


Edison (“Ivy Bridge):
● 5576 nodes
● 24 physical cores per node
● 48 virtual cores per node
● 2.4 - 3.2 GHz

● 8 double precision ops/cycle 

● 64 GB of DDR3 memory (2.5 GB per 
physical core)

● ~100 GB/s Memory Bandwidth

Cori (“Knights Landing”):
● 9304 nodes
● 68 physical cores per node
● 272 virtual cores per node
● 1.4 - 1.6 GHz

● 32 double precision ops/cycle

● 16 GB of fast memory
         96GB of DDR4 memory

● Fast memory has 400 - 500 GB/s
● No L3 Cache
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Science teams need a simple way to wrap their heads around performance when 
main focus is scientific productivity:

1. Need a sense of absolute performance when optimizing applications.
- How Do I know if My Performance is Good? 
- Why am I not getting peak performance advertised
- How Do I know when to stop? 

2. Many potential optimization directions:
- How do I know which to apply? 
- What is the limiting factor in my app’s performance?
- Again, how do I know when to stop? 







Run Example in 
“Half Packed” 

Mode

 aprun -n 24 -N 12 - S 6 ... VS  aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do use 
has access to more bandwidth 

If your performance changes, you are at least partially memory bandwidth bound

srun -N 2 -n 24 -c 2 - S 6 ... VS srun -N 1 -n 24 -c 1 ...



aprun --p-state=2400000 ... VS aprun --p-state=1900000 ...

Reducing the CPU speed slows down computation, but doesn’t reduce 
memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example 
at “Half Clock” 

Speed

srun --cpu-freq=2400000 ... VS srun --cpu-freq=1900000 ...



Tools CoDesign 

Intel Vector-Advisor Co-Design - Collaboration between NERSC, LBNL Computational Research, Intel



Example: WARP (Accelerator Modeling)

● Particle in Cell (PIC) Applicaion for doing accelerator modeling and 
related applications.

● Example Science: Generation of high-frequency attosecond pulses 
is considered as one of the best candidates for the next generation 
of attosecond light sources for ultrafast science.

Animation from Plasma Mirror Simulations



Roofline helps visualize this information! 
Guides optimizations

WARP Optimizations:
1. Add tiling over grid targeting L2 cache on both Xeon-Phi Systems

2. Add particle sorting to further improve locality and memory access pattern

3. Apply vectorization over particles 





Optimization process Sigma code:

1. Add OpenMP
2. Initial Vectorization (loop 

reordering, conditional removal)
3. Cache-Blocking
4. Improved Vectorization (Divides)
5. Hyper-threading



ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for vectorization. 

Original inner loop. 
Too small to vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.

!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown
    ...
    do iw=1,nfreq ! nfreq is 3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff
        ...
        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
        scht = scht + scha(ig)

      enddo ! loop over g
      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo   

    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo





Without blocking we spill out of L2 on 
KNL and Haswell. But, Haswell has L3 
to catch us.



Without blocking we spill out of L2 on 
KNL and Haswell. But, Haswell has L3 
to catch us.





Original Code                                                                                                    Cache-Blocking Code







Gather 
Fields from 

Mesh to 
Ions

Ion Push

Collision 
Operator

Deposit 
Charge 
From 

Particles to 
Mesh

Solve 
Fields on 

Mesh

*Computation
*Mapping

~50x
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      Force Calculation
      Interpolate
      Search

Marker size ~= CPU time

Data collected with Intel Advisor and 
analyzed with pyAdvisor.

Single thread rooflines on Cori KNL.



efield(j,tri(i,itri(iv)))

LOOP BEGIN at interpolate_aos.F90(67,48)
reference itri(iv) has unaligned access 
reference y(iv,1) has unaligned access
reference y(iv,3) has unaligned access 
reference evec(iv,icomp) has unaligned access
reference evec(iv,icomp) has unaligned access
…..
irregularly indexed load was generated for the 
variable <grid_mapping_(1,3,itri(iv))>, 64-bit 
indexed, part of index is read from memory
…..

LOOP WAS VECTORIZED
unmasked unaligned unit stride loads: 6
unmasked unaligned unit stride stores: 3
unmasked indexed (or gather) loads: 18
…..





Baseline Case (w/ Indirect access)

Replace Indirect Access with Scalar Access

Optimize Vector Length

Access Grid Data in Scalar Chunks

• Kernel moved to a more compute bound 
regime.

• AI increased due to memory access 
pattern change.

• Peak compute performance is nearly 
reached.

Scalar add peak

Vector add peak

Vector FMA peak



Baseline Case

Force SIMD Vectorization

Eliminate Multiple Exits

• Vector report, dependency report

• Eliminate multiple exits, ‘cycle’, and 
RAW (read after write) dependency 

• Force SIMD vectorization with omp 
simd

Scalar add peak

Vector add peak

Vector FMA peak



      Force Calculation

      Interpolate

      Search

• Force Kernel:  still good 
performance, close to vector add 
peak

• Interpolate Kernel: 10x speedup, 
closer to vector FMA peak

• Search Kernel: 3x speedup, closer 
to L2 bandwidth roof

• Roofline combined with other 
analysis/tools

Marker size ~= CPU time



XGC1 Timings on 1024 Cori KNL nodes in Quad-Flat mode

3x




