
1

Roofline Instrumentation
with Timemory

ECP 2021 Roofline Tutorial
Contact: jrmadsen@lbl.gov

Jonathan R. Madsen, Ph.D.
NERSC Application Performance

April 13, 2021

2

Scenario #1

• Developer opens a merge-request with the bug fix and…

• … adds new test which verifies the bug has been fixed!

• Why?

• The test is not for the MR specifically → it is added to help ensure
subsequent commits do not re-introduce the bug!

• Software bug is found (e.g. wrong answer, seg-fault, etc.)

• Developer spends hours to days tracking it down and fixes it

• What usually happens now?

3

Scenario #2

• Developer opens a merge-request with the optimizations and…

• … assume subsequent commits will retain performance via comment:
// DO NOT MODIFY THIS BLOCK OF CODE!
// This [ugly] code is highly optimized for <insert architecture>
// Improvement was <blah> vs. <blah>
// <possibly insert detailed explanation>
//
// <name and date>

• Developer(s) attend performance optimization hackathon

• Developer(s) spend days profiling code and improving the roofline

• What usually happens now?

4

Scenario #2 (cont.)
• Why don’t developers write performance tests with same regularity?

• Three part theory:

1. Easy-to-implement performance metrics (e.g. timers) are unreliable
→ too many variables with respect to hardware

2. Advanced metrics (e.g. HW counters) are far more difficult to collect
and tailor the API configurations per-test (e.g. perf, CUpti, etc.)

3. Tools which have the capability to simplify #2 are rarely designed for
in-situ programmatic data access

5

Pursuing a Solution to Scenario #2

• Performance analysis tools like Advisor, Nsight-Systems,
Nsight-Compute, etc. were extremely useful to original
optimization but provide no useful means for maintaining
that performance via automation

• We need a toolkit which:
o Provides advanced metrics as easy to use as timers
o Fully configurable and customizable to testing needs
o Recognizes it is auxiliary code, not fundamental code

6

Fundamental vs. Auxiliary Code

• Fundamental: code implementing the purpose of the
application

• Auxiliary: important or useful code additions which are not
critical to accomplishing the purpose of application
o i.e. safety checks, log messages, performance analysis,

check-pointing, etc.
• Developers usually have limits w.r.t. their willingness to

maintain auxiliary code
o Auxiliary performance-analysis code tends to strain these limits

7

Issues with Auxiliary Performance Analysis Code

• Difficult to resolve build or linking failures
o Global install of 3rd-party dependency built with incompatible X
o Tool uses X which interferes with my use of X

• Plethora of macros to handle minor API variations

8

Timemory Toolkit

• Timemory provides a way to manage auxiliary code
o Trivially extendable and composable
o Handles any valid C or C++ data-type
o Provides modular and reusable performance components which

can be customized for any given scenario, e.g. the “roofline test”
• github.com/NERSC/timemory
• timemory.readthedocs.io

o Roofline components
o Getting Started with Roofline

https://github.com/NERSC/timemory
https://timemory.readthedocs.io/en/develop/
https://timemory.readthedocs.io/en/develop/components/roofline.html
https://timemory.readthedocs.io/en/develop/getting_started/roofline.html

9

Timemory Design

• Strong focus on reusability and data locality
namespace tim::component {
struct inst_per_cycle : public base<inst_per_cycle> {
 tim::component::papi_tuple<PAPI_TOT_INS, PAPI_TOT_CYC> m_hw;

 void start() { m_hw.start(); }
 void stop() { m_hw.stop(); }
 double get() const { return m_hw.get()[0] / m_hw.get()[1]; }
};
} // namespace tim::component

10

Timemory Design (cont.)

• Too much to cover in this presentation
• The next two Mondays (April 19th and April 26th), there is

a timemory ECP tutorial
o www.exascaleproject.org/event/timemory/
o First day will cover pre-built tools

• Built-in roofline capabilities will be covered here
o Second day will cover the toolkit design

• Customizing roofline capabilities will be covered here
o Tutorial content is at github.com/NERSC/timemory-tutorials

• Following conclusion of tutorial, will be tagged as ecp2021

https://www.exascaleproject.org/event/timemory/
https://www.github.com/NERSC/timemory-tutorials

11

Roofline Instrumentation with Timemory Benefits

• Ability to collect roofline at scale
• Single tool for CPU and GPU roofline generation

o Supports instruction roofline on the GPU
• No complicated script commands
• Empirical roofline peaks on GPU

o Nsight uses theoretical peaks
• Multiple Instrumentation Options

o Dynamic instrumentation, Source instrumentation
• Customize data output format

12

Roofline Capabilities

• HW counter components for PAPI and CUpti
o Essentially as easy to use as timer components
o More backends are planned (LIKWID, perf, etc.)

• Roofline components implement something quite similar to
previous slide
o CPU roofline components combine a PAPI and wall-clock timer components
o GPU roofline components combine two CUpti APIs for HW counters and

kernel runtimes
• Built-in empirical roofline toolkit (ERT)

o Extensively customizable

13

Empirical Roofline Toolkit
• Configuration Customization

o Minimum working size
o Max data size
o Number of threads
o Number of streams (GPU)
o Grid size (GPU)
o Block size (GPU)
o Data alignment

• Executor Customization
o Labels
o Target device
o Store function
o Operation function
o Explicit vectorization unrolling
o Bytes-per-element
o Memory-accesses-per-element

14

ERT Executor Customization

// store function executed in peak calc
auto store = []

(Tp& a, const Tp& b)
{ a = b; };

// operation function executed in peak calc
auto fma = []

(Tp& a, const Tp& b, const Tp& c)
{ a = a * b + c; };

_counter.bytes_per_element = sizeof(Tp);
_counter.memory_accesses_per_element = 2;

return ops_main<Flops/2, Flops, ...>(
_counter, fma, store);

• “store” and “fma” are the functions
used to calculate the “roof” of the
roofline

• Tp is the templated data type
o E.g. Tp == float

• Flops is the vectorization width,
e.g. 512 for AVX-512

• Counter holds the ERT results
• For testing purposes, you can

customize these functions to
target a simplified or idealized
version of your algorithm

15

Roofline Instrumentation

• “timemory-run” provides dynamic instrumentation
• Dynamic function wrapping allows you build “plug-in”

libraries which you can activate and deactivate

using roofline_t = tim::component_tuple<cpu_roofline, gpu_roofline>;
using roofline_bundle_t = tim::component::gotcha<2, roofline_t>;

double myfunc(const std::vector<double>&);

TIMEMORY_C_GOTCHA(roofline_bundle_t, 0, MPI_Allreduce)
TIMEMORY_CXX_GOTCHA(roofline_bundle_t, 1, myfunc)

16

Roofline Instrumentation (C/C++/Fortran)

• Sample using library API
• When HW counter

capabilities are enabled,
CPU roofline will always be
collected

void spam()
{
 timemory_set_default("wall_clock, cpu_roofline");
 timemory_push_region("spam");

 foo();
 bar();

 timemory_pop_region("spam");
}

17

Roofline Instrumentation (C/C++/Fortran)
• Sample using library API
• When BENCHMARK is

defined:
o CPU roofline

measurements in
"benchmark" region

o Wall-clock measurements
in both "main" and
"benchmark" regions

• Data access available but
not demonstrated

void spam()
{
 timemory_set_default("wall_clock");
 timemory_push_region("spam");

#ifdef BENCHMARK
 timemory_add_components("cpu_roofline_flops");
 timemory_push_region("benchmark");
#endif

 foo();
 bar();

#ifdef BENCHMARK
 timemory_pop_region("benchmark");
 timemory_remove_components("cpu_roofline_flops");
#endif

 timemory_pop_region("spam");
}

18

Roofline Instrumentation (Python)

• Sample using Python API
• When HW counter

capabilities are enabled,
CPU roofline will always be
collected

import os

import timemory

@timemory.util.marker(["wall_clock", "cpu_roofline")

def spam():

 foo()

 bar()

19

Roofline Instrumentation (Python)
• Sample using Python APIs
• Same metric collection as

previous slide
• Push/pop create global storage

entries
• “roof” variable provides direct

access to the measurement
data

• Partial ERT customization
available; full customization
pending JIT support

import os

import timemory

@timemory.util.marker(["wall_clock"])

def spam():

 roof = None

 if os.environ.get("BENCHMARK", None):

 from timemory.component import CpuRooflineFlops

 roof = CpuRooflineFlops("benchmark")

 roof.push().start()

 foo()

 bar()

 if roof is not None:

 roof.stop().pop()

20

Roofline Instrumentation (C++ Template API)
• Sample using C++ API

TIMEMORY_DEFINE_API(benchmark)

#if !defined(BENCHMARK)
TIMEMORY_DEFINE_CONCRETE_TRAIT(
 is_available,
 api::benchmark,
 false_type)
#endif

• benchmark_t types will get “optimized”
out of application when unavailable
o Join Day 2 of the timemory ECP

tutorial for a more detailed
explanation

using benchmark_t = tim::component_bundle<
 tim::api::benchmark,
 tim::component::wall_clock,
 tim::component::cpu_roofline_flops,
 tim::quirk::auto_start>;

void spam()
{
 benchmark_t _bm{ "spam" };
 foo();
 bar();
}

