
2022 ECP ANNUAL MEETING

ROOFLINE PERFORMANCE ANALYSIS
W/ INTEL ADVISOR ON INTEL CPUS & GPUS

erhtjhtyhy

JAEHYUK KWACK
ALCF Perf. Engr. Group

5/2/2022

OVERVIEW OF AURORA TESTBED SYSTEMS

AURORA: A HIGH-LEVEL VIEW

§ Intel-HPE machine arriving at Argonne
– Sustained Performance > 1 ExaFlops

§ Intel Xeon processor and Intel Xe GPUs
– 2 Xeons (Sapphire Rapids)
– 6 GPUs (Ponte Vecchio [PVC])

§ Greater than 10 PB of total memory
§ HPE/Cray XE platform and HPE Slingshot network
§ Filesystem

– Distributed Asynchronous Object Store (DAOS)
• ≥ 230 PB of storage capacity
• Bandwidth of > 25 TB/s

– Lustre
• 150 PB of storage capacity
• Bandwidth of ~ 1TB/s

3

INTEL GEN9 ON TESTBED

§ Gen9: Double precision peak performance: 100-300 GF
– Low by design due to power and space limits
– Integrated GPU

§ Hardware hierarchies
– A GPU tile has multiple slices
– A slice has multiple Sub-Slices
– A sub-slice has multiple EUs

4

Slice Execution Unit (EU)Sub-Slice

REMARKS BEFORE WE START

§ The Intel Gen9 GPU is a much lower performing device that is integrated into the
same package as the CPU. While Intel has announced plans to introduce a new
line of Xe brand high performance discrete GPUs, that hardware is not publicly
available at this moment. The Gen9 GPU is therefore the most suitable Intel
GPU for evaluation of HPC applications currently available.

To help reduce any misunderstanding

5

ADVISOR ON INTEL CPUS AND GPUS

Overhead

Step 1: Survey (-collect survey)
- Provide #Seconds
- Root access not needed
- User mode sampling, non-intrusive.

1x

Step 2: FLOPS (-collect tripcounts –flops)
- Provide #FLOP, #Bytes, AVX-512 Mask
- Root access not needed
- Precise, instrumentation based, count number of instructions

3-5x

7

GETTING ROOFLINE DATA IN INTEL® ADVISOR:
TWO-PASS APPROACH

Roofline :

Axis X: AI = #FLOP / #Bytes

Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

ORIGINAL, CACHE-AWARE (CARM)
AND MEMORY-LEVEL ROOFLINE

Original Roofline
§ AI based on external memory :

DDR (GPU GTI)
§ Ceilings for DDR and compute

§ AI dependent of problem size
Unique features: DDR bound focus and simplicity

CARM (cache-aware roofline)
§ Single AI based on aggregated traffic:

CPU core (GPU EUs) <-> memory sub-system

§ Ceilings for compute, cache/memory levels

§ AI independent of problem size

Unique features: algorithmic focus and simplicity

Memory Level Roofline - MLR (see also “Hierarchical Roofline” by LBL)
§ AI for all memory sub-system levels, combines (1), CARM, (2)Original and (3) Lx-only perspectives

§ Harder to interpret for multiple kernels at a time

Unique features: unambiguous bottleneck detection

HOW TO INTERPRET MLR ON CPU ?

Arithmetic intensity (Flop/Byte)

Peak Flop/s

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s

Find the minimum of all memory
subsystems

and compute..

Actual performance

GF
LO

PS

ADVISOR GPU ROOFLINE FEATURES
§ Advisor provides an effective way for GPU roofline

analysis on Intel GPUs.
§ Memory Levels

– CARM: Memory traffic generated by all execution units
(EUs). Includes traffic between EUs and corresponding
GPU cache or direct traffic to main memory. For each
retired instruction with memory arguments, the size of
each memory operand in bytes is added to this metric.

– L3: Data transferred directly between execution units and
L3 cache.

– SLM: Memory access to/from Shared Local Memory
(SLM), a dedicated structure within the L3 cache.

– GTI: Represents GTI traffic/GPU memory read bandwidth,
the accesses between the GPU, chip uncore (LLC), and
main memory. Use this to get a sense of external memory
traffic.

– L3 + SLM: Summary traffic to/from L3 and Shared Local
Memory.

10

HOW TO INTERPRET MLR ON GPU ?

Arithmetic intensity (Flop/Byte)

Peak Flop/s

SLM GB/s

L3 GB/s

GTI GB/s

Find the minimum of all memory sub-
systems

Shortest distance – main bottleneck

Actual performance

1st method. Not compatible with MPI applications :

$ advisor -collect roofline --project-dir
./your_project -- <your-executable-with-
parameters>

HOW TO GENERATE CARM CPU ROOFLINE
PROFILE?

As simple as: $ advisor -collect roofline -- <your-executable-with-parameters>

2nd method (compatible with MPI, more flexible):

$ advisor -collect survey --project-dir ./your_project --
<your-executable-with-parameters>

$ advisor -collect tripcounts --flop --project-dir
./your_project -- <your-executable-with-parameters>

More details / How-To
$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --project-dir ./your_project > roofline.html

1st method. Not compatible with MPI applications :

$ advisor -collect roofline –enable-cache-
simulation --project-dir ./your_project --
<your-executable-with-parameters>

HOW TO GENERATE MLR+CARM CPU
ROOFLINE PROFILE?

As simple as: $ advisor -collect roofline –enable-cache-simulation -- <your-executable-with-parameters>

2nd method (compatible with MPI, more flexible):

$ advisor -collect survey --project-dir ./your_project --
<your-executable-with-parameters>

$ advisor -collect tripcounts –flop –enable-cache-simulation
--project-dir ./your_project -- <your-executable-with-
parameters>

More details / How-To
$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --project-dir ./your_project > roofline.html

1st method. Not compatible with MPI applications :

$ advisor -collect roofline --profile-gpu --
project-dir ./your_project -- <your-
executable-with-parameters>

HOW TO GENERATE GPU (MLR & CARM)
ROOFLINE PROFILE?

As simple as: $ advisor -collect roofline –-profile-gpu -- <your-executable-with-parameters>

2nd method (compatible with MPI, more flexible):

$ advisor -collect survey --profile-gpu --project-dir
./your_project -- <your-executable-with-parameters>

$ advisor -collect tripcounts –flop --profile-gpu --project-
dir ./your_project -- <your-executable-with-parameters>

More details / How-To
$ source advisor-vars.sh

--data-type=int | float(default) |mixed

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --gpu --project-dir ./your_project > roofline.html

GPU ROOFLINE: EXTENDED HTML GUI
See HTML report in project-dir/e000|rank.*/report folder by default

§ View the result in web browser without having Intel® Advisor installed

source advisor_install_dir/advisor-vars.sh

advisor
--report all
--project-dir ./your_project
--report-output ./roofline.html

EXTENDED HTML GUI
For any system with web browsers (e.g., Mac(M1), phones & tablets)

16

ROOFLINE ON MULTI-GPU SYSTEMS
Add --target-gpu option in command line

To get target GPU value

▪ Run advisor –help collect | grep –target-gpu
advisor
--collect roofline
--profile-gpu
--project-dir ./your_project
--target-gpu 0:77:0.0
-- <your-executable-with-
parameters>

ROOFLINE DEMO CASE
- GAMESS RI-MP2 MINI-APP

Collaborated w/ Colleen Bertoni (ANL)

INTRO OF GAMESS
§ GAMESS is the General Atomic and Molecular Electronic

Structure System
– General-purpose electronic structure code (many

methods and capabilities)
– ~1 million lines of Fortran
– Optional C/C++ GPU-accelerated libraries/applications

in GAMESS
§ Scientific problem of interest

– FMO/RI-MP2 calculations towards accurate
simulations of catalysis reactions inside a
mesopourous silica nanoparticle

19

20

Coronene

60 H2O clusters

Fullerene

21

An ECP Proxy Application
§ Computes RI-MP2 perturbative correction to

the Hartree-Fock energy

INTRO OF RI-MP2 MINI-APP

22

An ECP Proxy Application
§ Computes RI-MP2 perturbative correction to

the Hartree-Fock energy

§ Simplifies expression with the RI
approximation letting it be written in terms of
matrix multiplication

§ Combine i,j, loops over occ orbitals, and
then reduce over a,b, virtual orbitals to
compute the final correlation energy

INTRO OF RI-MP2 MINI-APP
for(int JACT=0;JACT<NACT;JACT++){

for(int IACT=0; IACT<=JACT;IACT++){

// A kernel to compute QVV via Matrix Multiplication

QVV[0:NVIR][0:NVIR] = B32[IACT][0:NVIR][0:NAUXBASD] *
B32[JACT][0:NAUXBASD][0:NVIR];

// Accumulating E2 using QVV[][], eij[][], and eab[][]

for(int IB=0; IB<NVIR; IB++) {

for(int IA=0; IA<NVIR; IA++) {

Tijab = QVV[IB*NVIR][IA] /
(eij[JACT][IACT] – eab[IB][IA]);

Qt = QVV[IB][IA] + QVV[IB][IA];

E2_t += Tijab * (Q_t – QVV[IA][IB]);

}}

FAC = (IACT==JACT) ? (1.0E0) : (2.0E0);

E2 += E2_t *FAC;

}}

• We constructed four RI-MP2 variants to explore with w25.rand.

• These variants add progressive/incremental levels of optimization as follow:

o V0-CPU: an initial version,

o V1-CPU: QVV computations use MKL DGEMM,

o V3-GPU: offloaded V1-CPU to GPU using OpenMP Target offloading model

o V5-GPU: QVV computation uses less MKL DGEMM calls by restructuring an outer loop; For
E2, IACT loop is distributed subslices w/ “target teams distribute”, and then IB loop uses EUs w/
“parallel for” at each subslice, with optimal values for num_teams, and threads_limit

23

RI-MP2 CODE VERSIONS

24

double *QVV;
double E2_local=0.0E0;
QVV = new double[NVIR*NVIR];

for(int JACT=0;JACT<NACT;JACT++){
for(int IACT=0;IACT<=JACT;IACT++){

// Compute QVV
std::fill_n(QVV,NVIR*NVIR,0.0);
for (int j = 0; j < NVIR; ++j) {
for (int i = 0; i < NVIR; ++i) {
for (int l = 0; l < NAUXBASD; ++l) {

QVV(j,i) += B32(IACT,i,l)*B32(JACT,j,l);
}}}

// Accumulate E2
double E2_t=0.0;
for(int IB=0; IB<NVIR; IB++){
for(int IA=0; IA<NVIR; IA++){

double Tijab = QVV(IB,IA) / (eij(JACT,IACT) - eab(IB,IA));
double Q_t = 2*QVV(IB,IA);
E2_t += Tijab * (Q_t - QVV(IA,IB));

}} // loop for IA and IB
double FAC = (IACT==JACT) ? (1.0E0) : (2.0E0);
E2_local += FAC*E2_t;

}} // loop for IACT and JACT

*E2 = *E2 + E2_local;
delete[] QVV;

• QVV: Computing QVV
• E2:E2 accumulation

V0-CPU

double *QVV;
double E2_local=0.0E0;
QVV = new double[NVIR*NVIR];

for(int JACT=0;JACT<NACT;JACT++){
for(int IACT=0;IACT<=JACT;IACT++){

// Compute QVV
std::fill_n(QVV,NVIR*NVIR,0.0);
for (int j = 0; j < NVIR; ++j) {
for (int i = 0; i < NVIR; ++i) {
for (int l = 0; l < NAUXBASD; ++l) {

QVV(j,i) += B32(IACT,i,l)*B32(JACT,j,l);
}}}

// Accumulate E2
double E2_t=0.0;
for(int IB=0; IB<NVIR; IB++){
for(int IA=0; IA<NVIR; IA++){

double Tijab = QVV(IB,IA) / (eij(JACT,IACT) - eab(IB,IA));
double Q_t = 2*QVV(IB,IA);
E2_t += Tijab * (Q_t - QVV(IA,IB));

}} // loop for IA and IB
double FAC = (IACT==JACT) ? (1.0E0) : (2.0E0);
E2_local += FAC*E2_t;

}} // loop for IACT and JACT

*E2 = *E2 + E2_local;
delete[] QVV;

25

QVV

E2

V0-CPU

Data traffic (Bytes) ratios:
L2 : L3: DRAM = 4.2 : 2.2 : 1

Data traffic (Bytes) ratios:
L2 : L3: DRAM = 4.3 : 1.4 : 1

• QVV: L2 cache bound
• 31.33 GF/s
• L2 AI= 0.5

• E2: L2 cache bound
• 5.13 GF/s
• L2 AI= 0.091

• QVV: Computing QVV
• E2:E2 accumulation

double *QVV;
double E2_local=0.0E0;
QVV = new double[NVIR*NVIR];

for(int JACT=0;JACT<NACT;JACT++){
for(int IACT=0;IACT<=JACT;IACT++){

// Compute QVV
int n=NVIR;
int k=NAUXBASD;
double one = 1.0;
double zero = 0.0;

dgemm("T","N",&n,&n,&k,&one,&B32(IACT,0,0),&k,&B32(JACT,0,0),&k,&zer
o,QVV,&n);

// Accumulate E2
double E2_t=0.0;
for(int IB=0; IB<NVIR; IB++){
for(int IA=0; IA<NVIR; IA++){

double Tijab = QVV(IB,IA) / (eij(JACT,IACT) - eab(IB,IA));
double Q_t = 2*QVV(IB,IA);
E2_t += Tijab * (Q_t - QVV(IA,IB));

}} // loop for IA and IB
double FAC = (IACT==JACT) ? (1.0E0) : (2.0E0);
E2_local += FAC*E2_t;

}} // loop for IACT and JACT

*E2 = *E2 + E2_local;
delete[] QVV;

26

QVV

E2

V1-CPU

Data traffic (Bytes) ratios:
L1 : L2: L3 = 4.7 : 2.6 : 1
NO DRAM at all! Fitting into
the cache completely!

Data traffic (Bytes) ratios:
L2 : L3: DRAM = 8.6 : 2.9 : 1

• QVV: COMPUTE DP FMA bound
• 61.96 GF/s
• L2 AI= 1.34

• E2: L2 cache bound
• 7.95 GF/s
• L2 AI= 0.090

• QVV: Computing QVV using MKL DGEMM
• E2:E2 accumulation

27

V0-CPU to V1-CPU

QVV
(L2-based)

E2 (L2-based)

• QVV computation is compute-bound (by MKL) w/ much lower
memory pressure; it consequently increases performance of E2.

E2 (DRAM-based)

QVV
(DRAM-based)

28

V3-GPU: Initial CPU-like version
double *QVV;
double E2_local=0.0E0;
int dnum=0;
QVV = new double[NVIR*NVIR];
double *B32I, *B32J;

#pragma omp target enter data map(alloc:QVV[0:NVIR*NVIR])
device(dnum)
#pragma omp target enter data
map(to:eij[0:NACT*NACT],eab[0:NVIR*NVIR],B32[0:B32size])
device(dnum)
for(int JACT=0;JACT<NACT;JACT++){
for(int IACT=0;IACT<=JACT;IACT++){

// Compute QVV
int n=NVIR;
int k=NAUXBASD;
double one = 1.0;
double zero = 0.0;
B32I = &B32(IACT,0,0);
B32J = &B32(JACT,0,0);
#pragma omp target variant dispatch

use_device_ptr(B32I,B32J,B32,QVV) device(dnum)
dgemm("T","N",&n,&n,&k,&one,B32I,&k,B32J,&k,&zero,QVV,&n);

// Accumulate E2
double E2_t=0.0;
#pragma omp target teams distribute parallel for

reduction(+:E2_t) map(tofrom:E2_t) collapse(2) device(dnum)
{

for(int IB=0; IB<NVIR; IB++){
for(int IA=0; IA<NVIR; IA++){

double Tijab = QVV(IB,IA) / (eij(JACT,IACT)-eab(IB,IA));
double Q_t = 2*QVV(IB,IA);
E2_t += Tijab * (Q_t - QVV(IA,IB));

}} // loop for IA and IB
} // omp target teams distribute parallel for
double FAC = (IACT==JACT) ? (1.0E0) : (2.0E0);
E2_local += FAC*E2_t;

}} // loop for IACT and JACT

*E2 = *E2 + E2_local;
delete[] QVV;

#pragma omp target exit data map(release:QVV[0:NVIR*NVIR])
device(dnum)
#pragma omp target exit data
map(release:eij[0:NACT*NACT],eab[0:NVIR*NVIR],B32[0:B32size])
device(dnum)

• Computing QVV using MKL DGEMM w/
GPU offloading

• E2 accumulation w/ GPU offloading

29

• QVV: DP FMA bound
• 127.25 GF/s
• L3 AI= 1.14

• E2: L3 GPU cache bound
• 1.41 GF/s
• L3 AI= 0.071

V3-GPU: initial CPU-like version

double *QVV;
double E2_local=0.0E0;
int dnum=0;
QVV = new double[NVIR*NACT*NVIR];
double *B32J;

#pragma omp target enter data map(alloc:QVV[0:NVIR*NACT*NVIR])
device(dnum)
#pragma omp target enter data
map(to:eij[0:NACT*NACT],eab[0:NVIR*NVIR],B32[0:B32size]) device(dnum)
for(int JACT=0;JACT<NACT;JACT++){

// Compute QVV
int m=NVIR*(JACT+1);
int n=NVIR;
int k=NAUXBASD;
double one = 1.0;
double zero = 0.0;
B32J = &B32(JACT,0,0);
#pragma omp target variant dispatch use_device_ptr(B32,B32J,QVV)

device(dnum)
dgemm("T","N",&m,&n,&k,&one,B32,&k,B32J,&k,&zero,QVV,&m);

// Accumulate E2
#pragma omp target teams distribute reduction(+:E2_local)

num_teams(90) thread_limit(72) device(dnum)
for(int IACT=0; IACT<=JACT; IACT++){

double E2_t=0.0;
#pragma omp parallel for reduction(+:E2_t)
for(int IB=0; IB<NVIR; IB++){

30

V5-GPU: restructured loops for better GPU performance

• Computing QVV with less MKL DGEMM
offloading calls on GPU by restructuring an
outer loop

• E2 accumulation w/ hierarchial GPU offloading
(IACT-loop to Subslices (SS), and IB-loop to
Execution Units (EUs)

for(int IA=0; IA<NVIR; IA++){
double Tijab = QVV(IB,IACT,IA) / (eij(JACT,IACT) -

eab(IB,IA));
double Q_t = 2*QVV(IB,IACT,IA);
E2_t += Tijab * (Q_t - QVV(IA,IACT,IB));

}} // loop for IA and IB
double FAC = (IACT==JACT) ? (1.0E0) : (2.0E0);
E2_local += FAC*E2_t;

} // loop for IACT
} // loop for JACT

*E2 = *E2 + E2_local;
delete[] QVV;

#pragma omp target exit data map(release:QVV[0:NVIR*NACT*NVIR])
device(dnum)
#pragma omp target exit data
map(release:eij[0:NACT*NACT],eab[0:NVIR*NVIR],B32[0:B32size])
device(dnum)

31

• QVV: DP FMA bound
• 262.84 GF/s
• L3 AI= 1.66

• E2: L3 GPU cache bound
• 37.0 GF/s
• L3 AI= .019

V5-GPU: restructured loops for better GPU performance

32

Comparison from V3-GPU to V5-GPU

QVV (L3-based)

E2 (L3-based) E2 (GTI-based)

QVV (GTI-based)

PERFORMANCE RESULTS

Selected versions
QVV E2 Overall

Target Time(s) Target Time(s) Time(s) Speedup over
V00

V0-CPU CPU 156.68 CPU 1.34 158.02 1.0x

V1-CPU CPU 86.41 CPU 0.92 87.33 1.8x

V3-GPU GPU 32.38 GPU 23.06 55.44 2.9x

V5-GPU GPU 21.49 GPU 0.86 22.35 7.1x

33

Tested Input: w25.rand (random data with structure of 25 H2O clusters)
Employed Compute Node: Intel(R) Xeon(R) CPU E3-1585 v5

• CPU: Intel Xeon Skylake @ 3.5GHz (4 cores)
• GPU: Intel Gen9 GT4e @ 1.15GHz (72 EUs)

H2O clusters

QUICK OVERVIEW OF
ARGONNE ROOFLINE USE-CASES

ARGONNE ROOFLINE USE-CASES
Selected Argonne Applications for Roofline Use-cases

35

Application ANL PoC Programming models Field of Science

NekBench Kris Rowe OCCA with OpenCL backend Computational Fluid Dynamics

XSBench/RSBench John Tramm OpenMP Target Monte Carlo neutron transport

AMR-Wind JaeHyuk Kwack SYCL/DPC++ Wind farm simulation (CFD/FSI)

NEKBENCH ON INTEL GEN9 GPU
BY KRIS ROWE (ANL)

Helmholtz Operator
§ NekRS is a port of Nek5000 to GPUs
§ Uses the OCCA portability library
§ Several iterative solves per time step

– 5-20+ iterations per solve

§ Each iteration requires evaluation of
the Helmholtz Operator
– Local stencil is dense within each

element
– Halo exchange between elements

NEKRS

38

Local Helmholtz Operator Kernel Benchmark
§ NekBench contains kernel and mini-app

benchmarks relevant to NekRS
§ The axhelm kernel evaluates the local Helmholtz

operator stencil—i.e.
– without MPI communication
– without mesh topology/connectivity

§ Benchmark repeatedly evaluates the kernel for a
prescribed number of repetitions

§ OCCA OpenCL backend was used
§ Five different kernel implementations were tested

NEKBENCH::AXHELM

Benchmark Parameters

𝑃 7 Polynomial Order

𝐸 1600 Number of elements

𝑅 1000 Number of trials

AXHELM KERNEL
Element local stencil

39

8GEMMs (8×8)
in each dimension

8GEMMs (8×8) in
each dimension

512 matrix-vector
products (3×3)

Each element has
7 + 1 ! points

40

Kernel Version 0
ROOFLINE ANALYSIS

Work Group 8×8

Work Groups 1600×1

Strategy 2D slices

Inputs global → SLM

Work Arrays SLM

Outputs registers → global

L3
SLM

GTI

41

Kernel Version 4
ROOFLINE ANALYSIS

Work Group 8×8×4

Work Groups 1600×1×1

Strategy half-cube, symmetry

Inputs global → SLM

Work Arrays SLM

Outputs registers → global

L3
SLM

GTI

NEKBENCH ROOFLINE ANALYSIS

§ Both kernel versions get mapped to SIMD width 16 on Gen9
§ Number of operations (FP, INT, mixed) is nearly identical for both kernels

– The AI for each type is 2-4x larger in kernel v4.
§ Both kernels are memory bound for L3 and SLM
§ Kernel v0 loads more data from global, SLM memory; calls more barriers
§ Kernel v4 uses more SLM, registers—leads to lower occupancy

Comparison of Results

42

XSBENCH/RSBENCH ON INTEL GEN9 GPU
BY JOHN TRAMM (ANL)

44

§ Full Application
§ Science: Monte Carlo particle transport
§ Exascale Challenge Problem:

– Full core nuclear reactor simulation
– Multiphysics coupling with computational fluid

dynamics code (Nek5000)
§ Code Info:

– Open Source
– C++

§ Key Kernels:
– Cross section lookups
– Tallying

§ State of the code:
– MPI + OpenMP Threading
– Undergoing port to GPU (via OMP Offload)

45

• XSBench and RSBench are mini-apps
representing key kernels from the full
application OpenMC

• Ported both mini-apps to:
• OpenMP Threading
• OpenMP Offload
• OpenCL
• SYCL
• CUDA

• Mini-apps contain "baked in" default test
problems for performance analysis

• No dependencies, making them very
easy to compile/run

ROOFLINE ANALYSIS ON GEN9 WITH OPENMP

46

Memory Usage [MB] Runtime [s] Intensity GFLOP/s

RSBench – Multipole 26 61.0 1.08 36.4

XSBench – Nuclide Grid Search 139 15.8 0.12 5.8

XSBench – Logarithmic Hash Grid Search 152 5.8 0.34 16.0

XSBench – Unionized Grid Search 4,248 5.3 0.19 8.9

Run as:
./rsbench -m event -l 17000000
./XSBench -m event -g 8500 -G <grid_type>

• The different algorithms represent
different methods of accomplishing
the same task

• They trade reductions in memory
footprint for increases in floating
point work

• These results show that for this
task, it's more advantageous to
minimize work rather than
maximize efficiency

AMR-WIND ON INTEL GEN9 GPU
BY JAEHYUK KWACK

AMR-WIND
§ One of Physics modules of ECP ExaWind project
§ A massively parallel, block-structured adaptive-mesh

CFD code
– An incompressible Navier-Stokes solver
– Including neutral ABL (Atmospheric Boundary Layer)

physics
– A background solver when coupled with a near-body solver

(e.g., Nalu-Wind) with overset methodology to perform
blade-resolved simulations of multiple wind turbines within
a wind farm.

§ Aurora programming model: DPC++
§ Dependency: AMReX
§ Key development teams

– NREL (ExaWind project): Mike Sprague, Jon Rood, Paul
Mullowney

– LBL (AMReX project): Weiqun Zhang

48 (Image credit: NREL)

AMR-WIND ON INTEL GPU

max_grid_size 16 32 64 128

WT_Pre 0.0745 0.00964 0.0057 0.00452

WT_Solve 48.65 8.667 4.724 3.707

WT_Post 3.76 2.26 1.78 1.54

WT_Total 52.49 10.94 6.514 5.248

At the 5th time step

49

Lower is better

Repeated process

§ AMR-Wind version :: 6af41101-DIRTY
§ AMReX version :: 21.04
§ Input: abl_godunov.i

– amr.n_cell=128 128 128
– amr.max_grid_size = {16, 32, 64, 128}
– time.max_step = 5

§ Wall time at 5th time step

ADVISOR ROOFLINE RESULTS
max_grid_size = 16 for 128^3 cells (e.g., MLPoisson::Fsmooth)

50

ADVISOR ROOFLINE RESULTS
max_grid_size = 128 for 128^3 cells (e.g., MLPoisson::Fsmooth)

51

CONCLUDING REMARKS

CONCLUDING REMARKS

§ Argonne application developers and other US DOE collaborators have been actively porting their
applications to Aurora testbed systems with Intel oneAPI toolkits for the coming Aurora Exa-scale
supercomputer at Argonne National Laboratory.

§ Intel Advisor successfully provides the detailed performance data via roofline analysis features on both
Intel CPUs and GPUs.

§ Call-to-actions
– If you are working on ECP projects and interested in Aurora testbeds with Intel oneAPI toolkit, you can get the

access via https://www.jlse.anl.gov/accessing-jlse-resources/.
– If you are interested in Intel GPUs with Intel oneAPI toolkits for your own applications, you may try the Intel

DevCloud system via the following link:
• https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html

– Enjoy!

53

https://www.jlse.anl.gov/accessing-jlse-resources/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html

ACKNOWLEDGEMENT
§ This work was supported by

– the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357,

– and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security
Administration).

§ We also gratefully acknowledge the computing resources provided and operated by the Joint Laboratory
for System Evaluation (JLSE) at Argonne National Laboratory.

§ We would like to thank Colleen Bertoni, Kris Row, and John Tramm at Argonne National Laboratory
for sharing Argonne use-cases, Zakhar Matveev, Kirill Rogozhin, Yuila Efimenko, and Ekaterina
Guseva for Advisor and Louise Huot for MKL for providing technical supports for issues, reviewing
data and providing feedback for this study.

54

THANKS!

