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● LAMMPS developed under the auspices of DOE and multi-lab collaboration
● Beneficiary of Exa-scale Computing Project (ECP). Under ECP umbrella project EXAALT

For Users: 
● Efficiency matters, 

less resources required
● Better optimization of application on

compute resources (GPU vs CPU)

For Developers: 
● Performance portability independent of problem size
● Better compiler design feedback
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Methodology to generate rooflines

 2/30

Obtaining roofline ceilings
● Using empirical values from Empirical Roofline Toolkit 

(https://bitbucket.org/berkeleylab/cs-roofline-toolkit/) 

Obtaining kernel specific roofline data
● Using Nsight Compute 
● Using custom scripts (https://gitlab.com/NERSC/roofline-on-nvidia-gpus/) 

Obtaining application data
● Measure three quantities: time, FLOPs, and data movement (bytes)
● Calculate:

*https://www.nersc.gov/assets/Uploads/RooflineHack-2020-mechanism-v2.pdf

Arithmetic Intensity
(FLOPs/byte)

FLOPs
data movement=

Performance
(GFLOP/s) =

FLOPs

time

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://gitlab.com/NERSC/roofline-on-nvidia-gpus/
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Collecting roofline metrics using NCU          (1/2)
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Time
● sm__cycles_elapsed.avg
● sm__cycles_elapsed.avg.per_second

Memory
● dram__bytes.sum
● lts__t_bytes.sum
● l1tex__t_bytes.sum

Accumulate code runtime

Accumulate L1, L2, and DRAM 
memory transfers
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Collecting roofline metrics using NCU          (2/2)
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Compute measurements

● sm__sass_thread_inst_executed_op_dadd_pred_on.sum
● sm__sass_thread_inst_executed_op_dmul_pred_on.sum
● sm__sass_thread_inst_executed_op_dfma_pred_on.sum

Double precision

● sm__sass_thread_inst_executed_op_fadd_pred_on.sum
● sm__sass_thread_inst_executed_op_fmul_pred_on.sum
● sm__sass_thread_inst_executed_op_ffma_pred_on.sum

Single precision

● sm__sass_thread_inst_executed_op_hadd_pred_on.sum
● sm__sass_thread_inst_executed_op_hmul_pred_on.sum
● sm__sass_thread_inst_executed_op_hfma_pred_on.sum

Half precision

Accumulate add, mul, and
fused add mul instructions
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● TestSNAP proxy app mimics 
computational load of 
LAMMPS SNAP

● Four dominant kernels
● Number of atoms: 2000
● Number of steps: 100
● Profiling on NVIDIA A100

$ ssh -Y username@perlmutter-p1.nersc.gov
$ cd $SCRATCH
$ git clone https://github.com/FitSNAP/TestSNAP.git
$ git checkout OpenMP4.5
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Kernel optimization for OpenMP                     (1/4)
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 Arrays created using 
classes that include 
pointer to contiguous 
block of memory 

 Case 1: baseline

Grind times: 
(ms/atm-step)

nvc++ : 0.321

compute();

$ salloc -C gpu -t 240 -c 10 -G 1 -q regular -A <project>
$ module load nvhpc/22.2 (module load cuda/11.3.0)
$ ncu -o profile_snap --set full ./testsnap.exe -ns 100
$ ncu-ui profile_snap.ncu-rep
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Kernel optimization for OpenMP                     (1/4)
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Kernel optimization for OpenMP                     (1/4)
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Kernel optimization for OpenMP                     (1/4)
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L1 L2 HBM
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Kernel optimization for OpenMP                     (2/4)
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 Exploit the ability to 
collapse nested for 
loops

 Case 2: collapse

Grind times: 
(ms/atm-step)

nvc++  : 0.0342 (9.5x)

compute();
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Kernel optimization for OpenMP                     (2/4)
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Kernel optimization for OpenMP                     (2/4)
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● Improvement in AI and Performance due to atom and neighbor loop fusing
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Kernel optimization for OpenMP                     (2/4)
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Kernel optimization for OpenMP                     (2/4)
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Kernel optimization for OpenMP                     (2/4)
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Kernel optimization for OpenMP                     (3/4)
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 Column major data 
access: atom loop as 
fastest moving index 
causes performance 
degradation

 Case 3: column major

Grind times: 
(ms/atm-step)

nvc++  : 0.0457 (7.2x) 9.5x 7.2x
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Kernel optimization for OpenMP                     (3/4)
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Kernel optimization for OpenMP                     (3/4)
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Kernel optimization for OpenMP                     (3/4)
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Kernel optimization for OpenMP                     (4/4)

23x
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 Make atom loop 
(fastest moving index) 
as inner most loop

 Case 4: reorder loop

Grind times: 
(ms/atm-step)

nvc++ : 0.0139 (23x)



BERKELEY LAB Office of
Science

Kernel optimization for OpenMP                     (4/4)
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Kernel optimization for OpenMP                     (4/4)
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Kernel optimization for OpenMP                     (4/4)
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Kernel optimization for OpenMP                     (4/4)
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Kernel optimization: Hierarchical roofline  
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● Baseline implementation 
has poor cache locality

● High data reuse between L2 
and HBM after optimization

● HBM AI lower after 
optimization for nvc due to 
higher data movement 

Baseline

Optimized
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Comparing across APIs  

26/30

● Versatile tool capable of 
comparing across APIs

● AI improvements can 
come from better data 
management as well as 
algorithm optimization 

● Optimization in the form of 
better scratch memory 
usage by Evan Weinberg 
(NVIDIA) and Rahul 
Gayatri (NERSC)

OMP
optimized

kokkos

kokkos 
Cuda 
optimized

OMP
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● Note: algorithm was 
refactored for the Kokkos 
version

● All kernels demonstrate high 
AI and are near or in 
compute bound regime

● Grind times: (ms/atm-step)
nvc++  : 0.0139 
kokkos: 0.0507

Kokkos OMP target vs Native                          (1/3)  

1: compute_Y
2: compute_dE
3: compute_U
4: compute_CK
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● Blue: kokkos omp target backend,  Orange: nvc(baseline)
● SOL: native openmp target (nvc) has higher SM % but Kokkos has less memory 

throughput % utilization at L2 and DRAm levels
● Kokkos has a lot higher instruction count compared to native

Kokkos OMP target vs Native                          (2/3)  



BERKELEY LAB Office of
Science29/30

● Higher reuse between 
HBM and L2 for kokkos 
code but performance is 
lower

● Higher AI does not always 
mean higher performance

kokkos
native

Kokkos OMP target vs Native                          (3/3)  
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● Roofline analysis can provide compute and memory efficiency of the code
● Analysis can be performed without intrusive code changes 

For Users:
● Researchers can choose better combinations of architectures and compilers based on 

accuracy, speed, as well as efficiency
● Rooflines helpful when optimizing the code

For Developers:
● Algorithm developers can demonstrate platform performance portability
● Although rooflines do not provide complete picture, can help determine 

architecture-dependent compiler-optimization roadblocks
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Thank you!


