
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2020) 2:135–148
https://doi.org/10.1007/s42514-020-00035-8

REGULAR PAPER

APMT: an automatic hardware counter‑based performance modeling
tool for HPC applications

Nan Ding1,2 · Victor W. Lee3 · Wei Xue1,4 · Weimin Zheng1

Received: 2 November 2019 / Accepted: 29 April 2020 / Published online: 24 June 2020
© The Author(s) 2020

Abstract
The ever-growing complexity of HPC applications and the computer architectures cost more efforts than ever to learn
application behaviors. In this paper, we propose the APMT, an Automatic Performance Modeling Tool, to understand and
predict performance efficiently in the regimes of interest to developers and performance analysts while outperforming many
traditional techniques. In APMT, we use hardware counter-assisted profiling to identify the key kernels and non-scalable
kernels and build each kernel model according to our performance modeling framework. Meantime, we also provide an
optional refinement modeling framework to further understand the key performance metric, cycles-per-instruction (CPI). Our
evaluations show that by only performing a few small-scale profiling, APMT is able to keep the average error rate around
15% with average performance overheads of 3% in different scenarios, including NAS parallel benchmarks, dynamical core
of atmosphere model of the Community Earth System Model (CESM), and the ice component of CESM on commodity
clusters. APMT improve the model prediction accuracies by 25–52% in strong scaling tests comparing to the well-known
analytical model and the empirical model.

Keywords Performance Modeling · Automatic Modeling · Hardware Counter · Kernel Clustering · Parallel Applications

1 Introduction

The ever-growing complexity of HPC applications, as well
as the computer architectures, cost more efforts than ever
to learn application behaviors by massive analysis of appli-
cations’ algorithms and implementations. To make projec-
tions of applications’ scaling run-time performance, design-
ing performance models (Marathe et al. 2017; Balaprakash
et al. 2016; Xingfu et al. 2014; Jones et al. 2005; Craig et al.
2015; Bhattacharyya et al. 2014; Bauer et al. 2012; Nan et al.
2014; Pallipuram et al. 2015, 2014) has long been an art only
mastered by a small number of experts. Nevertheless, we can

still see that performance models can be used to quantify
meaningful performance characteristics across applications
(Balaprakash et al. 2016; Xingfu et al. 2014) and to provide
performance bottlenecks associated with their implementa-
tions (Williams et al. 2009); to offer a convenient mechanism
for users and developers to learn the scaling performances
(Calotoiu et al. 2013); and even to guide the optimization
decisions (Nan et al. 2014).

Recently, several methods for performance modeling
have been developed to simplify and streamline the pro-
cess of modeling. Techniques range from traditional expert
(analytical) modeling (Bauer et al. 2012; Nan et al. 2014),
through compiler-assisted modeling Bhattacharyya et al.
(2014) and domain language-based modeling Spafford and
Vetter (2012) to fully automatic (analytical and empirical)
modeling (Jones et al. 2005; Craig et al. 2015; Knüpfer et al.
2012; Hong and Kim 2009; Barnes et al. 2008; Balaprakash
et al. 2016; Xingfu et al. 2014). However, these modeling
techniques are either inadequate to capture the functional
relationships between applications performance and the tar-
get architecture or suffer from manual high-efforts to learn
the algorithm and implementation case by case.

 * Wei Xue
 xuewei@mail.tsinghua.edu.cn

1 Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China

2 Computational Research Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA

3 Intel Corporation, Santa Clara, CA 95054, USA
4 National Supercomputing Center in Wuxi, Wuxi 214000,

China

http://orcid.org/0000-0001-9740-6581
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-020-00035-8&domain=pdf

136 N. Ding et al.

1 3

The main advantage of analytical models is interpretabil-
ity which allows users to reason about performance while
the disadvantage is the high manual efforts of portability
across applications. Empirical models are built according
to statistical methods which is good at portability across
applications but it is challenging to achieve high model
accuracy while keeping low overheads. So far, tools only
supported either analytical (Craig et al. 2015; Bauer et al.
2012) with several prior knowledge or empirical modeling
(Jones et al. 2005; Craig et al. 2015; Knüpfer et al. 2012)
with regression-based method. Machine learning techniques
have been introduced to improve the model accuracy when
predicting the execution time from observed performance
results of a large number of application runs (Balaprakash
et al. 2016; Xingfu et al. 2014). It usually takes a long time
to profile and train the model, especially for the cost-expen-
sive applications.

Different from the previous work, we propose APMT, an
offline performance modeling tool with hardware counter-
assisted profiling, to overcome the disadvantages of high
manual efforts (analytical models) and unwarrantable model
accuracy (empirical models). Hardware counter-assisted
profiling is widely used in state-of-the-art performance
tools, such as HPCtoolkit (Adhianto et al. 2010), LIKWID
(Treibig et al. 2010), Intel Vtune (Malladi 2009), PAPI
(Mucci 1999), and perf (Weaver 2013), to learn application
behaviors rather than apply massive analysis to the applica-
tion. Meanwhile, hardware counters are supported on vari-
ous processors, such as Intel processors (sps22 sps22), IBM
processors (Liang 2009) and AMD processors (Zaparanuks
et al. 2009).

APMT starts from a simple analytical model framework,
predicts the computation and communication performance
separately. We use hardware counter-assisted technique to
predict applications’ computation performance using our
pre-defined functions. We instrument the PMPI interface
Keller et al. (2003) to profile communication performance,
and then use the well-known Hockney model Chou et al.
(2007) to predict the communication performance.

To summary, the key contributions of this paper are:
1. A hardware counter-assisted technique to identify

expensive and non-scalable kernels Three types of kernels
are detected in APMT: key kernels (large run time propor-
tion), non-scalable kernels, and the sum of rest functions.
Such a method allows us to reduce the number of kernels by
more than an order of magnitude compared to the loop-level
kernels (Bhattacharyya et al. 2015, 2014).

2. A low-overhead performance modeling framework A
common problem in modeling large-scale applications is
the modeling overhead, which often exceeds 10% (Malony
et al. 2004). Yet, machine time, especially at scale, is very
valuable. Moreover, large overheads may cause applications’

performance deviations as well. Our hardware counter-
assisted method can keep the overhead to 3% on average.

3. A novel scheme to understand performance through
model parameters ’Cycles per instruction’ (CPI), blocking
factor for computation and blocking factor for communi-
cation are proposed to understand the kernel’s instructions
throughput, memory traffic, and computation/communica-
tion overlap.

4. Evaluations on real applications We deploy the APMT
on two real-world applications and one proxy application:
HOMME (Dennis et al. 2012), the dynamical core of the
Community Atmosphere System Model (CAM Dennis et al.
2012), and the Los Alamos CICE model (Hunke et al. 2010),
a full simulation of sea ice which is used in coupled global
climate models, and the NAS parallel benchmarks (Bailey
et al. 1991). APMT improves the model accuracy up to 52%
compared to previous models (Nan et al. 2014; Worley et al.
2011).

APMT characterizes the performance of applications
more concisely than previous approaches. With these efforts,
we intend to develop an automatic and practical use perfor-
mance modeling tool with the capabilities of interpretability,
low-overhead, and portability. Thus, we demonstrate that
APMT can bridge the gap between high manual effort per-
formance modeling and automated modeling approaches.

2 Performance profiling

To guarantee lightweight analysis, APMT leverages a hard-
ware counter-assisted method for the computation profiling,
and instrument the PMPI interface Keller et al. (2003) to
profile the MPI performance.

Hardware Counter-assisted Profiling. Although the
instrumentation is a usual way to obtain the functions’
timing information (Bhattacharyya et al. 2015, 2014), the
hardware counter-assisted profiling can also get the timing
information provided by the hardware counter (CPU cycles),
but in a light-weight way (Weaver 2013; Bitzes and Nowak
2014). The hardware counter-assisted profiling has 3% over-
head on average when profiling different hardware counters
whilst the overhead of instrument-based profiling tools, such
as Score-P (Knüpfer et al. 2012), and Scalasca (Geimer et al.
2010), usually exceeds 10%.

Moreover, hardware counters can also provide more
architecture-oriented information of application runs, such
as CPI (cycles per instruction), the number of L1/L2/LLC
data cache accesses/misses and the waiting time for memory,
to help further identifying and understanding the kernel per-
formance characteristics (Gamblin et al. 2011; Zaparanuks
et al. 2009; Browne et al. 2000).

To the best of our knowledge, most existing performance
models that use hardware counter-assisted profiling focus on

137APMT: an automatic hardware counter-based performance modeling tool for HPC applications

1 3

coarse-grained performance insights, such as flops and mem-
ory bandwidth (Williams et al. 2009). Those models can be
very useful to tell users the kernel is compute bound or mem-
ory bound. Thus, kernels with a low algorithmic operations
and low flop rate should be the ones need to be optimized.
However, a very important golden standard of performance
metrics, timing, is missing which can mislead future optimiza-
tion decisions.

APMT differs from the established approaches, we use
hardware counter-assisted profiling to provide a finer-grained
performance insights such as memory and compute overlap,
and scaling time-to-solution performance estimation. Such
kinds of the insights can guide developer with future opti-
mization with kernels should be optimized in next steps and
optimazation directions such as communication, memory and
compute overlap, and data reuse.

One important information from performance pro-
filing is to know where the time goes. Here, we
use ���_���_��������.������_� which refers to the CPU
cycles to profile the timing of each function. The accuracy
of the hardware counter-assisted method (sampled)for finding
hotspots has been validated (Wu and Mencer 2009; Merten
et al. 1999). In this paper, we use the normalized root mean
square error (NRMSE, Eq. 1) to evaluate the time percentage
differences between the hardware counter-assisted method
(sampled)and real values (instrumented). In Eq. 1, K is the
total number of kernels, ti and ri refer to the time proportions
of sampled time proportions and the instrumented time pro-
portions. The instrumented values are measured by using the
well-known call graph execution profiler (GPROF Garcia et al.
2011). We use two-million-cycles intervals as sampling inter-
vals, and NRMSE is around 10−4 , which indicts good matches
between sampled results and the real ones.

Instrumented MPI Profiling. We generate communication
traces, namely, the message size, the message count, the
source, and destination, by using the standardized PMPI
interface (Keller et al. 2003; Gamblin et al. 2011). Perfor-
mance measurements may have serious run-to-run variation
because of OS jitter, network contention, and other factors.
To ensure the profiling validity, users can repeat measure-
ments until the variance stables.

3 Performance model framework

In this section, we present the overview of APMT, and then
we illustrate how to build computation and communication
models for each detected kernels.

Figure 1 shows the overview of the APMT. We first
breakdown the applications into a set of compute kernels
by conducting several profiling runs. We then model the
performance of each compute kernel with the representative
hardware counters according to our model framework. For
communications, we construct the model in terms of point-
to-point communication and collective communication. We
also conduct a closed-loop model refinement to meet the
user-defined model accuracy. In the end, the model reports
strong/weak scaling run-time performance. User decisions
have to be made when the results after model refinement can
not meet the accuracy requirements.

(1)NRMSE =

�∑K

i=1
ti ⋅ (ti − ri)

2

max
1<i<K

(ti ∪ ri) − min
1<i<K

(ti ∪ ri)

Binary file

Instrument MPI library
Hardware counter-assisted profiling

P1=2 P3=32
P4=64

 Computa�on performance modeling

P2=12 Compute
Kernel 1

Determine cri�cal kernels with Hardware counter-assisted profiling
(1) �me-consuming func�ons, and (2) non-scalable func�ons

Representa�ve events

Each
event

Each
event

Each
event

Final Model

Final model accuracy
is sa�sfying

Yes

No

model accuracy is sa�sfying

No
Yes

Build performance models

Compute
Kernel 2

Compute
Kernel n

Point-to-point
communica�on

Collec�ve
communica�on

 Communica�on performance modeling

Kernel
model 1

Kernel
model 2

Kernel
model n Point-to-point model Collec�ve model

Model refinement
 ----If computa�on model: refine CPI and BF
 ----If communica�on: conduct two more runs and re-
curve-fi�ng the linear equa�ons

Strong scaling/week scaling �me predic�on

User decisions

Fig. 1 Overview of APMT. Three key steps to build performance models: (1) profiling, (2) determine critical kernels, and (3) build computation
and communication performance model for each critical kernels

138 N. Ding et al.

1 3

3.1 Model inputs and outputs

We take the number of processes and the problem sizes as
our model inputs because they are the most commonly-used
settings for performance evaluation. Model outputs are the
application run-time of the given problem size and the given
parallelism, as well as the timing breakdown of the model.
The problem size cannot be determined only by grid size in
structured grid problem because the iteration number may
not remain the same due to convergence. Therefore, the
problem size has to take both grid size (nx, ny, nz) and the
number of iterations (iter) into account. Those inputs can be
obtained by either from domain experts or the application
configurations.

3.2 Critical Kernel identification

We identify three kinds of kernel candidates by using execu-
tion cycle counter (CPU_CLK_UNHALTED.THREAD_P)
from at least three profiling runs using different parallel-
isms. Figure 2 shows an example of how to identify critical
kernels. We choose functions as a set of kernel candidates
because it is natural to separate communication and compu-
tation in parallel applications to enable us to predict them
separately. We can use the same idea to handle kernel iden-
tification for different input size.

The three kinds of critical kernel candidates are listed
below.

1. Functions that whose share of the application execution
cycles are larger than a user-defined threshold (default
is 5% in this paper) .

2. Functions that whose run-time is not decreasing. The
non-expensive functions may become expensive ones
when we run applications using different parallelisms
or different inputs. For example, the functions in the
sequential part can turn into hotspots when running the

application with more processes. As a result, we need to
find these potential hotspot functions for different num-
bers of processes and inputs.

3. The remaining functions after 1 and 2. The reason is that
the aggregated kernel can reduce the overhead of build-
ing performance models while maintaining good accu-
racy. Moreover, the entire run-time would be slightly
affected even if we consider those small functions indi-
vidually.

3.3 Model construction

The performance model framework is shown as Eq. 2.
The computation and communication times are taken into
account separately in APMT because they have different
performance characteristics.

The computation time of a kernel can be estimated by two
components. The first part is the time it takes to execute
the computation instructions (T_compi , i is kernel index, n
is the total number of kernels). The second part is the time
associated with fetching the data from storage to compute
Clapp et al. (2015) (T_memi). There is typically some degree
of overlap between these two components. We introduce a
variable named memory blocking factor (BF_memi), which
measures the non-overlapping part for loading data from
local memory.

The communications (T_comm) can be categorized into
two groups: point-to-point (p2p) communication and col-
lective communication. They have different performance
according to the number of processes and the communica-
tion volume. The summation of the p2p and the collective
communication times is used to predict the total communi-
cation time.

Different from the previous works that fit the kernel
model directly (Bhattacharyya et al. 2014), we introduce
hardware counter-assisted performance models for each
kernel. With architecture-level modeling, our framework
is slightly more complicated than previous ones but offers
more insights on performance.

Computation model construction. Table 1 lists all model
parameters in APMT, and Table 2 summarizes how they are
derived. Instead of using high order equations to cover the
non-linearity of performance models (Van den et al. 2015;
Jayakumar et al. 2015), we pre-define a set of linear fitting
functions including polynomial, exponential and logarithm
for each hardware counter. We do not apply high degree
equations in the first place for two reasons. The first one

(2)
T_app =

n∑

i=1

(T_compi + BF_memi ∗ T_memi)

+ BF_comm ∗ T_comm + T_others

Fig. 2 An example of critical kernel candidate identification. P1,
P2 and P3 refer to different number of processes. funA–funC repre-
sent the kernels which the time percentages are larger than the user-
defined threshold (default is 5% in this paper). funY-funZ represent
the kernels which the time percentages are not decreasing with grow-
ing number of processes. The rest of the functions are aggregated as
one big kernel

139APMT: an automatic hardware counter-based performance modeling tool for HPC applications

1 3

is that high degree equations often suffer from over-fitting.
The second reason is that more model parameters will result
in additional performance modeling overhead. Each extra
model parameter requires at least one more application run
in order to solve the multivariate equations.

We use the highest rsquare Calotoiu et al. (2013) one
among the pre-defined fitting functions for each hardware
counter. That is to say, each hardware counter is a func-
tion of parallelism, and then we assemble the correspond-
ing hardware counters according to Table 2 to describe the
non-linear run-time performance of each kernel. Figure 3
shows an example of how to derive model parameters using
a kernel from HOMME. Model parameter BF_memi consists
of five model variables T_stalli , T_L1i , T_L2i , T_LLCi and
T_mmi.

where T_L1i represents to the number of L1 hits in kernel
i, and T_L1i can be described as a function of P using hard-
ware counter MEM_LOAD_UOPS_RETIRED.L1_HIT_PS .
We then multiplied the function by the L1 cache latency. The
latency is measured using Intel’s Memory Latency Checker
(Doweck 2006). The remaining model variables are derived
similarly. Here, we only consider the worst case of T_memi
in the model and do not account for concurrency in the
memory subsystem.

One may notice that the non-overlap memory time can be
directly calculated by T_stalli . However, knowing the scaling
estimated runtime is not sufficient to understand what con-
straints the performance. Therefore, we keep T_L1 , T_L2 ,
T_LLC in the model to provide more performance insights
such as the compute and memory overlap ratio (BF_mem)
and the cache performance. Those can be good guidance for
developers to decide what optimization should be performed
in next steps (c.f. Sect. 4.1).

For each kernel’s computation time, we use number of
instruction multiplied by cycles per instruction (CPI). One

(3)BF_memi =
T_stalli

T_L1i + T_L2i + T_LLCi + T_mmi

Table 1 Performance models descriptions

Descriptions

T_compi Calculation time of each kernel
T_memi Total memory time
BF_memi Ratio of non-overlapped memory time
BF_comm Ratio of non-overlapped communication time
T_comm Average communication time
T_stalli Waiting time for memory
T_L1i L1 cache access times
T_L2i L2 cache access times
T_LLCi Last level cache access times
T_mmi Main memory times
instructions Executed instructions
T_collective Collective MPI communication
T_p2p Point to point MPI communication
T_others Initialization and finalization time
CPI_i Cycles per instruction (measured)
stot Total communication volume (measured)
T_mapp Total application time (measured)
T_mcomp Total computation time (measured)
T_mcomm Total communication time (measured)
r Total number of p2p MPI operations (measured)
l Total number of collective MPI operations (measured)
P Number of processes (input)
D Problem size (input)
n Total number of kernels (detected)

Table 2 How is the model item
derived from hardware counter?

How is the model item derived?

T_compi
instructionsi ∗ CPIi

CPUfrequecy ∗ P

T_memi T_L1i + T_L2i + T_LLCi + T_mmi

BF_memi
T_stalli

T_memi

BF_comm T_mapp−T_mcomp

T_mcomm

T_comm
∑r

i=1
T_p2p +

∑l

i=1
T_collective

T_p2p a ⋅ stot + b

T_collective a ⋅ log(P) + b ⋅ stot + c

T_stalli Fitting from RESOURCE_STALLS.LB(ST) counter
T_L1i Fitting from MEM_LOAD_UOPS_RETIRED.L1_HIT_PS counter
T_L2i Fitting from MEM_LOAD_UOPS_RETIRED.L2_HIT_PS counter
T_LLCi Fitting from MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS counter
T_mmi Fitting from MEM_UOPS_RETIRED.ALL_LD(ST)_PS counter
instructionsi Fitting from INST_RETIRED.ANY_P counter
T_others Fitting from P

140 N. Ding et al.

1 3

may note that CPI of one kernel may change rapidly because
the cache misses/stalled memory instructions may lower
the instruction throughput. Therefore, the CPI in this paper
refers to the computation time and computation cycles only.
The CPI_i is the average CPI from the three profiling runs
using different number of processes of one kernel. We use
a standard deviation (Eq. (4)) to evaluate the data volatility.

Communication model construction. For the point-to-point
(p2p) communication, we assume a linear relationship
because all processes can carry on their operations in paral-
lel. The time cost t of sending a certain number of message
n of size s equals to t = n ⋅ (a ⋅ s + b) according to the well-
known Hockney model (Chou et al. 2007). We modeling the
p2p communication time t with total communication size
(s_tot = n ⋅ s) as a ⋅ stot + b (m=1, k=0 of our pre-defined
fitting function in Table 2).

For collective communications, we consider the
MPI_Bcast , MPI_Alltoall , and MPI_Allreduce in the subset
of MPI collective operations. Take MPI_Bcast as an exam-
ple, the time cost t of a broadcast a message of size s among
all processes P equals to t = a ⋅ log(P) + b ⋅ s + c . For a sake
for simplicity, we do not model each message sizes, and we
use an average message size among processes.

(4)deviation =

∑n

p=1
(CPI_ip −

̄CPI_ip)
2

n − 1

3.4 Model refinement

The model results sometimes can be far away from the
realities. Such error either stems from the communication
contention or the computation part. Therefore, if the model
error comes from communication, we refine the total com-
munication volume by conducting two more profiling runs
using different process numbers. One profiling run is used
to re-fitting the functions, and the other one is used for
validation. The overhead of refining communication is two
more application profiling runs.

If the model error comes from the computation part,
we believe it results from the model parameters CPIi and
BF_memi . Let’s think the model parameter CPI repre-
sents the effective cycles per instruction. We then define
CPI_core that stands for the CPI if all memory references
are served by cache (Clapp et al. 2015), as Eq. (5) shows.
If we take the cache as an infinite cache, CPI equals to
CPI_core . If we add cache misses, the memory block-
ing factor will increase to reflect the impact of memory
latency.

However, refining CPIi and BF_memi can not be easily
resolved due to the complexity of the shared memory sys-
tems and applications. Here we provide a methodology to
refine CPIi and BF_memi which requires changing the CPU
frequency and repeating the test using one parallelism in
the previous profiling runs. Thus, we can make the memory
faster compared to the speed of executing instructions by
lowering the CPU frequency. After that, we can get two sets

Fig. 3 An example of how
to derive model param-
eters. The example is a kernel
(laplace_sphere_wk)
from HOMME with 32 ⋅ 32 ⋅ 6
grids. We use the average com-
pute amount assigned to each
MPI rank (32⋅32⋅6

P
) as the x-axis,

therefore as the values of x-axis
become bigger, the smaller
number of MPI ranks we use.
The profiling process number
P = {4 8 12 16 20 24}

200 400 600 800 1000 1200 1400 1600
1

1.01

1.02

1.03

1.04

1.05

1.06
x 1011

Assigned compute amount per MPI rank
(a)

T_
st

al
l (

C
P

U
 c

yc
le

s)

200 400 600 800 1000 1200 1400 1600
1.895

1.9

1.905

1.91

1.915

1.92
x 1012

Assigned compute amount per MPI rank
(b)

N
um

be
r o

f
L1

 c
ac

he
 a

cc
es

s
tim

e

200 400 600 800 1000 1200 1400 1600
0

1000

2000

3000

4000

5000

Assigned compute amount per MPI rank
(c)

T_
m

em
 (m

s)

200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

Assigned compute amount per MPI rank
(d)

Ti
m

e
(m

s)

T_comp

BF_mem*T_mem

141APMT: an automatic hardware counter-based performance modeling tool for HPC applications

1 3

of CPI_i and T_memi . We then can calculate the CPI_corei
and BF_memi by solving the linear equation (Eq.(5)). As
shown in Fig. 10, the y-intercept of the line is CPI_corei and
the gradient is BF_memi . Therefore, the overhead of refining
computation parameters are higher than refining communi-
cation. In addition, the computation refinement may only
work for the machines who can reboot parts of the compute
nodes without interrupting other ongoing jobs.

Finally, we get a hierarchical and fine-grained performance
modeling framework that combines the advantages of ana-
lytical and empirical methods. APMT combines easily
interpretable linear and logarithmic functions into robust
and accurate non-linear application performance models.

4 Evaluation

In this section, we first describe the experiment platforms
and configurations. We then apply APMT to two real-world
applications and one proxy application, and show how to use
APMT to understand run-time performance.

4.1 Experiment platforms and configurations

The experiments are carried out on two platforms, a 4-node
Intel Xeon cluster and an Intel cluster in National Supercom-
puting Center in Wuxi of China (NSCC-Wuxi). Each node
of the 4-node Intel Xeon cluster contains two Intel Xeon
E5-2698v3 processors running at 3.0 GHz with 64 GB of
DDR3-1600 memory. The operating system is CentOS 6.7.
Each NSCC-Wuxi node contains two Intel Xeon E5-2680v3
processors running at 2.5 GHz with 128 GB memory. The
operating system is RedHat 6.6. The MPI version of two
clusters is Intel MPI 15.0, and the network of both clusters
is FDR InfiniBand.

We use APMT to predict the run-time performance of
two real-world applications: HOMME Dennis et al. (2012)
and CICE Hunke et al. (2010), and one proxy application:
NPB Bailey et al. (1991). HOMME Dennis et al. (2012) is
the dynamical core of the Community Atmospheric Model
(CAM) being developed by the National Center for Atmos-
phere Research (NCAR). The Los Alamos sea ice model
(CICE) Hunke et al. (2010) is a widely used sea ice model
in the famous CESM project (Craig et al. 2015). The NPB
is a well-known suite of benchmark that proxy scientific
applications Asanovic et al. (2006) by mimicing the com-
putation and communication characteristics of large scale
computational fluid dynamics (CFD) applications. The

(5)CPIi = CPI_corei + BF_memi ∗ T_memi

applications all run on a single node to better understand
the memory contention. We perform the predictions across
nodes to prove the effectiveness and robustness of APMT.
Furthermore, we evaluate CICE (up to 1024 processes) and
HOMME (up to 3000 processes) on NSCC-Wuxi for large
scale runs. I/O is not considered in our evaluation.

4.2 Results

In this section, we show how APMT breaks down the appli-
cations into kernels, provided performance insights, and
conduct the model refinement. In the CICE case, we show
how to use APMT to predict the strong-scaling run-time and
how APMT can help the users and developers to learn the
performance characteristics. In HOMME, we present how
we estimate the time-to-solution performance for large prob-
lem size, and how non-scalable kernels behave when con-
duct strong scaling application runs. In NPB, we focus on
how to apply the model refinement technique to the kernel.

Kernel identification. Table 3 lists our experiment con-
figurations, the number of kernels detected by our hardware
counter-assisted profiling, the number of loop-level ker-
nels Bhattacharyya et al. (2014) of the small problem size.
Compared to the number of loop-level kernels (“Lker” in
Table 3), we reduce the number of kernels by more than an
order of magnitude.

CICE We detect seven kernels on the 4-node cluster while
five kernels on NSCC-Wuxi. Due to the different run-time
performance on the two computing platforms, short-
wave_compute_dEdd and transport_remap_
gradient on the 4-node cluster are not taken as kernels on
NSCC-Wuxi. The function shortwave_compute_dEdd
computes the transports across each edge by integrating the
mass and tracers over each departure triangle, which only
costs 0.52% time proportion on NSCC-Wuxi while it takes
9.57% on the 4-node cluster. The function transport_
remap_gradient computes a limited gradient of the sca-
lar field phi in scaled coordinates which costs 1.87% time on
NSCC-Wuxi while it takes 5.00% on the 4-node cluster. The
sum of all the kernel’s run-time can cover 99% computation
time of CICE on both of the two computing platforms.

The prof iling process number of CICE are
P = {4 8 10 16 20 24} o n N S C C - W u x i a n d
P = {2 8 16 20 24} on the 4-node cluster. As Fig. 4 shows,
each CICE kernel’s CPI deviation (Eq. (4)) using different
number of processes is around 10−3 - 10−2 on the 4-node
cluster and NSCC-Wuxi. Therefore, we use a constant aver-
age CPI as default option during the performance modeling
for low overhead.

We observe that Limited_gradient and trans-
port_integrals have similar CPIs on the two com-
puting platforms in Fig. 4, respectively. However, by
looking into its memory behavior (Fig. 5), we can see

142 N. Ding et al.

1 3

that limited_gradient and transport_inte-
grals have different memory performance characteristics
(BF_mem). limited_gradient has a higher BF_mem
than transport_integrals which indicts that lim-
ited_gradient suffers from a lower memory traffic.

Recall that BF_mem is est imated by using
T_stall

T_L1+T_L2+T_LLC+T_mainmemory
 with seven hardware counters

(Table 2). Take the the BF_mem of limited_gradient
and transport_integrals on NSCC-Wuxi as an
example, we can see that most of the memory access happen
in L1 cache for both kernels (orange line is close to the green
line) in Fig. 6. However, the stall cycles due to store

operation (RESOURCE_STALLS.ST) of limited_gra-
dient is much higher than the kernel transport_
integrals which denotes the differences of BF_mem .
The large store stall cycles indict that there exists a relatively
strong data dependency in limited_gradient than
transport_integrals. Based on the above insights
from the model, reducing data dependencies of limited_
gradient should be performed in next optimization step.

For communication, we focus on inter-node communi-
cation. Therefore, we profile inter-node communication on
NSCC-Wuxi using a 32-process run, a 96-process run and a
128-process run as shown in Fig. 7. We see that there exists
a lot of p2p communications. These communications are
used to update halo regions (ghost cells) using MPI_Send
and MPI_Recv.

Table 3 Number of functions
(Func), total number of kernels
(ker), number of non-scalable
kernels (nonk), LOCs, number
of kernels from loop-level
(Lker) modeling work
(Bhattacharyya et al. 2014)

Func ker nonk LOCs Lker Size

CICE 109 7 2 75,000 116 ⋅ 100

384 ⋅ 320

HOMME 210 11 6 113,095 32 ⋅ 32 ⋅ 6 ⋅ 128

256 ⋅ 256 ⋅ 6 ⋅ 128

EP 5 3 0 359 12 228

230

MG 16 5 1 2,568 98 256 ⋅ 256 ⋅ 256 ⋅ 4

512 ⋅ 512 ⋅ 512 ⋅ 20

FT 10 5 2 2,034 39 256 ⋅ 256 ⋅ 128 ⋅ 6

512 ⋅ 256 ⋅ 256 ⋅ 20

SP 15 5 1 4,902 229 64 ⋅ 64 ⋅ 64 ⋅ 400

102 ⋅ 102 ⋅ 102 ⋅ 400

LU 11 6 2 5,957 165 64 ⋅ 64 ⋅ 64 ⋅ 250

102 ⋅ 102 ⋅ 102 ⋅ 250

BT 14 8 2 9,162 211 64 ⋅ 64 ⋅ 64 ⋅ 200

102 ⋅ 102 ⋅ 102 ⋅ 200

CG 3 6 1 1,901 30 14, 000 ⋅ 15

75, 000 ⋅ 75

Fig. 4 CPIs and their deviations of each kernel with CICE runs using
different number of processes on the 4-node cluster and NSCC-Wuxi

Fig. 5 Memory blocking factor of each CICE kernel on NSCC-Wuxi
using problem size gx3. The horizontal resolution of gx3 is 116 ⋅ 100

143APMT: an automatic hardware counter-based performance modeling tool for HPC applications

1 3

HOMME. We profile the small problem size ne32 (grid
number: 32 ⋅ 32 ⋅ 6 , vertical level: 128). Fig. 3 shows the
computation performance, and Fig. 8 shows the communica-
tion performance. For a strong scaling evaluation, p2p com-
munication contributes the most in its total communication
time. With the help of our model, we can see that the total
p2p communication volume increases with a growing num-
ber of processes. On the contrary, the total communication
volume remains the same (24KB) for MPI_Allreduce
and MPI_Bcast, respectively.

The run-time performance prediction for a larger problem
size D_large is according to the average compute amount per
MPI rank. This is because most of the current HPC

applications follows the well-known BSP model (Stewart
2011). Of course, the memory resource contention plays an
important role in run-time performance, especially the main
memory access time. In this paper, we define a threshold
E = ‖ N_LLCmiss_ip

N_totalmem_ip
‖ to evaluate the effectiveness for Dlarge

run-time prediction from the harm of memory contention.
N_LLCmiss_ip represents the number of last level cache
misses of kernel i with a number of processes p, and
N_totalmem_ip is the total number of memory access of p.
Our experiments show that last level cache does not play an
important role if E ≤ 1e − 4 . Otherwise if E > 1e − 4 , it
indicts that the effect of memory contention has already

Fig. 6 Hardware counter-assisted profiling of two CICE kernels
on NSCC-Wuxi using problem size gx3. The horizontal resolution
of gx3 is 116 ⋅ 100 . The R_square Hu et al. (1999) of our hardware

counter-assisted profiling is around 0.9. This indicates a good quality
of fitting between the model and the measured performance data. The
range of R_square is [0, 1], and the higher, the better

Fig. 7 Communication time of
CICE with problem size (gx3)
of 116 ⋅ 100 on NSCC-Wuxi.
The dotted points are the meas-
ured data, and the (green) lines
are plotted with our model. The
y-axis are the accumulated total
communication volume (Bytes)
and accumulated total commu-
nication time of all MPI ranks

Fig. 8 Measured vs. Predicted communication time of the ne32 problem size in HOMME on the Intel cluster of NSCC-Wuxi

144 N. Ding et al.

1 3

revealed in the profiling cases. Thus we have to choose suit-
able numbers of processes to conduct the profiling runs. We
exploit the observation that the significant performance fluc-
tuation of last level cache rarely happens.

We then use performance models built using ne32 to
predict the run-time of problem size ne256 (grid number:
256 ⋅ 256 ⋅ 6 , vertical level: 128). We do not predict the
performance per kernel because our observation shows
that the compute amount increment of each kernel is
inconsistent to the ratio =

ne256

ne32
 , but highly depends on its

inputs. Users with little domain knowledge are hard to
estimate the increment without profiling. Therefore, we
predict the computation time for the overall computation
rather than functions’ time to give a total run-time for large
problem size. Taking the 1536 MPI rank prediction as an
example, the average computation amount of 1536 MPI
ranks (problem size ne256) is 256⋅256⋅6

1536
= 16 grids. Thus

we can find the model prediction using the ne32 computa-
tion performance model with 16 grids (Fig. 3). With this
method, the estimated computation run-time for ne256 is
in Fig. 9, which shows a satisfying accuracy of our pro-
posed performance model.

For the communication part, we estimated the total
communication volume by a factor of 256

32
 . Thus, the p2p

communication model for large problem size is equal to
t = a ⋅ ratio ⋅ s + b , where s represents the total communi-
cation volume of small problem size. The collective commu-
nication model is t = a ⋅ log(P) + b ⋅ ratio ⋅ s + c . As Figs. 8
and 9 show, the communication time is measured twenty
times and we can see that our model can capture the key
performances. Therefore, one may focus on reducing p2p
communication volume, and improving computation and
communication overlap in the next step.

NAS Parallel Benchmarks. We use a 4-process run, a
9-process run, and a 16-process run to collect the profiling
data for BT and SP because they need a square number of
processes. We use a 2-process run, a 4-process run, and an
8-process run to collect the profiling data for the rest of NPB
benchmarks.

BF_comm in NPB equals to 1 because they follows
the well-known BSP model (Stewart 2011). We take the

timing analysis of a typical HPC application, BT, as an
example. The BT benchmark has eight steps in one super
time-step, four for computation and the others for com-
munication. In the communication steps, the communica-
tion along the x, y and z axes are MPI p2p communica-
tions and the communications across all grids performs
MPI collective communications (MPI_Allreduce and
MPI_Bcast). Following its timelines, the total run-time
of each process in one super time-step can be estimated
from the accumulation of computation and communica-
tion times, which works for a lot of today’s real-world
HPC applications.

BT. The largest model error is originally 18% for the BT
kernel for the scales less than 40 cores. The computation
time takes 80% of the total run-time. We refine the CPI_i
and BF_memi for three kernels in BT. We change the CPU
frequency from 3GHz to 2GHz and measure the CPI and
T_mem . Here, we use newCPI_1 , and newT_mem1 to repre-
sent the newly measured data at 2GHz. CPI_1 and T_mem1
are the data at 3GHz. According to Eq. 5, we can calculate

Fig. 9 Measured vs. Predicted
total computation time of the
ne256 problem size in HOMME
on the Intel cluster of NSCC-
Wuxi. The solid lines are pre-
dicted results using the model
built from ne32. The marked
dots are measured data

Fig. 10 Refined CPI_corei and BF_memi of CICE on 4-node cluster

Table 4 Model refinement of BT benchmark on CPI_corei and
BF_memi

CPI_corei B_memi

Kernels Before After Before After

1 2.26 2.20 10−2 10−5

2 1.58 1.50 10−2 10−7

3 1.62 1.56 10−3 10−6

145APMT: an automatic hardware counter-based performance modeling tool for HPC applications

1 3

As Fig. 10 shows, the y-intercept of the line is the refined
CPI_core1 and the gradient is the refined BF_mem1 . Table 4
lists our refined results. And the model errors can be reduced
to less than 7% (Table 3).

EP. EP has a better scaling performance compared to the
other kernels. Because the communication time is extremely
small and the magnitudes of BF_memi for EP is 10−7.

FT. There are numerous MPI_Bcast and MPI_Reduce
calls in FT. Although the impact of MPI communication is
not significant for the scales less than 128 cores, the com-
munication time is increasing as the number of processes
grows. This indicates that when FT is scaled, collective MPI
may become its performance bottleneck.

MG and SP. There are numerous p2p communications in
MG and SP, and they become communication-bound when
the number of processes is larger than 20. It indicates that
the optimization of p2p communications for MG and SP can
improve their run-time performance.

LU. LU is not as sensitive as MG and SP to commu-
nications. Although there are many p2p communications
in LU, their total communication volumes are smaller
than MG and SP. For example, the total communica-
tion volume of LU is (6.52E + 07) ⋅ P + (5.92E + 09) and
(3.05E + 08) ⋅ P + (3.15E + 09) for SP. Therefore, the total
run-time of LU first decreases and then increases more
slowly than MG’s and SP’s run-time performance.

CG. BF_memi remains at 10−7 , and the calculation time
decreases rapidly with the increased parallelism. Both make
the total computation time decrease. When the number of
processes is larger than 50, the point at which computa-
tion time approaches zero, then communication dominates
performance.

5 Comparisons and discussions

A typical work is the domain language-based performance
modeling Spafford and Vetter (2012) which requires domain
experts write the performance model for each compute ker-
nel using domain language ASPEN. Such performance
model can capture the detailed implementation of applica-
tions. However, for most of the users who want to build the
performance models, it makes no difference compared to
building the models by learning the complex source code.
Besides, users has to learn a new domain language to build
the model.

(6)
CPI_core1 =

CPI_1 − newCPI_1

T_mem1 − newT_mem1

BF_mem1 =
CPI_1 − CPI_core1

T_mem1

By learning the algorithms and implementation of
the application, a manual analytic performance model
is built (Nan et al. 2014). Their computation model
is built with problem size and number of processes:
T_compute = a ⋅ (

problem size

P
) + b . To formulate the equa-

tion, they manually analyzed the source code of the appli-
cation and building this kind of performance model is very
labor- and time-intensive. In addition, such case-by-case
modeling suffers from portability across applications. As
Fig. 11 shows, we reduce the model error up to 25% for
CICE’s (small problem size) strong scaling tests compared
to the manual analytic performance model (Nan et al. 2014).

With less domain knowledge taken into account, empiri-
cal performance modeling profiles applications with vary-
ing configurations and uses regression to build performance
models from the desired fitting functions (Bauer et al. 2012;
Worley et al. 2011; Lee et al. 2007). However, choosing
the correct fitting functions is critical for the performance
model accuracy. The best set of such functions is hard to
determine due to the increasing complexity of real-world
applications running on modern hardware platforms. As one
solution for this issue, machine learning techniques have
been introduced to predict the execution time from observed
performance results of a large number of application runs
(Lee et al. 2007). It usually takes a long time to profile and
train the model, especially for the cost-expensive applica-
tions (Craig et al. 2015).

An empirical model Worley et al. (2011) is built based on
a variation of Amdahl’s law, T_app = a∕P + b ⋅ Pc + d , to
estimate the whole application run-time. The term a/P rep-
resents the time spent in the perfectly scalable portion of the
application, The term b ⋅ Pc is the time spent in a partially
parallelized portion, such as initialization, communication,
and synchronization. The term d indicates the time spent in
the non-parallelized portion. This model generates accurate
predictions, but it lacks performance insights. For example,
when the application time does not decrease anymore, the
model cannot tell the leading cause (calculation, memory,
or communication). As Fig. 11 shows, we reduce the model
error by up to 52% compared to the empirical model (Worley

FT EP MG LU SP BT CICE HOMME
0

20%

40%

60%

80%

100%

M
od

el
 E

rr
or

APMT The analytical model The empirical model

Fig. 11 Strong-scaling model error comparisons among our model,
the analytical model Nan et al. (2014), and the empirical model Wor-
ley et al. (2011) on the 4-node cluster using 128 processes

146 N. Ding et al.

1 3

et al. 2011). We provide a relatively fine-grained perfor-
mance model with the consideration of architecture-level
details for critical kernels.

Making accurate run-time predictions for different prob-
lem size is even more challenging since the performance
behavior may change obviously with different input size.
Compared to the analytic performance model (Nan et al.
2014), we improve large problem size run-time prediction
accuracies by 50% on average with CICE and NPB. The
empirical model Stewart (2011) gets even larger model
errors for large problem size than the analytic model (Nan
et al. 2014), as shown in Fig. 12.

Another feasible solution is to break the whole program
into several kernels with the assumption that kernels can
have simpler performance behaviors (Bhattacharyya et al.
2014). There are two methods for kernel identification
according to the information required Arenaz et al. (2008):
application-level kernel detection and compiler-assisted ker-
nel detection. Application-level kernels Craig et al. (2015)
are often picked manually by domain experts, which can-
not be used for automatic performance modeling. Craig
et al. manually identified at least nine kernels of CICE with
domain knowledge (Craig et al. 2015). These manual kernels
do not have different representative performance behaviors
due to two reasons. The first reason is that they do not sepa-
rate the computation and communication parts. However,
the computation and communication have different perfor-
mance behaviors for modeling. The second reason is that
each of the nine manual kernels contains many functions.
The certain function may be invoked by different parent
functions from different kernels. With our kernel identifica-
tion method, we can only use seven kernels to represent the
performance behavior of CICE accurately.

The compiler-assisted kernel detection usually comes
with online profiling. Bhattacharyya et al. use on-line pro-
filing and automatic performance modeling to reduce the
temporal and spatial overhead of fine-grained kernel identi-
fication and modeling (Bhattacharyya et al. 2014). However,
this loop-level kernel identification will introduce as many
kernels to be instrumented and modeled as there are loops.

This can be hundreds for the NAS parallel benchmarks as
listed in column “Lker” Table 3. Bhattacharyya et al. (2015)
tried to use static code analysis to detect and fuse similar
kernels. But it is not effective to handle the complex loops
and functions. Moreover, the fine-grained kernel modeling
with statistical regression for each kernel (loop or function)
makes the performance results hard to interpret. As shown in
Table 3, we can achieve the required model accuracy (around
10%) while using up to an order of magnitude fewer kernels,
compared to loop-level kernel modeling (Bhattacharyya
et al. 2014).

Pallipuram et al. (2015; 2014) uses regression-based
method combined with an analytical model framework:
T_comp = a ∗ FLOPS + b ∗ BYTES + c , where FLOPS and
BYTES are derived from hardware counters. They argue that
the hardware counters profiling technique is not accurate.
The large errors come from the short execution times of the
target program. Our experiments show that we can get 96%
confident intervals when the application runtime is larger
than 100ms with precise event-based sampling (Sprunt
2002).

6 Conclusions

We present APMT, an automatic performance model build-
ing tool, with hardware counter-assisted profiling. The out-
put from APMT is easy-to-understand and reasonably accu-
rate while keeping low overheads. We believe that APMT
can offer a convenient mechanism for users and developers
to learn the scaling performances of complex real-world
applications. Hardware counter-assisted profiling is used to
quantify important performance characteristics. The com-
bination of these hardware counter can be easily interpreted
to motivate future code optimization. We demonstrate that
APMT not only can improve the performance model’s pro-
ductivity but also successfully accelerate the performance
model building procedure. Our performance model errors
are 15% on average. Compared with the well-known analyti-
cal model and the empirical model, APMT can improve the
model accuracy of performance predictions by 25% and 52%
respectively in strong scaling tests and can get even more
accuracy improvements for the run-time predictions with
larger problem size. In the future, we will apply our method
to understand the load imbalance and I/O performance in
HPC applications.

Acknowledgements This work is partially supported by National
Key R&D Program of China (Grant Nos. 2016YFA0602100 and
2017YFA0604500), and Center for High Performance Computing and
System Simulation of Pilot National Laboratory for Marine Science
and Technology (Qingdao).

FT EP MG LU SP BT CICE HOMME
0

20%

40%

60%

80%

100%

 APMT The analytical model The empirical model

M
od

el
 E

rr
or

Fig. 12 Large problem size model error comparisons among our
model, the analytical model (Nan et al. 2014), and the empirical
model Worley et al. (2011) on the 4-node cluster using 128 processes

147APMT: an automatic hardware counter-based performance modeling tool for HPC applications

1 3

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-
Crummey, J., Tallent, N.R.: Hpctoolkit: tools for performance
analysis of optimized parallel programs. Concurr. Comput. Pract.
Exp. 22(6), 685–701 (2010)

Arenaz, M., Touriño, J., Doallo, R.: Xark: an extensible framework
for automatic recognition of computational kernels. ACM Trans.
Program Langu. Syst. (TOPLAS) 30(6), 32 (2008)

Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P.,
Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams,
S.W., et al. The landscape of parallel computing research: a view
from berkeley. Technical report, Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley
(2006)

Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L.,
Dagum, L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A.,
Schreiber, R.S., et al.: The nas parallel benchmarks. Int. J. High
Perform. Comput. Appl. 5(3), 63–73 (1991))

Balaprakash, P., Tiwari, A., Wild, S.M., Carrington, L., Hovland, P.D.:
Automomml: Automatic multi-objective modeling with machine
learning. In International Conference on High Performance Com-
puting, pp. 219–239 (2016)

Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., De Supinski,
B., Schulz, M.: A regression-based approach to scalability predic-
tion. In Proceedings of the 22nd annual international conference
on Supercomputing, pp. 368–377. ACM (2008)

Bauer, G., Gottlieb, S., Hoefler, T.: Performance modeling and com-
parative analysis of the milc lattice qcd application su3_rmd.
In Cluster, Cloud and Grid Computing (CCGrid), pp. 652–659.
IEEE (2012)

Bhattacharyya, A., Hoefler, T.: Pemogen: automatic adaptive perfor-
mance modeling during program runtime. In Proceedings of the
23rd International Conference on Parallel Architectures and Com-
pilation, pp. 393–404. ACM, (2014)

Bhattacharyya, A., Kwasniewski, G., Hoefler, T.: Using compiler tech-
niques to improve automatic performance modeling. In Proceed-
ings of the 24th International Conference on Parallel Architectures
and Compilation. ACM (2015)

Bitzes, G., Nowak, A.: The overhead of profiling using pmu hardware
counters. CERN openlab report (2014)

Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable
cross-platform infrastructure for application performance tuning
using hardware counters. In Supercomputing, ACM/IEEE 2000
Conference, IEEE, pp. 42–42 (2000)

Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated per-
formance modeling to find scalability bugs in complex codes.
In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 45.
ACM (2013)

Chou, C.-Y., Chang, H.-Y., Wang, S.-T., Huang, K.-C., Shen, C.-Y.: An
improved model for predicting hpl performance. In International
Conference on Grid and Pervasive Computing, pp. 158–168.
Springer (2007)

Clapp, R., Dimitrov, M., Kumar, K., Viswanathan, V., Willhalm, T.:
Quantifying the performance impact of memory latency and
bandwidth for big data workloads. In Workload Characterization
(IISWC), pp. 213–224. IEEE (2015)

Craig, A.P., Mickelson, S.A., Hunke, E.C., Bailey, D.A.: Improved par-
allel performance of the cice model in cesm1. Int. J. High Perfor.
Comput. Appl. 29(2), 154–165 (2015)

Dennis, J.M., Edwards, J., Evans, K.J., Guba, O., Lauritzen, P.H.,
Mirin, A.A., St-Cyr, A., Taylor, M.A., Worley, P.H.: Cam-se:
a scalable spectral element dynamical core for the community
atmosphere model. Int. J. High Perform. Comput. Appl. 26(1),
74–89 (2012)

Doweck, J.: Inside intel® core microarchitecture. In Hot Chips 18 Sym-
posium (HCS), pp. 1–35. IEEE (2006)

Gamblin, T., Schulz, M., de Supinski, B.R., Wolf, F., Wylie, B.J.N.
et al. Reconciling sampling and direct instrumentation for unintru-
sive call-path profiling of mpi programs. In Parallel & Distributed
Processing Symposium (IPDPS), 2011. IEEE (2011)

Garcia, S., Jeon, D., Louie, Christopher M., Taylor, Michael B.: Krem-
lin: rethinking and rebooting gprof for the multicore age. In ACM
SIGPLAN Notices, vol. 46, pp. 458–469. ACM (2011)

Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr,
B.: The scalasca performance toolset architecture. Concurr.
Comput. Pract. Exp. 22(6), 702–719 (2010)

Hong, S., Kim, H.: An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. In ACM
SIGARCH Computer Architecture News, vol. 37, pp. 152–163.
ACM (2009)

Hu, P.J., Chau, P.Y.K., Sheng, O.R.L., Tam, K.Y.: Examining the
technology acceptance model using physician acceptance of tel-
emedicine technology. J. Manag. Inf. Syst. 16(2), 91–112 (1999)

Hunke, E.C., Lipscomb, W.H., Turner, A.K., et al. Cice: the los ala-
mos sea ice model documentation and software user’s manual
version 4.1 la-cc-06-012. T-3 Fluid Dynamics Group, Los Ala-
mos National Laboratory, pp. 675 (2010)

Jayakumar, A., Murali, P., Vadhiyar, S.: Matching application signa-
tures for performance predictions using a single execution. In
Parallel and Distributed Processing Symposium (IPDPS), pp.
1161–1170. IEEE (2015)

Jones, P.W., Worley, P.H., Yoshida, Y., White, J.B., Levesque, J.:
Practical performance portability in the parallel ocean program
(pop). Concurr. Comput. Pract. Exp. 17(10), 1317–1327 (2005)

Keller, R., Gabriel, E., Krammer, B., Mueller, M.S., Resch, M.M.:
Towards efficient execution of mpi applications on the grid:
porting and optimization issues. J. Grid Comput. 1(2), 133–149
(2003)

Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Esch-
weiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A. et al.:
Score-p: a joint performance measurement run-time infrastructure
for periscope, scalasca, tau, and vampir. In Tools for High Per-
formance Computing, pp. 79–91. Springer, Amsterdam (2012)

Lee, Benjamin C., Brooks, David M., de Supinski, B.R., Schulz, M.,
Singh, K., McKee, S.A.: Methods of inference and learning for
performance modeling of parallel applications. In Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice
of parallel programming, pp. 249–258 (2007)

Liang, Q.: Performance monitor counter data analysis using counter
analyzer. IBM developerWorks (2009)

Malladi, R.K.: Using intel® vtuneTM performance analyzer events/
ratios & optimizing applications. http:/software.intel.com. (2009)

http://creativecommons.org/licenses/by/4.0/

148 N. Ding et al.

1 3

Malony, A.D., Shende, S.S.: Overhead compensation in performance
profiling. In European Conference on Parallel Processing,
Springer, pp. 119–132 (2004)

Marathe, A., Anirudh, R., Jain, N., Bhatele, A., Thiagarajan, J.,
Kailkhura, B., Yeom, J.-S., Rountree, B., Gamblin, T.: Perfor-
mance modeling under resource constraints using deep transfer
learning. In Proceedings of the: ACM/IEEE International Con-
ference for High Performance Computing, p. 2017. Networking,
Storage and Analysis (SC), Denver, Colorado (2017)

Merten, M.C., Trick, A.R., George, C.N., Gyllenhaal, J.C., Hwu, W.W.:
A hardware-driven profiling scheme for identifying program hot
spots to support runtime optimization. In ACM SIGARCH Com-
puter Architecture News, vol. 27, pp. 136–147. IEEE Computer
Society (1999)

Mucci, P.J., Browne, S., Deane, C., Ho, G.: Papi: A portable interface
to hardware performance counters. In Proceedings of the depart-
ment of defense HPCMP users group conference, vol 710 (1999)

Nan, D., Wei, X., Xu, J., Haoyu, X., Zhenya, S.: Cesmtuner: an auto-
tuning framework for the community earth system model. In High
Performance Computing and Communications (HPCC), pp. 282–
289, Washington, DC. IEEE Computer Society (2014)

Pallipuram, V.K., Smith, M.C., Raut, N., Ren, X.: A regression-based
performance prediction framework for synchronous iterative
algorithms on general purpose graphical processing unit clusters.
Concurr. Comput. Pract. Exp. 26(2), 532–560 (2014)

Pallipuram, V., Smith, M., Sarma, N., Anand, R., Weill, E., Sapra,
K.: Subjective versus objective: classifying analytical models for
productive heterogeneous performance prediction. J. Supercom-
put. 71(1) (2015)

PMU Intel. Profiling tools. https ://githu b.com/andik leen/pmu-tools
Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for

performance modeling. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage
and Analysis, pp 84. IEEE Computer Society Press (2012)

Sprunt, B.: Pentium 4 performance-monitoring features. Micro IEEE
22(4), 72–82 (2002)

Stewart, A.: A programming model for bsp with partitioned synchroni-
sation. Formal Aspects Comput. 23(4), 421–432 (2011)

Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-
oriented tool suite for x86 multicore environments. In Parallel
Processing Workshops (ICPPW), pp. 207–216. IEEE (2010)

Van den Steen, S., De Pestel, S., Mechri, M., Eyerman, S., Carlson,
T., Black-Schaffer, D., Hagersten, E., Eeckhout, L.: Micro-archi-
tecture independent analytical processor performance and power
modeling. In Performance Analysis of Systems and Software
(ISPASS), pp. 32–41. IEEE (2015)

Weaver, V.M.: Linux perf_event features and overhead. In: The 2nd
International workshop on performance analysis of workload opti-
mized systems, FastPath, vol 13 (2013)

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful
visual performance model for multicore architectures. Commun.
ACM 52(4), 65–76 (2009)

Worley, P.H., Craig, A.P., Dennis, J.M., Mirin, Arthur A., Taylor, M.A.,
Vertenstein, M.: Performance of the community earth system
model. In High Performance Computing, Networking, Storage
and Analysis (SC), pp. 1–11. IEEE (2011)

Wu, Q., Mencer, O.: Evaluating sampling based hotspot detection. In
International Conference on Architecture of Computing Systems,
Springer, pp. 28–39 (2009)

Xingfu, W., Lively, C., Taylor, V., Hung, C.C., Chun Y.S., Katherine,
C., Steven, M., Dan, T., Vince, W.: Multiple metrics modeling
infrastructure. Springer, MuMMI (2014)

Zaparanuks, D., Jovic, M., Hauswirth, M.: Accuracy of performance
counter measurements. In Performance Analysis of Systems and
Software, ISPASS (2009)

https://github.com/andikleen/pmu-tools

	APMT: an automatic hardware counter-based performance modeling tool for HPC applications
	Abstract
	1 Introduction
	2 Performance profiling
	3 Performance model framework
	3.1 Model inputs and outputs
	3.2 Critical Kernel identification
	3.3 Model construction
	3.4 Model refinement

	4 Evaluation
	4.1 Experiment platforms and configurations
	4.2 Results

	5 Comparisons and discussions
	6 Conclusions
	Acknowledgements
	References

