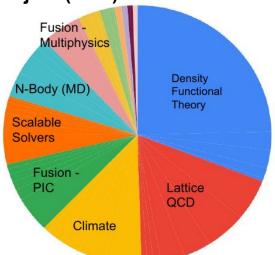
Neil Mehta Performance Engineer NERSC

ECP 2022

Motivation for targeting MD code

- LAMMPS developed under the auspices of DOE and multi-lab collaboration
- Beneficiary of Exa-scale Computing Project (ECP). Under ECP umbrella project EXAALT

For Users:


• Efficiency matters, less resources required

ERKELEY LAB

 Better optimization of application on compute resources (GPU vs CPU)

For Developers:

- Performance portability independent of problem size
- Better compiler design feedback

Methodology to generate rooflines

Obtaining roofline ceilings

 Using empirical values from Empirical Roofline Toolkit (<u>https://bitbucket.org/berkeleylab/cs-roofline-toolkit/</u>)

Obtaining kernel specific roofline data

- Using Nsight Compute
- Using custom scripts (<u>https://gitlab.com/NERSC/roofline-on-nvidia-gpus/</u>)

Obtaining application data

- Measure three quantities: time, FLOPs, and data movement (bytes)
- Calculate:

Arithmetic Intensity	FLOPs	Performance	FLOPs
(FLOPs/byte) =	data movement	(GFLOP/s) =	time
*https://www.nersc.gov/assets/U	ploads/RooflineHack-202	0-mechanism-v2.pdf	

BERKELEY LAB

Collecting roofline metrics using NCU

<u>Time</u>

- sm__cycles_elapsed.avg
- sm__cycles_elapsed.avg.per_second

<u>Memory</u>

- dram_bytes.sum
- Its_t_bytes.sum
- I1tex_t_bytes.sum

Accumulate code runtime

Accumulate L1, L2, and DRAM memory transfers

(1/2)

Collecting roofline metrics using NCU

Compute measurements

Double precision

- sm__sass_thread_inst_executed_op_dadd_pred_on.sum
- sm__sass_thread_inst_executed_op_dmul_pred_on.sum
- sm__sass_thread_inst_executed_op_dfma_pred_on.sum

Single precision

- sm__sass_thread_inst_executed_op_fadd_pred_on.sum
- sm__sass_thread_inst_executed_op_fmul_pred_on.sum
- sm__sass_thread_inst_executed_op_ffma_pred_on.sum

Half precision

- sm__sass_thread_inst_executed_op_hadd_pred_on.sum
- sm__sass_thread_inst_executed_op_hmul_pred_on.sum
- sm__sass_thread_inst_executed_op_hfma_pred_on.sum

Accumulate add, mul, and fused add mul instructions

(2/2)

Introduction to TestSNAP

```
$ ssh -Y username@perlmutter-pl.nersc.gov
$ cd $SCRATCH
$ git clone https://github.com/FitSNAP/TestSNAP.git
$ git checkout OpenMP4.5
```

- TestSNAP proxy app mimics computational load of LAMMPS SNAP
- Four dominant kernels
- Number of atoms: 2000
- Number of steps: 100
- Profiling on NVIDIA A100

```
// build neighbor-list for all atoms
build_neighborlist();
// compute atom specific coefficients
compute_U(); //Ulist[idx_max] and Ulisttot[idx_max]
```

```
compute_Y(); //Ylist[idx_max]
// for each (atom,neighbor) pair
for(int nbor = 0; nbor < num_nbor; ++nbor)
{
    compute_dU(); //dUlist[idx_max][3]
    compute_dE(); //dElist[3]
    update_forces()</pre>
```


Arrays created using classes that include pointer to contiguous block of memory Case 1: baseline

<u>Grind times:</u> (ms/atm-step) nvc++ : 0.321

```
#pragma omp target teams distribute parallel for
  for(int natom = 0; natom < num_atoms; ++natom)
    for(int nbor = 0; nbor < num_nbor; ++nbor)
      for(int j = 0; j < idxu_max; ++j)
      {
        compute();
      }
}</pre>
```

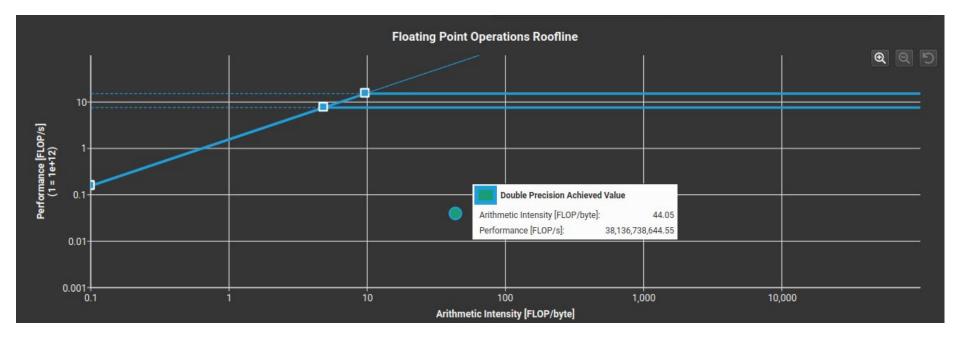
14

Office of

Science

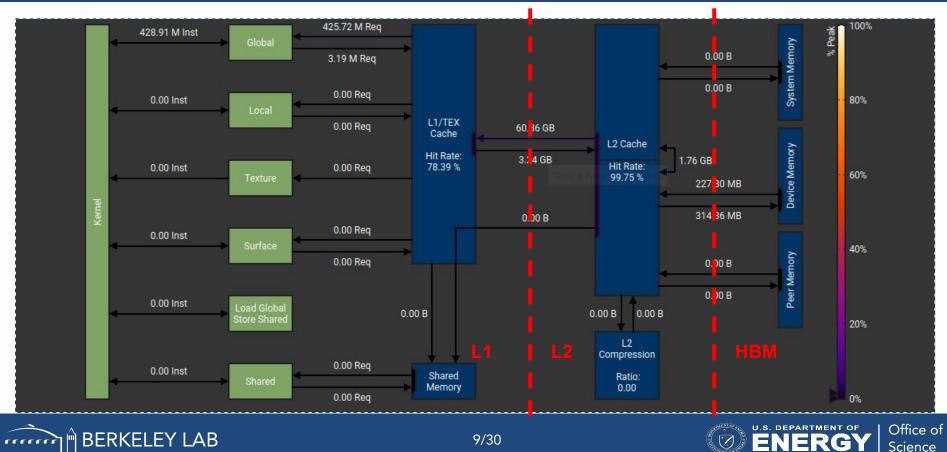
```
$ salloc -C gpu -t 240 -c 10 -G 1 -q regular -A <project>
$ module load nvhpc/22.2 (module load cuda/11.3.0)
$ ncu -o profile_snap --set full ./testsnap.exe -ns 100
$ ncu-ui profile snap.ncu-rep
```


BERKELEY LAB


mm

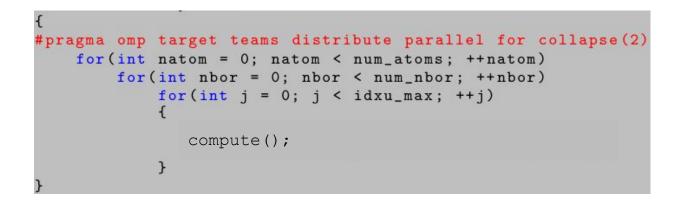
<u>Science</u>

	Result				Time	Cycles I	Regs GPU	S	M Frequency	CC	Process	Ð	Θ
Current	642 - nvkernel_ZN	3SNA10compute_	yiEPd_F1L467_8	(16, 1, 1)x(1	626.22 msecond	688,052,413	96 0 - A100-SXI	M4-40GB 1	10 cycle/nsecon	id 8.0	[15917] test		
GPU Speed C	Of Light Throughput									A	1		~ \$
ompute (SM) 1	Throughput [%]				0.6	Duration [ms	econd]						626.
emory Throug	ahput [%]				12.60	Elapsed Cycl	les [cycle]					68	8,052,4
/TEX Cache T	Throughput [%]				87.29	SM Active C	ycles [cycle]					99,2	97,930
the second s	ighput [%]				3.84	SM Frequence	cy [cycle/nsecond]						1
Cache Throu								a					24 C
AM Throughp	put [%] id This kernel gric			4) performance	0.00 device, resulting in o e on this device is 2 iils on roofline analy	nly 0.0 full wave		Look at Laur		more de ce and c		f its fp64 peak	6
AM Throughp	put [%] id This kernel gric	o of peak float (fp:		4) performance	device, resulting in o e on this device is 2 ills on roofline analy	nly 0.0 full wave	es across all SMs. I	Look at Laur				f its fp64 peak	¢
AM Throughp Small Gri Roofline	put [%] rid This kernel gric Analysis The rati perform	o of peak float (fp:		4) performance	device, resulting in o e on this device is 2 ills on roofline analy	nly 0.0 full wave 1. The kernel ac sis.	es across all SMs. I	Look at Laur				f its fp64 peak	¢
AM Throughp	put [%] id This kernel gric Analysis The rati perform) [%]	o of peak float (fp:		4) performance	device, resulting in o e on this device is 2 ills on roofline analy	nly 0.0 full wave 1. The kernel ac sis.	es across all SMs. I	Look at Laur				if its fp64 peak	1 ©



(1/4)

Science


🕅 BERKELEY LAB

9/30

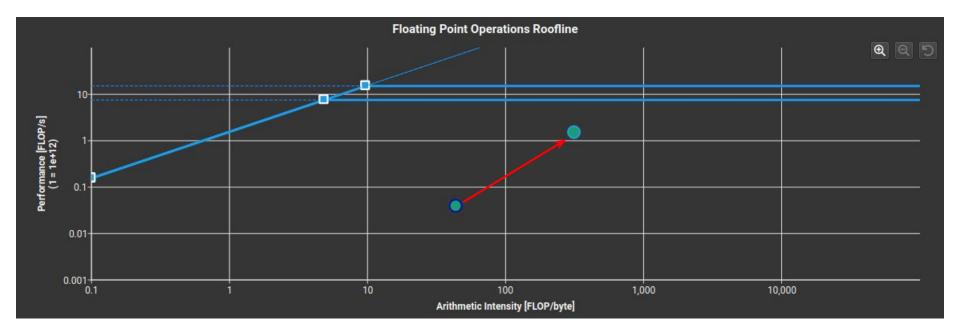
Exploit the ability to collapse nested for loops Case 2: collapse

<u>Grind times:</u> (ms/atm-step)

nvc++ : 0.0342 (9.5x)

7/4)

U.S. DEPARTMENT OF


Office of

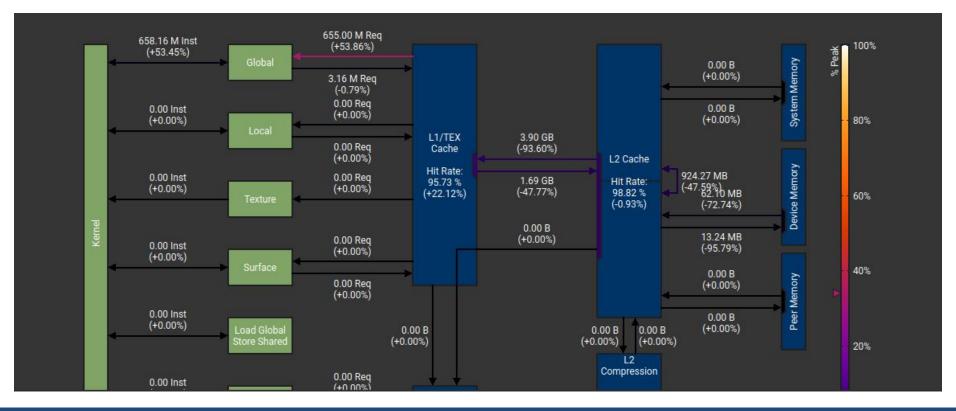
Science

(2/4)

case1.ncu-rep × 💩 case2.ncu-rep × 🔬 case3.ncu-rep × 🔬 case4.ncu-rep *	×									
ge: Details	Add Baseline 💌	Apply <u>R</u> ules	🖬 Occupan	cy Calculator				Сор	y as Im	age 👻
Report Result	Time	Cycles F	Regs GPU		SM Frequency	CC	Process	Ð	Θ	R ()
Current case2 642 - nvkernel_ZN3SNA10compute_yiEPd_F1L467_8 (395	16.20 msecond	17,731,183 9	06 0 - A100)-SXM4-40GB	1.09 cycle/nsecond	d 8.0	[77358] test_snap.exe			
Baseline 1 case1 642 - nvkernel_ZN3SNA10compute_yiEPd_F1L467_8 (16, 1	626.22 msecond	688,052,413	96 0 - A100)-SXM4-40GB	1.10 cycle/nsecond	d 8.0	[15917] test_snap.exe			
							411		<u>۲</u>	D I
Compute (SM) Throughput [%]	40.43 (+6,102.70%)) Duration [ms	econd]				16	5.20 (-97.419	%)
Memory Throughput [%]	96.11 (+662.89%)) Elapsed Cycl	es [cycle]				17,731,	183 (-97.429	%)
.1/TEX Cache Throughput [%]	96.22 (+10.23%)) SM Active Cy	cles [cycle]				17,706,775	5.81 ((-82.179	%)
.2 Cache Throughput [%]	9.32 (+142.96%)) SM Frequenc	y [cycle/nseco	ond]				1.09	(-0.399	%)
	0.30 (+439.22%)) DRAM Freque	1	1				1 01	10 070	
The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads	compute or memory j in the <u>Memory Wor</u>	performance of doad Analysis s	the device. To ection.	further improv			ikely need to be shifted		(-0.379 the	%)
The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads The ratio of peak float (fp32) to double (fp64) performant	compute or memory in the <u>Memory Wor</u> nce on this device is s that this kernel is f rsis.	performance of kload Analysis s 2:1. The kernel p64 bound, cons	the device. To ection. achieved 0% o	further improv f this device's	fp32 peak performa	nce ar	ikely need to be shifted	from	the	%)
 High Throughput The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads The ratio of peak float (fp32) to double (fp64) performance. If Compute Workload Analysis determines 	compute or memory in the <u>Memory Wor</u> nce on this device is s that this kernel is f rsis.	performance of kload Analysis s 2:1. The kernel	the device. To ection. achieved 0% o	further improv f this device's	fp32 peak performa	nce ar	ikely need to be shifted d 19% of its fp64 peak	from	the	*6)
 High Throughput The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads FP64/32 Utilization The ratio of peak float (fp32) to double (fp64) performance. If Compute Workload Analysis determines Kernel Profiling Guide for mode details on roofline analy 	compute or memory in the <u>Memory Wor</u> nce on this device is s that this kernel is f rsis.	performance of kload Analysis s 2:1. The kernel p64 bound, cons	the device. To ection. achieved 0% o	further improv f this device's	fp32 peak performa	nce ar	ikely need to be shifted d 19% of its fp64 peak	from	the	**)
 High Throughput The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads The ratio of peak float (fp32) to double (fp64) performance. If Compute Workload Analysis determines 	compute or memory in the <u>Memory Wor</u> nce on this device is s that this kernel is f rsis.	performance of kload Analysis s 2:1. The kernel p64 bound, cons	the device. To ection. achieved 0% o	further improv f this device's	fp32 peak performa	nce ar	ikely need to be shifted d 19% of its fp64 peak	from	the	*)
 (i) High Throughput The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads ▲ FP64/32 Utilization The ratio of peak float (fp32) to double (fp64) performance. If Compute Workload Analysis determines Kernel Profiling Guide for mode details on roofline analy Compute (SM) [%] 	compute or memory in the <u>Memory Wor</u> nce on this device is s that this kernel is f rsis.	performance of kload Analysis s 2:1. The kernel p64 bound, cons	the device. To ection. achieved 0% o	further improv f this device's	fp32 peak performa	nce ar	ikely need to be shifted d 19% of its fp64 peak	from	the	%)
 High Throughput The kernel is utilizing greater than 80.0% of the available c most utilized to another unit. Start by analyzing workloads FP64/32 Utilization The ratio of peak float (fp32) to double (fp64) performance. If Compute Workload Analysis determines Kernel Profiling Guide for mode details on roofline analy 	compute or memory in the <u>Memory Wor</u> nce on this device is s that this kernel is f rsis.	performance of kload Analysis s 2:1. The kernel p64 bound, cons	the device. To ection. achieved 0% o	further improv f this device's	fp32 peak performa	nce ar	ikely need to be shifted d 19% of its fp64 peak	from	the	%)
 ▲ FP64/32 Utilization Compute (SM) [%] ▲ Gompute (SM) [%] 	ompute or memory is in the Memory Work of the Memory Work of the Memory Work of the State of the	performance of kload Analysis s 2:1. The kernel p64 bound, cons	the device. To ection. achieved 0% o ider using 32-	further improv f this device's bit precision flo	fp32 peak performa	nce ar	ikely need to be shifted id 19% of its fp64 peak improve its performanc	from	the	

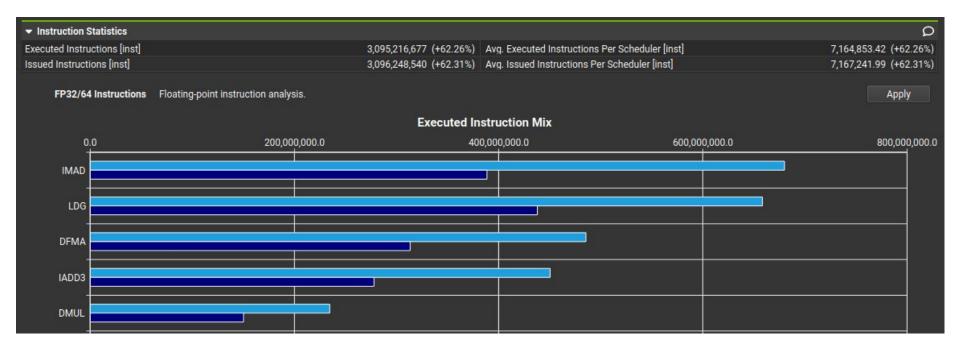
Improvement in AI and Performance due to atom and neighbor loop fusing

2/4)

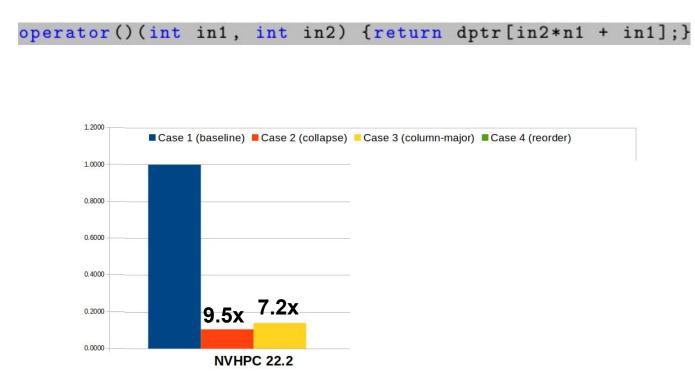


🗢 Compute Workload Analysis						Q
Executed Ipc Elapsed [inst/cycle]	12	1.62 (+6,197.40%)	M Busy [%]			40.48 (+810.22%)
Executed Ipc Active [inst/cycle]		1.62 (+809.91%) I	ssue Slots Busy [%]			40.48 (+810.22%)
Issued Ipc Active [inst/cycle]		1.62 (+810.22%)				
Balanced No pipeline is over-utilized.						
		Pipe Util	ization			
0.0	25.0		50.0	75	5.0	100.0
FP64						
LSU						
FMA						
					2	
ALU						

✓ Memory Workload Analysis			All 🔹 🗘
Memory Throughput [Gbyte/second]	4.65 (+437.23%) Mem B	usy [%]	96.11 (+662.89%)
L1/TEX Hit Rate [%]	95.73 (+22.12%) Max Ba	andwidth [%]	67.65 (+1 <mark>,</mark> 374.25%)
L2 Hit Rate [%]	98.82 (-0.93%) Mem F	ipes Busy [%]	36.19 (+5,451.48%)
L2 Compression Success Rate [%]	0 (+0.00%) L2 Con	npression Ratio	0 (+0.00%)



(2/4)

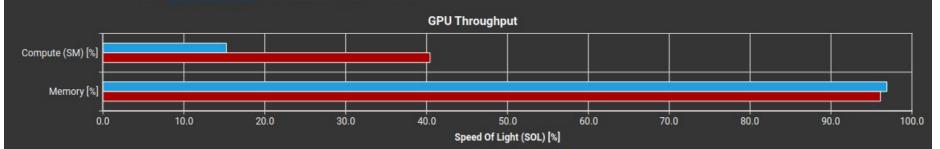


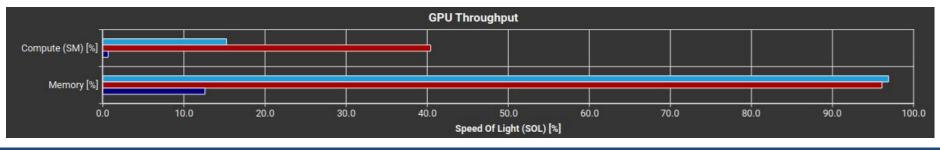
Column major data access: atom loop as fastest moving index causes performance degradation Case 3: column major

<u>Grind times:</u> (ms/atm-step) nvc++ : 0.0457 (7.2x)

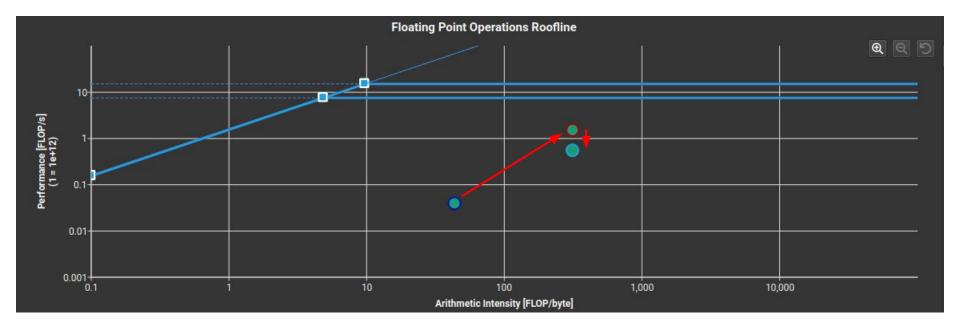
V 4

Office of


Science

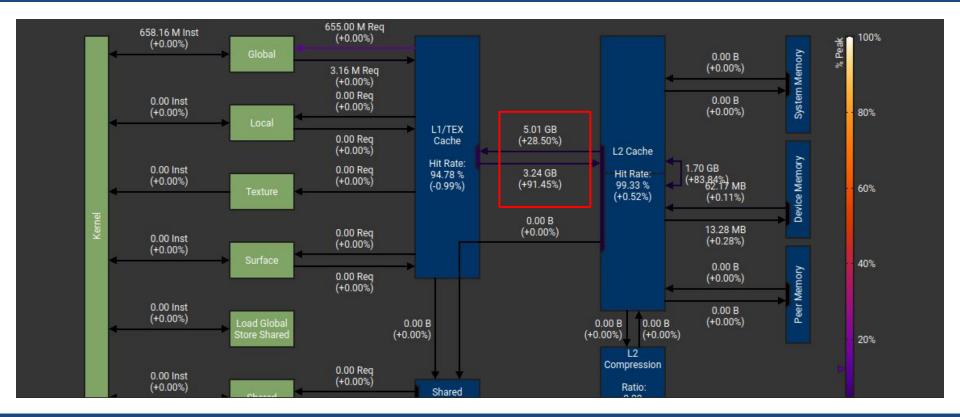

U.S. DEPARTMENT OF

			41	* Q
• GPO Speed Of Light Throughput			All	
Compute (SM) Throughput [%]	15.25 (-62.27%)	Duration [msecond]		44.74 (+176.22%)
Memory Throughput [%]	96.91 (+0.83%)	Elapsed Cycles [cycle]	49,	008,184 (+176.40%)
L1/TEX Cache Throughput [%]	97.04 (+0.85%)	SM Active Cycles [cycle]	48,940	,936.17 (+176.40%)
L2 Cache Throughput [%]	6.88 (-26.17%)	SM Frequency [cycle/nsecond]		1.10 (+0.08%)
DRAM Throughput [%]	0.11 (-63.77%)	DRAM Frequency [cycle/nsecond]		1.22 (+0.06%)



BERKELEY LAB

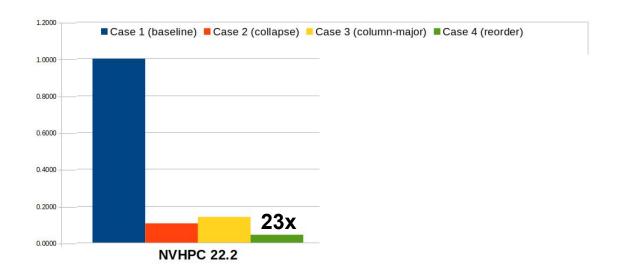
17/30



(3/4)

BERKELEY LAB

19/30

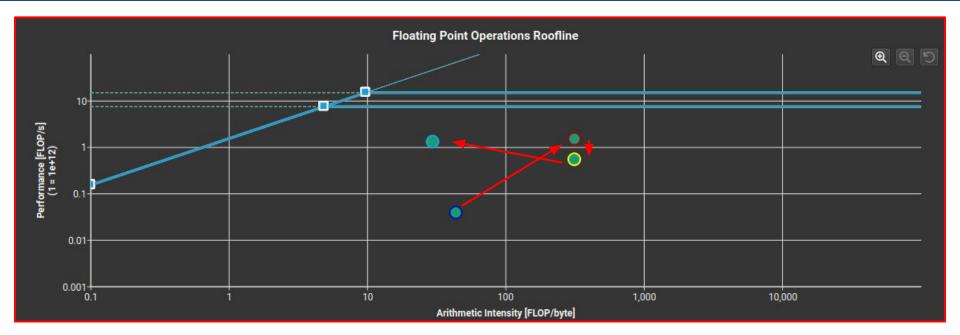


(3/4)

Make atom loop (fastest moving index) as inner most loop Case 4: reorder loop

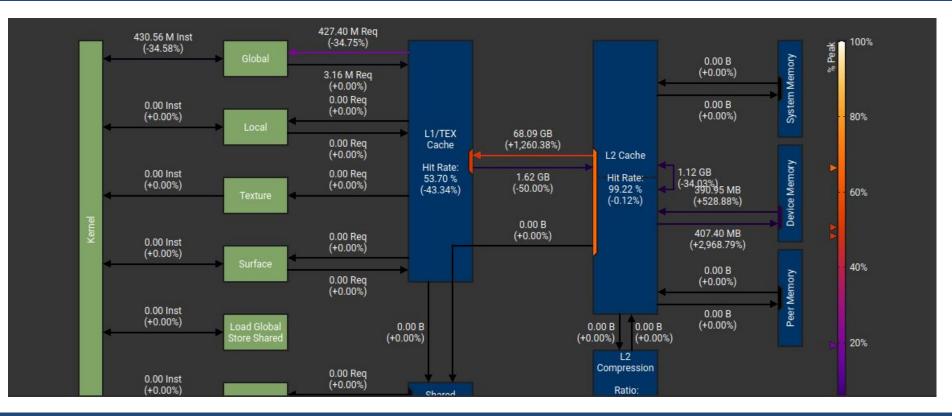
Grind times: (ms/atm-step) nvc++ : 0.0139 (23x) #pragma omp target teams distribute parallel for collapse(2)
for(int nbor = 0; nbor < num_nbor; ++nbor)
for(int natom = 0: nbor < num atom: ++natom)
for(int j = 0; j < idxu_max; ++j)</pre>

20/30


▼ GPU Speed Of Light Throughput				All		Q +
Compute (SM) Throughput [%]	25.43 (+66.74%)	Duration [msecond]			18.5	7 (-58.50%)
Memory Throughput [%]	69.18 (-28.61%) Elapsed Cycles [cycle]				20,332,81	5 (-58.51%)
L1/TEX Cache Throughput [%]	64.42 (-33.62%) SM Active Cycles [cycle]				20,296,451.84	4 (-58.53%)
L2 Cache Throughput [%]	69.18 (+905.27%)	SM Frequency [cycle/nsecond]				0 (-0.03%)
DRAM Throughput [%]	2.76 (+2,450.66%)	DRAM Frequency [cycle/nsecond]			1.2	2 (-0.03%)
	GPU TI	nroughput				
Compute (SM) [%]						
Memory [%]						
			1			_
0.0 10.0 20.0	30.0 40.0	50.0 60.0	70.0	80.0	90.0	100.0
	Sp	eed Of Light (SOL) [%]		102058		
2	GPU TI	nroughput				
Compute (SM) [%]						
Memory [%]	1					
0.0 10.0 20.0	30.0 40.0	50.0 60.0	70.0	80.0	90.0	100.0
0.0 10.0 20.0		eed Of Light (SOL) [%]	/0.0	00.0	50.0	100.0

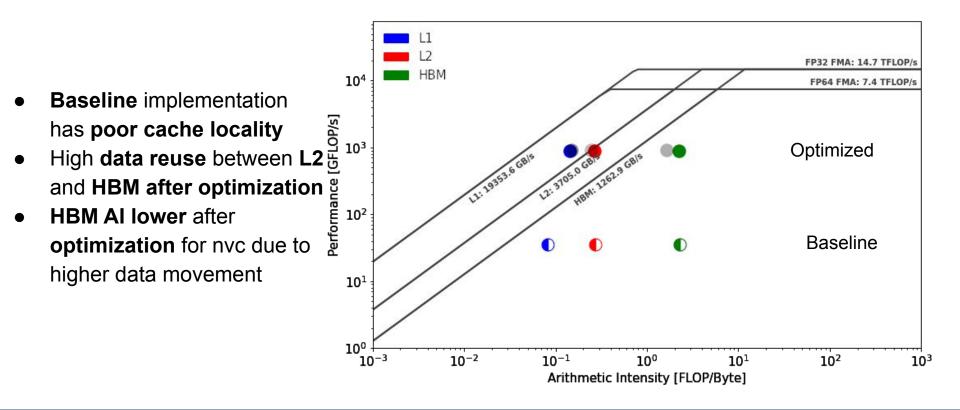
BERKELEY LAB

21/30



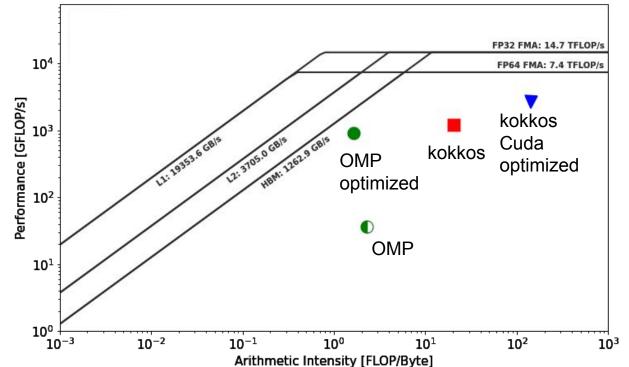
23/30

(4/4)



Kernel optimization: Hierarchical roofline

Office of

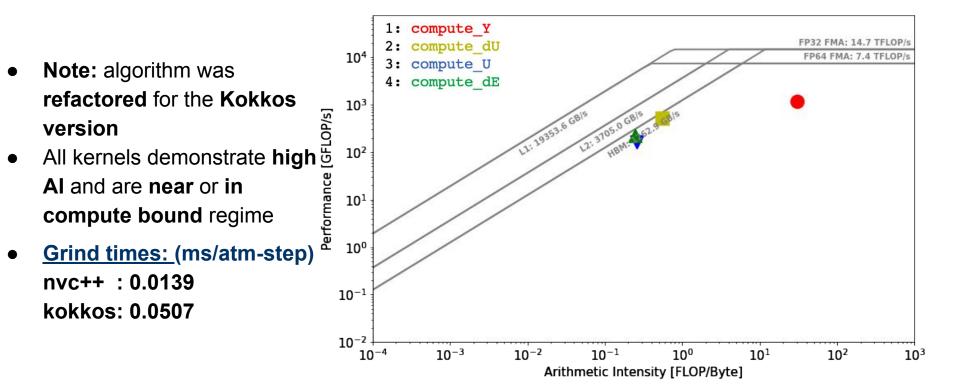

Science

U.S. DEPARTMENT OF

ER

Comparing across APIs

- Versatile tool capable of comparing across APIs
- Al improvements can come from better data management as well as algorithm optimization
- Optimization in the form of better scratch memory usage by Evan Weinberg (NVIDIA) and Rahul Gayatri (NERSC)


Office of

Science

DEPARTMENT OF

Kokkos OMP target vs Native

(1/3)

Office of

Science

U.S. DEPARTMENT OF

ER

Kokkos OMP target vs Native

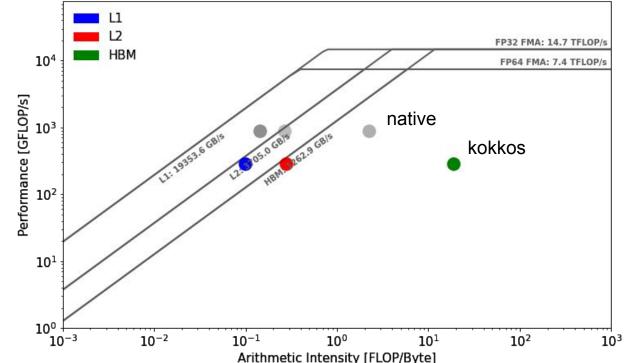
U.S. DEPARTMENT OF

Office of

➡ GPU Speed Of Light Throughput			Al	Ω - Ω
Compute (SM) Throughput [%]	7.39 (-70.67%)	Duration [msecond]		82.99 (+340.07%)
Memory Throughput [%]	96.84 (+40.80%)	Elapsed Cycles [cycle]		90,875,840 (+342.81%)
L1/TEX Cache Throughput [%]	97.04 (+52.92%)	SM Active Cycles [cycle]		90,685,289.43 (+340.17%)
L2 Cache Throughput [%]	42.95 (-37.55%)	SM Frequency [cycle/nsecond]		1.10 (+0.62%)
DRAM Throughput [%]	0.69 (-75.01%)	DRAM Frequency [cycle/nsecond]		1.22 (+0.62%)
Compute (SM) [%]		hroughput		
Memory [/a]				
0.0 10.0 20.0	30.0 40.0 s i	50.0 60.0 beed Of Light (SOL) [%]	70.0 80.0	90.0 100.0

- Blue: kokkos omp target backend, Orange: nvc(baseline)
- SOL: native openmp target (nvc) has higher SM % but Kokkos has less memory throughput % utilization at L2 and DRAm levels
- Kokkos has a lot higher instruction count compared to native

Kokkos OMP target vs Native


(3/3)

U.S. DEPARTMENT OF

Office of

Science

- Higher reuse between
 HBM and L2 for kokkos
 code but performance is
 lower
- Higher AI does not always mean higher performance

Conclusions

- Roofline analysis can provide compute and memory efficiency of the code
- Analysis can be performed without intrusive code changes

For Users:

- Researchers can choose better combinations of architectures and compilers based on accuracy, speed, as well as efficiency
- Rooflines helpful when **optimizing the code**

For Developers:

- Algorithm developers can demonstrate platform performance portability
- Although rooflines do not provide complete picture, can help determine architecture-dependent compiler-optimization roadblocks

Acknowledgement

Dr. Rahul Gayatri

Dr. Aidan Thompson

Dr. Danny Perez

I would like to thank **Evan Weinberg (NVIDIA)** for his immense contribution in optimizing the TestSNAP code

Thank you!

