
BERKELEY LAB Office of
Science1

Neil Mehta
Performance Engineer
NERSC

ECP 2022

BERKELEY LAB Office of
Science

Motivation for targeting MD code

1/30

● LAMMPS developed under the auspices of DOE and multi-lab collaboration
● Beneficiary of Exa-scale Computing Project (ECP). Under ECP umbrella project EXAALT

For Users:
● Efficiency matters,

less resources required
● Better optimization of application on

compute resources (GPU vs CPU)

For Developers:
● Performance portability independent of problem size
● Better compiler design feedback

BERKELEY LAB Office of
Science

Methodology to generate rooflines

 2/30

Obtaining roofline ceilings
● Using empirical values from Empirical Roofline Toolkit

(https://bitbucket.org/berkeleylab/cs-roofline-toolkit/)

Obtaining kernel specific roofline data
● Using Nsight Compute
● Using custom scripts (https://gitlab.com/NERSC/roofline-on-nvidia-gpus/)

Obtaining application data
● Measure three quantities: time, FLOPs, and data movement (bytes)
● Calculate:

*https://www.nersc.gov/assets/Uploads/RooflineHack-2020-mechanism-v2.pdf

Arithmetic Intensity
(FLOPs/byte)

FLOPs
data movement=

Performance
(GFLOP/s) =

FLOPs

time

https://bitbucket.org/berkeleylab/cs-roofline-toolkit/
https://gitlab.com/NERSC/roofline-on-nvidia-gpus/

BERKELEY LAB Office of
Science

Collecting roofline metrics using NCU (1/2)

3/30

Time
● sm__cycles_elapsed.avg
● sm__cycles_elapsed.avg.per_second

Memory
● dram__bytes.sum
● lts__t_bytes.sum
● l1tex__t_bytes.sum

Accumulate code runtime

Accumulate L1, L2, and DRAM
memory transfers

BERKELEY LAB Office of
Science

Collecting roofline metrics using NCU (2/2)

 4/30

Compute measurements

● sm__sass_thread_inst_executed_op_dadd_pred_on.sum
● sm__sass_thread_inst_executed_op_dmul_pred_on.sum
● sm__sass_thread_inst_executed_op_dfma_pred_on.sum

Double precision

● sm__sass_thread_inst_executed_op_fadd_pred_on.sum
● sm__sass_thread_inst_executed_op_fmul_pred_on.sum
● sm__sass_thread_inst_executed_op_ffma_pred_on.sum

Single precision

● sm__sass_thread_inst_executed_op_hadd_pred_on.sum
● sm__sass_thread_inst_executed_op_hmul_pred_on.sum
● sm__sass_thread_inst_executed_op_hfma_pred_on.sum

Half precision

Accumulate add, mul, and
fused add mul instructions

BERKELEY LAB Office of
Science

Introduction to TestSNAP

5/30

● TestSNAP proxy app mimics
computational load of
LAMMPS SNAP

● Four dominant kernels
● Number of atoms: 2000
● Number of steps: 100
● Profiling on NVIDIA A100

$ ssh -Y username@perlmutter-p1.nersc.gov
$ cd $SCRATCH
$ git clone https://github.com/FitSNAP/TestSNAP.git
$ git checkout OpenMP4.5

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (1/4)

 6/30

 Arrays created using
classes that include
pointer to contiguous
block of memory

 Case 1: baseline

Grind times:
(ms/atm-step)

nvc++ : 0.321

compute();

$ salloc -C gpu -t 240 -c 10 -G 1 -q regular -A <project>
$ module load nvhpc/22.2 (module load cuda/11.3.0)
$ ncu -o profile_snap --set full ./testsnap.exe -ns 100
$ ncu-ui profile_snap.ncu-rep

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (1/4)

 7/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (1/4)

 8/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (1/4)

 9/30

L1 L2 HBM

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (2/4)

 10/30

 Exploit the ability to
collapse nested for
loops

 Case 2: collapse

Grind times:
(ms/atm-step)

nvc++ : 0.0342 (9.5x)

compute();

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (2/4)

 11/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (2/4)

 12/30

● Improvement in AI and Performance due to atom and neighbor loop fusing

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (2/4)

 13/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (2/4)

 14/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (2/4)

 15/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (3/4)

 16/30

 Column major data
access: atom loop as
fastest moving index
causes performance
degradation

 Case 3: column major

Grind times:
(ms/atm-step)

nvc++ : 0.0457 (7.2x) 9.5x 7.2x

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (3/4)

 17/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (3/4)

 18/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (3/4)

 19/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (4/4)

23x

 20/30

 Make atom loop
(fastest moving index)
as inner most loop

 Case 4: reorder loop

Grind times:
(ms/atm-step)

nvc++ : 0.0139 (23x)

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (4/4)

 21/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (4/4)

 22/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (4/4)

 23/30

BERKELEY LAB Office of
Science

Kernel optimization for OpenMP (4/4)

 24/30

BERKELEY LAB Office of
Science

Kernel optimization: Hierarchical roofline

25/30

● Baseline implementation
has poor cache locality

● High data reuse between L2
and HBM after optimization

● HBM AI lower after
optimization for nvc due to
higher data movement

Baseline

Optimized

BERKELEY LAB Office of
Science

Comparing across APIs

26/30

● Versatile tool capable of
comparing across APIs

● AI improvements can
come from better data
management as well as
algorithm optimization

● Optimization in the form of
better scratch memory
usage by Evan Weinberg
(NVIDIA) and Rahul
Gayatri (NERSC)

OMP
optimized

kokkos

kokkos
Cuda
optimized

OMP

BERKELEY LAB Office of
Science27/30

● Note: algorithm was
refactored for the Kokkos
version

● All kernels demonstrate high
AI and are near or in
compute bound regime

● Grind times: (ms/atm-step)
nvc++ : 0.0139
kokkos: 0.0507

Kokkos OMP target vs Native (1/3)

1: compute_Y
2: compute_dE
3: compute_U
4: compute_CK

BERKELEY LAB Office of
Science28/30

● Blue: kokkos omp target backend, Orange: nvc(baseline)
● SOL: native openmp target (nvc) has higher SM % but Kokkos has less memory

throughput % utilization at L2 and DRAm levels
● Kokkos has a lot higher instruction count compared to native

Kokkos OMP target vs Native (2/3)

BERKELEY LAB Office of
Science29/30

● Higher reuse between
HBM and L2 for kokkos
code but performance is
lower

● Higher AI does not always
mean higher performance

kokkos
native

Kokkos OMP target vs Native (3/3)

BERKELEY LAB Office of
Science

Conclusions

30/30

● Roofline analysis can provide compute and memory efficiency of the code
● Analysis can be performed without intrusive code changes

For Users:
● Researchers can choose better combinations of architectures and compilers based on

accuracy, speed, as well as efficiency
● Rooflines helpful when optimizing the code

For Developers:
● Algorithm developers can demonstrate platform performance portability
● Although rooflines do not provide complete picture, can help determine

architecture-dependent compiler-optimization roadblocks

BERKELEY LAB Office of
Science

Acknowledgement

I would like to thank Evan Weinberg (NVIDIA) for his immense contribution in optimizing the
TestSNAP code

Dr. Rahul Gayatri Dr. Aidan Thompson Dr. Danny Perez

BERKELEY LAB Office of
Science

Thank you!

