.

A. Experimental Setup

1) Platform and Dataset: The experiments are conducted to
show the impact of three different caching strategies on the AI-
powered query performance. By comparing the performance
with the default query system where no caching stategy is
applied, we also evaluate the impact of different caching
strategies on the corresponding stages in the AI inference
workflow. Particularly, we run the experiments on two different
environments to present the effect of caching strategies and
performance enhancement when combined with scaling in
parallel environments: 1) multi-process scaling experiment and
2) multi-node scaling experiment. Each of the experiments
are executed on two different machines of HPE Cray EX
supercomputer using CPU nodes with specification of dual-
socket AMD EPYC 64-core processors. In the multi-process
scaling experiment, we fix the number of nodes to 4 and
increase the number of processes per node from 8 to 32. In the
multi-node scaling experiment, we scale the number of nodes
from 4 to 128 and fix the number of processes per node to
16. The dataset we use in this experiment contains ∼ 90,000
images extracted from Google OpenImages datasets [33] using
openimages python package. Software-wise, we use the Cray
Graph Engine [11] as the data platform to test both data
ingestion and query execution performance.

To demonstrate the general applicability of the caching
strategies, we applied two use cases which are the facial
recognition use case previously mentioned in the crime anal-
ysis scenario and the animal taxonomy use case from the
aforementioned animal conservation application. For the
object extraction inference process, both use cases go through
the same inference model using torchvision models [34]. For
target identification inference process and feature extraction
inference process, the two use cases used different inference
models to extract domain-specific features, specifically, for
facial recognition, we use the face detection model for target
identification and the age/gender detection models [35], [36]
for feature extraction; for animal taxonomy, we use Mo-
bilenet V2 model in the torchvision package [34] to perform
target identification process for identifying animals, and we
use BioCLIP model [37], [38] to perform feature extraction,
capturing the animal taxonomy features.

2) Caching Strategy Implementation: To apply the caching
strategies within the AI inference workflow of CGE and to
show the impact on the AI-powered query performance, we
have implemented caching within the data ingestion workflow
which is executed prior to query execution. For each caching
levels, the data ingestion process will additionally go through
necessary AI inference steps, and cache the data by generating
an edge within the in-memory database. Each of the caching
strategies are implemented as following:

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

773

Object Caching: In the object extraction stage of data
ingestion, after the objects are detected in the data ingestion
process, the objects cropped from the image will be processed
to be ready for target identification stage. When we choose
object caching strategy, we store the result of this stage into
CGE graph as a property edge of the corresponding object
vertex in the knowledge graph.

Target Caching: Subsequent to the object extraction pro-
cess, the target caching strategy will additionally go through
the target identification step within the data ingestion process.
Using the object data, it will perform inference for targets and
the detected targets will be stored as a property edge of the
corresponding object vertex in the knowledge graph.

Feature Caching: For the feature caching strategy, the data
ingestion workflow will go through both object extraction and
target identification step, and proceed onto feature extraction
to acquire feature labels. The list of feature labels will be
stored as a property edge of the corresponding object vertex
in the knowledge graph.

3) Experiment Procedure: For both multi-process scaling
and multi-node scaling experiment, the experiment procedure
follows the same steps. First, before executing the AI-powered
query, we perform the data ingestion process to scan the
image data and to generate the knowledge graph managed
by CGE. Depending on the caching strategy we choose in
our experiment, we extend data ingestion process to the
corresponding stage of the AI inference workflow and cache
the result of that stage. Upon completion of the data ingestion
process, the knowledge graph in CGE is readily built for AI-
powered query.

select distinct ?src ?obj1 ?obj2
where {
 ?img a <urn://image>;
 <urn://source> ?src ;
 <urn://contains> ?obj1 ;
 <urn://contains> ?obj2 .
 ?obj1 <urn://bounding-box> ?box1 .
 ?obj2 a "dog" ;
 <urn://bounding-box> ?box2 .
 filter(arq:py_user_func('feature_query', 'feature_query_func',
 ?src, 'age', ?box1) = '(25-32)')
}

select distinct ?img ?src ?obj1
where {
 ?img a <urn://image>;
 <urn://source> ?src ;
 <urn://contains> ?obj1 ;
 <urn://contains> ?obj2 .
 ?obj1 <urn://bounding-box> ?box1 .
 ?obj2 a "zebra";
 <urn://bounding-box> ?box2 .
 filter(arq:py_user_func('feature_query', 'feature_query_func',
 ?src, 'family', ?box1) = 'Felidae')
}

(b) Animal Taxonomy

(a) Facial Recognition

Figure 2. Sample AI-powered SPARQL Query Statement.

With the knowledge graph constructed during the data in-
gestion process, we execute the AI-powered query experiment.
To avoid being affected by the potentially cached query result,

No_Cache Object Target Feature

0.0

2.5

5.0

7.5

10.0

12.5

3
2

P
r
o
c
e
s
s
e
s

Face Recognition

No_Cache Object Target Feature

0.0

2.5

5.0

7.5

10.0

Animal Taxonomy

No_Cache Object Target Feature

0

5

10

15

6
4

P
r
o
c
e
s
s
e
s

No_Cache Object Target Feature

0

2

4

6

No_Cache Object Target Feature

0

5

10

15

20

1
2
8

P
r
o
c
e
s
s
e
s

No_Cache Object Target Feature

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Caching Strategy

T
i
m
e

(
s
e
c
)

Figure 3. The query latency for multi-process scaling experiment. Each row
represents the number of processes used for the experiment, and each column
represents the use case that was executed. For each plots, it presents the
distribution of execution time when using different caching strategy.

we use a different query condition for each query we issue
to CGE. This will allow us to accurately evaluate the actual
query time performance. As shown in Figure 2, for the facial
recognition use case, we will randomly use either age or
gender features for ?obj1 in our query. For animal taxonomy,
we will randomly use either family or genus features for
?obj1 in each query.

B. Multi-process Scaling Experiment

We conduct our multi-process scaling experiment on 4
compute nodes on Perlmutter supercomputer at NERSC. We
would like to observe how different caching strategy affect
the overall query performance and also what happens to each
stage in the AI inference workflow. Also, we would like to see
with a fixed number of nodes, what happens when we increase
the total number of processes.

1) Query Latency: The overall performance where we mea-
sured the elapsed time for each execution of query is shown
in Figure 3. For all 6 settings (2 use cases and 3 process count
settings), we can see the performance improvement when
target caching and feature caching are applied, as compared to
the default no cache setting in the system. When scaling the
number of processes, each use case showed a different trend
in the query performance. For the facial recognition use case,
using 64 processes and 128 processes showed decreased query

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

774

10−2

10−1

100

T
i
m
e

(
s
e
c
)

Filter

No Cache

10−2

10−1

FE

10−2

10−1

100

TI

10−3

10−1

OE

10−2

10−1

100

Filter

Object Cache

10−4

10−2

FE

10−2

10−1

100

TI

10−3

10−1

OE

10−3

10−2

10−1

100

Filter

Target Cache

10−5

10−3

FE

10−5

10−3

TI

10−2

100
OE

10−5

10−4

Filter

Feature Cache

10−6

10−5

FE

10−6

10−5

TI

10−5

10−4

OE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Facial Recognition

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Animal Taxonomy

10−2

10−1

100

T
i
m
e

(
s
e
c
)

Filter

No Cache

10−2

10−1
FE

10−2

10−1

TI

10−2

10−1

100

OE

10−2

10−1

100

Filter

Object Cache

10−5

10−4

FE

10−2

10−1

TI

10−2

10−1

100

OE

10−2

10−1

100

Filter

Target Cache

10−6

10−4
FE

10−6

10−5

10−4

TI

10−2

10−1

100
OE

10−5

Filter

Feature Cache

10−6

10−5

FE

10−6

10−5

TI

10−5

OE

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Facial Recognition

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Animal Taxonomy

Figure 4. Breakdown of AI Inference Execution Time

performance than using 32 processes. On the other hand, with
the animal detection use case, as we increased the number of
processes, it showed a performance improvement. In general,
for smaller number of processes, the performance of object
caching strategy becomes unstable, while for large number of
processes, the object caching strategy remains effective for
reducing the query latency. As previously mentioned, when
applying the object caching strategy, it will only replace a
series of operations where no AI inference is performed, such
as image cropping, RGB channel tranformation, resizing, etc.
While these operations can be easily handled by modern CPU
without much inter-process communication and I/O overhead,
the cost of reading cached content from device may sometimes
outweigh the overhead of operations that were replaced.

2) Breakdown of AI-Inference Filter Latency: To analyze
the impact of caching strategies on the various steps within
the AI inference workflow, we present the execution time of
object extraction, target identification, and feature extraction
across all queries in our 128-process test in 2 use cases on 4
nodes, as shown in Figure 4.

In Figure 4, for each use case, there are four blue violin
plots which present the distribution of total AI inference time
per image for the different caching strategies, as shown in the
“Filter” columns in each use case. Each of them presents the
execution time distribution of the UDF filter used in the query
as shown in Figure 2. On the right side of each blue violin
plot, we provide detailed elapsed time distribution for the
Object Extraction (OE), Target Identification (TI), and Feature
Extraction (FE) steps in the AI inference UDF, shown in red,
green, and orange violin plots.

Overall, we can see that, in both use cases, the total AI in-
ference time (“Filter”) is decreasing each time when we move
on to the next caching level, which clearly demonstrate how
different caching strategies help with reducing the execution
time of AI Inference UDF in the query. Specifically, we can
clearly observe that the execution time of the TI and FE steps
significantly decreased at the correspoding cache level since
the cached data can be directly used without performing the
actual AI inference for those steps. This indicates two key

findings related to the AI-powered query performance:
• The performance of AI-powered query is significantly

affected by the AI inference workflow.
• The adoption of caching strategies within the AI-powered

query can improve the performance AI inference work-
flow.

No_Cache Object Target Feature
0

1000

2000

3000

4000

T
i
m
e

(
s
e
c
)

(a) Facial Recognition

32 processes 64 processes 128 processes

No_Cache Object Target Feature
0

1000

2000

3000

4000

(b) Animal Taxonomy

Figure 5. Data Ingestion Time in Multi-process Scaling Experiment

3) Evaluation of Data Ingestion Performance: Figure 5
reports the data ingestion time. For both facial recognition and
animal taxonomy use cases applying four different caching
levels, there was an improvement in performance by scaling
the number of processes from 32 processes to 64 processes.
However, from 128 processes, it shown reduction of perfor-
mance compared to 64 processes configuration. This shows
that for the fixed number of node configuration with fixed
number of cores, the scaling of processes would have a
limitation in improving the data ingestion workflow. In this
case, for the 4 node configuration, scaling the number of
processes up to 64 would enhance the data ingestion with four
caching levels, but from 128 processes, it would degrade the
performance, most likely due to contention on resources, such
as memory and cache.

In Figure 6, we present a more detailed timing performance
regarding where the overhead is occurring within the data
ingestion workflow. For the use cases we selected, we can see

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

775

No_Cache Object Target Feature
0

1000

2000

3000

4000

T
i
m
e

(
s
e
c
)

(a) Facial Recognition

OE TI FE

No_Cache Object Target Feature
0

1000

2000

3000

4000

(b) Animal Taxonomy

Figure 6. Breakdown of Data Ingestion Time

a slight growth in the data ingestion time for target caching and
feature caching strategies, as these would require additional AI
inference steps to generate the target identification and feature
extraction results to be cached. However, we can see that, as
compared to the execution time of object extraction time, the
execution time for target identification and feature extraction
is negligible, especially considering the fact that data ingestion
for every piece of raw data is a one-time operation, while the
cache stored in this process can help with millions or even
billions of queries, applying these caching strategies can be
very rewarding.

C. Multi-node Scaling Experiment

No_Cache Object Target Feature
0

200

400

600

T
i
m
e

(
s
e
c
)

(a) Facial Recognition

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

No_Cache Object Target Feature
0

20

40

60

80

100

(b) Animal Taxonomy

Figure 7. Query Latency of Multi-node Scaling Experiment

In the multi-node scaling experiment, we present the perfor-
mance of the AI-powered query and data ingestion by scaling
the number of nodes. Through this experiment, we will focus
on the impact on the AI-powered query when different caching
strategies are combined with node-level scaling.

1) Query Performance: In Figure 7, we present the elapsed
time per query as we increase the number of nodes from
4 to 128 and use 16 ranks per node (i.e., 64 to 2048 total
ranks across nodes). As the number of nodes increase,
we were able to see a linear performance improvement for
each caching strategies. In addition, for both use cases, the
application of target caching and feature caching showed
consistent performance improvement similar to result of multi-
process scaling experiment. The feature caching performance

No_Cache Object Target Feature
0

500

1000

1500

2000

2500

T
i
m
e

(
s
e
c
)

(a) Facial Recognition

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

No_Cache Object Target Feature
0

500

1000

1500

2000

2500

(b) Animal Taxonomy

Figure 8. Data Ingestion Time of Multi-node Scaling Experiment

for all node counts was orders of magnitudes faster than all
other caching strategies. For example, on 32 nodes, one set of
the facial recognition query times for no cache, object cache,
target cache and feature cache were 74.1, 82.4, 28.9 and 0.42
seconds, respectively. These results clearly demonstrate how
the combination of appropriate selection of caching strategy
and number of nodes can significantly accelerate the speed of
AI-powered queries. This shows that the caching strategies,
especially target caching and feature caching, can generally
help with improving the query latency of AI-powered data
discovery across various scales.

2) Data Ingestion Performance: The data ingestion perfor-
mance is shown as Figure 8. We present the overall time it
took for generating the required data for each caching strategy
as the number of node scales. For each caching strategy, as
similar to the query performance, we observed a linear time
performance enhancement as we increase the number of nodes.
Hence, we were able to observe that the overhead within the
data ingestion process can be significantly reduced if unified
with scaling of nodes. This shows that the additional cost of
applying caching strategies can be further reduced when the
number of nodes increases.

V. CONCLUSION

In this study, we present three caching strategies to help
with reducing repetitive yet time-consuming AI inference
operations in the context of AI-powered data querying. Our
experiment result offer in-depth comparisons of the effect of
these caching strategies. Overall, our study shows that, at
different stages of AI inference workflow, these caching strate-
gies are generally effective for reducing the time-consuming
AI inference operations, and can be adopted opportunistically
in different scenarios depending on the reusability of the
cached content. While the trade-offs of utilizing these caching
strategies is the additional AI inference time spent in the data
ingestion process which only occur once, countless queries
can benefit from the acceleration these caching strategies offer,
which demonstrates the value of caching strategies in the AI-
powered data discovery.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

776

REFERENCES

[1] D. R.-J. G.-J. Rydning, J. Reinsel, and J. Gantz, “The digitization of the
world from edge to core,” Framingham: International Data Corporation,
vol. 16, pp. 1–28, 2018.

[2] P. K. Sadineni, “Comparative study on query processing and indexing
techniques in big data,” in 2020 3rd International Conference on
Intelligent Sustainable Systems (ICISS). IEEE, 2020, pp. 933–939.

[3] W. Zhang, S. Byna, H. Tang, B. Williams, and Y. Chen, “MIQS:
metadata indexing and querying service for self-describing file formats,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2019, Denver,
Colorado, USA, November 17-19, 2019, M. Taufer, P. Balaji, and
A. J. Peña, Eds. ACM, 2019, pp. 5:1–5:24. [Online]. Available:
https://doi.org/10.1145/3295500.3356146

[4] W. Zhang, H. Tang, S. Byna, and Y. Chen, “Dart: distributed adaptive
radix tree for efficient affix-based keyword search on hpc systems,” in
Proceedings of the 27th International Conference on Parallel Architec-
tures and Compilation Techniques, 2018, pp. 1–12.

[5] W. Zhang, H. Tang, and S. Byna, “Idioms: Index-powered distributed
object-centric metadata search for scientific data management,” in 2024
IEEE 24th International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2024, pp. 598–608.

[6] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi, and F. Ismaili, “Comparison
between relational and nosql databases,” in 2018 41st international
convention on information and communication technology, electronics
and microelectronics (MIPRO). IEEE, 2018, pp. 0216–0221.

[7] R. Kashyap, “Machine learning in google cloud big query using sql,”
SSRG International Journal of Computer Science and Engineering,
vol. 10, no. 5, pp. 17–25, 2023.

[8] A. Kulkarni, “Amazon athena: Serverless architecture and troubleshoot-
ing,” International Journal of Computer Trends and Technology, vol. 71,
no. 5, pp. 57–61, 2023.

[9] M. Kachuee, A. Hosseini, B. Moatamed, S. Darabi, and M. Sarrafzadeh,
“Context-aware feature query to improve the prediction performance,”
in 2017 IEEE Global Conference on Signal and Information Processing
(GlobalSIP). IEEE, 2017, pp. 838–842.

[10] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD international conference on management of data, 2015, pp.
1383–1394.

[11] C. D. Rickett, K. J. Maschhoff, and S. R. Sukumar, “Massively parallel
processing database for sequence and graph data structures applied to
rapid-response drug repurposing,” in 2020 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 2020, pp. 2967–2976.

[12] A. N. Mazumder, J. Meng, H.-A. Rashid, U. Kallakuri, X. Zhang, J.-
S. Seo, and T. Mohsenin, “A survey on the optimization of neural
network accelerators for micro-ai on-device inference,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 4,
pp. 532–547, 2021.

[13] S. Nakandala, K. Nagrecha, A. Kumar, and Y. Papakonstantinou, “In-
cremental and approximate computations for accelerating deep cnn
inference,” ACM Transactions on Database Systems (TODS), vol. 45,
no. 4, pp. 1–42, 2020.

[14] P. Kaur, K. Krishan, S. K. Sharma, and T. Kanchan, “Facial-recognition
algorithms: A literature review,” Medicine, Science and the Law, vol. 60,
no. 2, pp. 131–139, 2020.

[15] M. Tan, W. Chao, J.-K. Cheng, M. Zhou, Y. Ma, X. Jiang, J. Ge,
L. Yu, and L. Feng, “Animal detection and classification from camera
trap images using different mainstream object detection architectures,”
Animals, vol. 12, no. 15, p. 1976, 2022.

[16] A. Sharma and P. K. Mishra, “Performance analysis of machine learning
based optimized feature selection approaches for breast cancer diagno-
sis,” International Journal of Information Technology, vol. 14, no. 4, pp.
1949–1960, 2022.

[17] P. Danaee, R. Ghaeini, and D. A. Hendrix, “A deep learning approach for
cancer detection and relevant gene identification,” in Pacific symposium
on biocomputing 2017. World Scientific, 2017, pp. 219–229.

[18] Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, and Q. Sun, “Deep
learning for image-based cancer detection and diagnosis- a survey,”
Pattern Recognition, vol. 83, pp. 134–149, 2018.

[19] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C. W.
Park, A. Choudhary, A. Agrawal, S. J. Billinge et al., “Recent advances

and applications of deep learning methods in materials science,” npj
Computational Materials, vol. 8, no. 1, p. 59, 2022.

[20] R. E. González, R. P. Munoz, and C. A. Hernández, “Galaxy detection
and identification using deep learning and data augmentation,” Astron-
omy and computing, vol. 25, pp. 103–109, 2018.

[21] A. Nadeem, M. Ashraf, K. Rizwan, N. Qadeer, A. AlZahrani,
A. Mehmood, and Q. H. Abbasi, “A novel integration of face-recognition
algorithms with a soft voting scheme for efficiently tracking missing
person in challenging large-gathering scenarios,” Sensors, vol. 22, no. 3,
p. 1153, 2022.

[22] K. Park, K. Saur, D. Banda, R. Sen, M. Interlandi, and K. Karanasos,
“End-to-end optimization of machine learning prediction queries,” in
Proceedings of the 2022 International Conference on Management of
Data, 2022, pp. 587–601.

[23] J. Ye, J. Hai, Z. Wang, C. Wei, and J. Song, “Leveraging natural
language processing and geospatial time series model to analyze covid-
19 vaccination sentiment dynamics on tweets,” JAMIA open, vol. 6,
no. 2, p. ooad023, 2023.

[24] S. Sanfilippo, “Redis,” https://redis.io, 2009, version 6.0, Last accessed:
2024-09-06.

[25] M. D. Team, “Mysql,” https://www.mysql.com, 1995, version 8.0, Last
accessed: 2024-09-06.

[26] I. Facebook, “Rocksdb,” https://rocksdb.org, 2013, version 6.0, Last
accessed: 2024-09-06.

[27] I. MongoDB, “Mongodb,” https://www.mongodb.com, 2009, version
6.0, Last accessed: 2024-09-06.

[28] D. R. Hipp, “Sqlite,” https://www.sqlite.org, 2000, version 3.42, Last
accessed: 2024-09-06.

[29] P. G. D. Group, “Postgresql,” https://www.postgresql.org, 1996, version
14.0, Last accessed: 2024-09-06.

[30] J. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gora-
jek, K. S. Ng, C. Welton, X. Feng, K. Li et al., “The madlib analytics
library or mad skills, the sql,” arXiv preprint arXiv:1208.4165, 2012.

[31] C. D. Rickett, U.-U. Haus, J. Maltby, and K. J. Maschhoff, “Loading
and querying a trillion rdf triples with cray graph engine on the cray
xc,” Cray User Group, 2018.

[32] N. N. Alajlan and D. M. Ibrahim, “Tinyml: Enabling of inference deep
learning models on ultra-low-power iot edge devices for ai applications,”
Micromachines, vol. 13, no. 6, p. 851, 2022.

[33] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,
A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, S. Kamali, M. Mal-
loci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes, A. Gupta,
C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan, and
K. Murphy, “Openimages: A public dataset for large-scale multi-
label and multi-class image classification.” Dataset available from
https://storage.googleapis.com/openimages/web/index.html, 2017.

[34] T. maintainers and contributors, “Torchvision: Pytorch’s computer vision
library,” https://github.com/pytorch/vision, 2016.

[35] G. Levi and T. Hassner, “Emotion recognition in the wild via convolu-
tional neural networks and mapped binary patterns,” in Proceedings of
the 2015 ACM on international conference on multimodal interaction,
2015, pp. 503–510.

[36] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[37] J. Bradley, H. Lapp, and E. G. Campolongo, “pybioclip,” Jul. 2024.
[38] S. Stevens, J. Wu, M. J. Thompson, E. G. Campolongo, C. H. Song,

D. E. Carlyn, L. Dong, W. M. Dahdul, C. Stewart, T. Berger-Wolf, W.-L.
Chao, and Y. Su, “BioCLIP: A vision foundation model for the tree of
life,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024, pp. 19 412–19 424.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 10,2025 at 18:19:39 UTC from IEEE Xplore. Restrictions apply.

