

Edison (“Ivy Bridge):
● 5576 nodes
● 24 physical cores per node
● 48 virtual cores per node
● 2.4 - 3.2 GHz

● 8 double precision ops/cycle

● 64 GB of DDR3 memory (2.5 GB per
physical core)

● ~100 GB/s Memory Bandwidth

Cori (“Knights Landing”):
● 9304 nodes
● 68 physical cores per node
● 272 virtual cores per node
● 1.4 - 1.6 GHz

● 32 double precision ops/cycle

● 16 GB of fast memory
 96GB of DDR4 memory

● Fast memory has 400 - 500 GB/s
● No L3 Cache

●

●

●

●

Science teams need a simple way to wrap their heads around performance when
main focus is scientific productivity:

1. Need a sense of absolute performance when optimizing applications.
- How Do I know if My Performance is Good?
- Why am I not getting peak performance advertised
- How Do I know when to stop?

2. Many potential optimization directions:
- How do I know which to apply?
- What is the limiting factor in my app’s performance?
- Again, how do I know when to stop?

Run Example in
“Half Packed”

Mode

 aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do use
has access to more bandwidth

If your performance changes, you are at least partially memory bandwidth bound

srun -N 2 -n 24 -c 2 - S 6 ... VS srun -N 1 -n 24 -c 1 ...

aprun --p-state=2400000 ... VS aprun --p-state=1900000 ...

Reducing the CPU speed slows down computation, but doesn’t reduce
memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example
at “Half Clock”

Speed

srun --cpu-freq=2400000 ... VS srun --cpu-freq=1900000 ...

Tools CoDesign

Intel Vector-Advisor Co-Design - Collaboration between NERSC, LBNL Computational Research, Intel

Example: WARP (Accelerator Modeling)

● Particle in Cell (PIC) Applicaion for doing accelerator modeling and
related applications.

● Example Science: Generation of high-frequency attosecond pulses
is considered as one of the best candidates for the next generation
of attosecond light sources for ultrafast science.

Animation from Plasma Mirror Simulations

Roofline helps visualize this information!
Guides optimizations

WARP Optimizations:
1. Add tiling over grid targeting L2 cache on both Xeon-Phi Systems

2. Add particle sorting to further improve locality and memory access pattern

3. Apply vectorization over particles

Optimization process Sigma code:

1. Add OpenMP
2. Initial Vectorization (loop

reordering, conditional removal)
3. Cache-Blocking
4. Improved Vectorization (Divides)
5. Hyper-threading

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for vectorization.

Original inner loop.
Too small to vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown
 ...
 do iw=1,nfreq ! nfreq is 3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff
 ...
 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
 scht = scht + scha(ig)

 enddo ! loop over g
 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Without blocking we spill out of L2 on
KNL and Haswell. But, Haswell has L3
to catch us.

Without blocking we spill out of L2 on
KNL and Haswell. But, Haswell has L3
to catch us.

Original Code Cache-Blocking Code

Gather
Fields from

Mesh to
Ions

Ion Push

Collision
Operator

Deposit
Charge
From

Particles to
Mesh

Solve
Fields on

Mesh

*Computation
*Mapping

~50x

- 24 -

 Force Calculation
 Interpolate
 Search

Marker size ~= CPU time

Data collected with Intel Advisor and
analyzed with pyAdvisor.

Single thread rooflines on Cori KNL.

efield(j,tri(i,itri(iv)))

LOOP BEGIN at interpolate_aos.F90(67,48)
reference itri(iv) has unaligned access
reference y(iv,1) has unaligned access
reference y(iv,3) has unaligned access
reference evec(iv,icomp) has unaligned access
reference evec(iv,icomp) has unaligned access
…..
irregularly indexed load was generated for the
variable <grid_mapping_(1,3,itri(iv))>, 64-bit
indexed, part of index is read from memory
…..

LOOP WAS VECTORIZED
unmasked unaligned unit stride loads: 6
unmasked unaligned unit stride stores: 3
unmasked indexed (or gather) loads: 18
…..

Baseline Case (w/ Indirect access)

Replace Indirect Access with Scalar Access

Optimize Vector Length

Access Grid Data in Scalar Chunks

• Kernel moved to a more compute bound
regime.

• AI increased due to memory access
pattern change.

• Peak compute performance is nearly
reached.

Scalar add peak

Vector add peak

Vector FMA peak

Baseline Case

Force SIMD Vectorization

Eliminate Multiple Exits

• Vector report, dependency report

• Eliminate multiple exits, ‘cycle’, and
RAW (read after write) dependency

• Force SIMD vectorization with omp
simd

Scalar add peak

Vector add peak

Vector FMA peak

 Force Calculation

 Interpolate

 Search

• Force Kernel: still good
performance, close to vector add
peak

• Interpolate Kernel: 10x speedup,
closer to vector FMA peak

• Search Kernel: 3x speedup, closer
to L2 bandwidth roof

• Roofline combined with other
analysis/tools

Marker size ~= CPU time

XGC1 Timings on 1024 Cori KNL nodes in Quad-Flat mode

3x

