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Abstract
The ever-growing complexity of HPC applications and the computer architectures cost more efforts than ever to learn 
application behaviors. In this paper, we propose the APMT, an Automatic Performance Modeling Tool, to understand and 
predict performance efficiently in the regimes of interest to developers and performance analysts while outperforming many 
traditional techniques. In APMT, we use hardware counter-assisted profiling to identify the key kernels and non-scalable 
kernels and build each kernel model according to our performance modeling framework. Meantime, we also provide an 
optional refinement modeling framework to further understand the key performance metric, cycles-per-instruction (CPI). Our 
evaluations show that by only performing a few small-scale profiling, APMT is able to keep the average error rate around 
15% with average performance overheads of 3% in different scenarios, including NAS parallel benchmarks, dynamical core 
of atmosphere model of the Community Earth System Model (CESM), and the ice component of CESM on commodity 
clusters. APMT improve the model prediction accuracies by 25–52% in strong scaling tests comparing to the well-known 
analytical model and the empirical model.

Keywords Performance Modeling · Automatic Modeling · Hardware Counter · Kernel Clustering · Parallel Applications

1 Introduction

The ever-growing complexity of HPC applications, as well 
as the computer architectures, cost more efforts than ever 
to learn application behaviors by massive analysis of appli-
cations’ algorithms and implementations. To make projec-
tions of applications’ scaling run-time performance, design-
ing performance models (Marathe et al. 2017; Balaprakash 
et al. 2016; Xingfu et al. 2014; Jones et al. 2005; Craig et al. 
2015; Bhattacharyya et al. 2014; Bauer et al. 2012; Nan et al. 
2014; Pallipuram et al. 2015, 2014) has long been an art only 
mastered by a small number of experts. Nevertheless, we can 

still see that performance models can be used to quantify 
meaningful performance characteristics across applications 
(Balaprakash et al. 2016; Xingfu et al. 2014) and to provide 
performance bottlenecks associated with their implementa-
tions (Williams et al. 2009); to offer a convenient mechanism 
for users and developers to learn the scaling performances 
(Calotoiu et al. 2013); and even to guide the optimization 
decisions (Nan et al. 2014).

Recently, several methods for performance modeling 
have been developed to simplify and streamline the pro-
cess of modeling. Techniques range from traditional expert 
(analytical) modeling (Bauer et al. 2012; Nan et al. 2014), 
through compiler-assisted modeling Bhattacharyya et al. 
(2014) and domain language-based modeling Spafford and 
Vetter (2012) to fully automatic (analytical and empirical) 
modeling (Jones et al. 2005; Craig et al. 2015; Knüpfer et al. 
2012; Hong and Kim 2009; Barnes et al. 2008; Balaprakash 
et al. 2016; Xingfu et al. 2014). However, these modeling 
techniques are either inadequate to capture the functional 
relationships between applications performance and the tar-
get architecture or suffer from manual high-efforts to learn 
the algorithm and implementation case by case.
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The main advantage of analytical models is interpretabil-
ity which allows users to reason about performance while 
the disadvantage is the high manual efforts of portability 
across applications. Empirical models are built according 
to statistical methods which is good at portability across 
applications but it is challenging to achieve high model 
accuracy while keeping low overheads. So far, tools only 
supported either analytical (Craig et al. 2015; Bauer et al. 
2012) with several prior knowledge or empirical modeling 
(Jones et al. 2005; Craig et al. 2015; Knüpfer et al. 2012) 
with regression-based method. Machine learning techniques 
have been introduced to improve the model accuracy when 
predicting the execution time from observed performance 
results of a large number of application runs (Balaprakash 
et al. 2016; Xingfu et al. 2014). It usually takes a long time 
to profile and train the model, especially for the cost-expen-
sive applications.

Different from the previous work, we propose APMT, an 
offline performance modeling tool with hardware counter-
assisted profiling, to overcome the disadvantages of high 
manual efforts (analytical models) and unwarrantable model 
accuracy (empirical models). Hardware counter-assisted 
profiling is widely used in state-of-the-art performance 
tools, such as HPCtoolkit (Adhianto et al. 2010), LIKWID  
(Treibig et al. 2010), Intel Vtune (Malladi 2009), PAPI 
(Mucci 1999), and perf (Weaver 2013), to learn application 
behaviors rather than apply massive analysis to the applica-
tion. Meanwhile, hardware counters are supported on vari-
ous processors, such as Intel processors (sps22 sps22), IBM 
processors (Liang 2009) and AMD processors (Zaparanuks 
et al. 2009).

APMT starts from a simple analytical model framework, 
predicts the computation and communication performance 
separately. We use hardware counter-assisted technique to 
predict applications’ computation performance using our 
pre-defined functions. We instrument the PMPI interface 
Keller et al. (2003) to profile communication performance, 
and then use the well-known Hockney model Chou et al. 
(2007) to predict the communication performance.

To summary, the key contributions of this paper are:
1. A hardware counter-assisted technique to identify 

expensive and non-scalable kernels Three types of kernels 
are detected in APMT: key kernels (large run time propor-
tion), non-scalable kernels, and the sum of rest functions. 
Such a method allows us to reduce the number of kernels by 
more than an order of magnitude compared to the loop-level 
kernels (Bhattacharyya et al. 2015, 2014).

2. A low-overhead performance modeling framework A 
common problem in modeling large-scale applications is 
the modeling overhead, which often exceeds 10% (Malony 
et al. 2004). Yet, machine time, especially at scale, is very 
valuable. Moreover, large overheads may cause applications’ 

performance deviations as well. Our hardware counter-
assisted method can keep the overhead to 3% on average.

3. A novel scheme to understand performance through 
model parameters ’Cycles per instruction’ (CPI), blocking 
factor for computation and blocking factor for communi-
cation are proposed to understand the kernel’s instructions 
throughput, memory traffic, and computation/communica-
tion overlap.

4. Evaluations on real applications We deploy the APMT 
on two real-world applications and one proxy application: 
HOMME (Dennis et al. 2012), the dynamical core of the 
Community Atmosphere System Model (CAM Dennis et al. 
2012), and the Los Alamos CICE model (Hunke et al. 2010), 
a full simulation of sea ice which is used in coupled global 
climate models, and the NAS parallel benchmarks (Bailey 
et al. 1991). APMT improves the model accuracy up to 52% 
compared to previous models (Nan et al. 2014; Worley et al. 
2011).

APMT characterizes the performance of applications 
more concisely than previous approaches. With these efforts, 
we intend to develop an automatic and practical use perfor-
mance modeling tool with the capabilities of interpretability, 
low-overhead, and portability. Thus, we demonstrate that 
APMT can bridge the gap between high manual effort per-
formance modeling and automated modeling approaches.

2  Performance profiling

To guarantee lightweight analysis, APMT leverages a hard-
ware counter-assisted method for the computation profiling, 
and instrument the PMPI interface Keller et al. (2003) to 
profile the MPI performance.

Hardware Counter-assisted Profiling.  Although the 
instrumentation is a usual way to obtain the functions’ 
timing information (Bhattacharyya et al. 2015, 2014), the 
hardware counter-assisted profiling can also get the timing 
information provided by the hardware counter (CPU cycles), 
but in a light-weight way (Weaver 2013; Bitzes and Nowak 
2014). The hardware counter-assisted profiling has 3% over-
head on average when profiling different hardware counters 
whilst the overhead of instrument-based profiling tools, such 
as Score-P (Knüpfer et al. 2012), and Scalasca (Geimer et al. 
2010), usually exceeds 10%.

Moreover, hardware counters can also provide more 
architecture-oriented information of application runs, such 
as CPI (cycles per instruction), the number of L1/L2/LLC 
data cache accesses/misses and the waiting time for memory, 
to help further identifying and understanding the kernel per-
formance characteristics (Gamblin et al. 2011; Zaparanuks 
et al. 2009; Browne et al. 2000).

To the best of our knowledge, most existing performance 
models that use hardware counter-assisted profiling focus on 
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coarse-grained performance insights, such as flops and mem-
ory bandwidth (Williams et al. 2009). Those models can be 
very useful to tell users the kernel is compute bound or mem-
ory bound. Thus, kernels with a low algorithmic operations 
and low flop rate should be the ones need to be optimized. 
However, a very important golden standard of performance 
metrics, timing, is missing which can mislead future optimiza-
tion decisions.

APMT differs from the established approaches, we use 
hardware counter-assisted profiling to provide a finer-grained 
performance insights such as memory and compute overlap, 
and scaling time-to-solution performance estimation. Such 
kinds of the insights can guide developer with future opti-
mization with kernels should be optimized in next steps and 
optimazation directions such as communication, memory and 
compute overlap, and data reuse.

One important information from performance pro-
filing is to know where the time goes. Here, we 
use ���_���_��������.������_� which refers to the CPU 
cycles to profile the timing of each function. The accuracy 
of the hardware counter-assisted method (sampled)for finding 
hotspots has been validated (Wu and Mencer 2009; Merten 
et al. 1999). In this paper, we use the normalized root mean 
square error (NRMSE, Eq. 1) to evaluate the time percentage 
differences between the hardware counter-assisted method 
(sampled)and real values (instrumented). In Eq. 1, K is the 
total number of kernels, ti and ri refer to the time proportions 
of sampled time proportions and the instrumented time pro-
portions. The instrumented values are measured by using the 
well-known call graph execution profiler (GPROF Garcia et al. 
2011). We use two-million-cycles intervals as sampling inter-
vals, and NRMSE is around 10−4 , which indicts good matches 
between sampled results and the real ones.

Instrumented MPI Profiling. We generate communication 
traces, namely, the message size, the message count, the 
source, and destination, by using the standardized PMPI 
interface (Keller et al. 2003; Gamblin et al. 2011). Perfor-
mance measurements may have serious run-to-run variation 
because of OS jitter, network contention, and other factors. 
To ensure the profiling validity, users can repeat measure-
ments until the variance stables.

3  Performance model framework

In this section, we present the overview of APMT, and then 
we illustrate how to build computation and communication 
models for each detected kernels.

Figure 1 shows the overview of the APMT. We first 
breakdown the applications into a set of compute kernels 
by conducting several profiling runs. We then model the 
performance of each compute kernel with the representative 
hardware counters according to our model framework. For 
communications, we construct the model in terms of point-
to-point communication and collective communication. We 
also conduct a closed-loop model refinement to meet the 
user-defined model accuracy. In the end, the model reports 
strong/weak scaling run-time performance. User decisions 
have to be made when the results after model refinement can 
not meet the accuracy requirements.

(1)NRMSE =

�∑K

i=1
ti ⋅ (ti − ri)

2

max
1<i<K

(ti ∪ ri) − min
1<i<K

(ti ∪ ri)
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Fig. 1  Overview of APMT. Three key steps to build performance models: (1) profiling, (2) determine critical kernels, and (3) build computation 
and communication performance model for each critical kernels
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3.1  Model inputs and outputs

We take the number of processes and the problem sizes as 
our model inputs because they are the most commonly-used 
settings for performance evaluation. Model outputs are the 
application run-time of the given problem size and the given 
parallelism, as well as the timing breakdown of the model. 
The problem size cannot be determined only by grid size in 
structured grid problem because the iteration number may 
not remain the same due to convergence. Therefore, the 
problem size has to take both grid size (nx, ny, nz) and the 
number of iterations (iter) into account. Those inputs can be 
obtained by either from domain experts or the application 
configurations.

3.2  Critical Kernel identification

We identify three kinds of kernel candidates by using execu-
tion cycle counter (CPU_CLK_UNHALTED.THREAD_P) 
from at least three profiling runs using different parallel-
isms. Figure 2 shows an example of how to identify critical 
kernels. We choose functions as a set of kernel candidates 
because it is natural to separate communication and compu-
tation in parallel applications to enable us to predict them 
separately. We can use the same idea to handle kernel iden-
tification for different input size.

The three kinds of critical kernel candidates are listed 
below. 

1. Functions that whose share of the application execution 
cycles are larger than a user-defined threshold (default 
is 5% in this paper) .

2. Functions that whose run-time is not decreasing. The 
non-expensive functions may become expensive ones 
when we run applications using different parallelisms 
or different inputs. For example, the functions in the 
sequential part can turn into hotspots when running the 

application with more processes. As a result, we need to 
find these potential hotspot functions for different num-
bers of processes and inputs.

3. The remaining functions after 1 and 2. The reason is that 
the aggregated kernel can reduce the overhead of build-
ing performance models while maintaining good accu-
racy. Moreover, the entire run-time would be slightly 
affected even if we consider those small functions indi-
vidually.

3.3  Model construction

The performance model framework is shown as Eq. 2. 
The computation and communication times are taken into 
account separately in APMT because they have different 
performance characteristics.

The computation time of a kernel can be estimated by two 
components. The first part is the time it takes to execute 
the computation instructions ( T_compi , i is kernel index, n 
is the total number of kernels). The second part is the time 
associated with fetching the data from storage to compute 
Clapp et al. (2015) ( T_memi ). There is typically some degree 
of overlap between these two components. We introduce a 
variable named memory blocking factor ( BF_memi ), which 
measures the non-overlapping part for loading data from 
local memory.

The communications ( T_comm ) can be categorized into 
two groups: point-to-point (p2p) communication and col-
lective communication. They have different performance 
according to the number of processes and the communica-
tion volume. The summation of the p2p and the collective 
communication times is used to predict the total communi-
cation time.

Different from the previous works that fit the kernel 
model directly (Bhattacharyya et al. 2014), we introduce 
hardware counter-assisted performance models for each 
kernel. With architecture-level modeling, our framework 
is slightly more complicated than previous ones but offers 
more insights on performance.

Computation model construction. Table 1 lists all model 
parameters in APMT, and Table 2 summarizes how they are 
derived. Instead of using high order equations to cover the 
non-linearity of performance models (Van den et al. 2015; 
Jayakumar et al. 2015), we pre-define a set of linear fitting 
functions including polynomial, exponential and logarithm 
for each hardware counter. We do not apply high degree 
equations in the first place for two reasons. The first one 

(2)
T_app =

n∑

i=1

(T_compi + BF_memi ∗ T_memi)

+ BF_comm ∗ T_comm + T_others

Fig. 2  An example of critical kernel candidate identification. P1, 
P2 and P3 refer to different number of processes. funA–funC repre-
sent the kernels which the time percentages are larger than the user-
defined threshold (default is 5% in this paper). funY-funZ represent 
the kernels which the time percentages are not decreasing with grow-
ing number of processes. The rest of the functions are aggregated as 
one big kernel
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is that high degree equations often suffer from over-fitting. 
The second reason is that more model parameters will result 
in additional performance modeling overhead. Each extra 
model parameter requires at least one more application run 
in order to solve the multivariate equations.

We use the highest rsquare Calotoiu et al. (2013) one 
among the pre-defined fitting functions for each hardware 
counter. That is to say, each hardware counter is a func-
tion of parallelism, and then we assemble the correspond-
ing hardware counters according to Table 2 to describe the 
non-linear run-time performance of each kernel. Figure 3 
shows an example of how to derive model parameters using 
a kernel from HOMME. Model parameter BF_memi consists 
of five model variables T_stalli , T_L1i , T_L2i , T_LLCi and 
T_mmi.

where T_L1i represents to the number of L1 hits in kernel 
i, and T_L1i can be described as a function of P using hard-
ware counter MEM_LOAD_UOPS_RETIRED.L1_HIT_PS . 
We then multiplied the function by the L1 cache latency. The 
latency is measured using Intel’s Memory Latency Checker 
(Doweck 2006). The remaining model variables are derived 
similarly. Here, we only consider the worst case of T_memi 
in the model and do not account for concurrency in the 
memory subsystem.

One may notice that the non-overlap memory time can be 
directly calculated by T_stalli . However, knowing the scaling 
estimated runtime is not sufficient to understand what con-
straints the performance. Therefore, we keep T_L1 , T_L2 , 
T_LLC in the model to provide more performance insights 
such as the compute and memory overlap ratio ( BF_mem ) 
and the cache performance. Those can be good guidance for 
developers to decide what optimization should be performed 
in next steps (c.f. Sect. 4.1).

For each kernel’s computation time, we use number of 
instruction multiplied by cycles per instruction (CPI). One 

(3)BF_memi =
T_stalli

T_L1i + T_L2i + T_LLCi + T_mmi

Table 1  Performance models descriptions

Descriptions

T_compi Calculation time of each kernel
T_memi Total memory time
BF_memi Ratio of non-overlapped memory time
BF_comm Ratio of non-overlapped communication time
T_comm Average communication time
T_stalli Waiting time for memory
T_L1i L1 cache access times
T_L2i L2 cache access times
T_LLCi Last level cache access times
T_mmi Main memory times
instructions Executed instructions
T_collective Collective MPI communication
T_p2p Point to point MPI communication
T_others Initialization and finalization time
CPI_i Cycles per instruction (measured)
stot Total communication volume (measured)
T_mapp Total application time (measured)
T_mcomp Total computation time (measured)
T_mcomm Total communication time (measured)
r Total number of p2p MPI operations (measured)
l Total number of collective MPI operations (measured)
P Number of processes (input)
D Problem size (input)
n Total number of kernels (detected)

Table 2  How is the model item 
derived from hardware counter?

How is the model item derived?

T_compi
instructionsi ∗ CPIi

CPUfrequecy ∗ P

T_memi T_L1i + T_L2i + T_LLCi + T_mmi

BF_memi
T_stalli

T_memi

BF_comm T_mapp−T_mcomp

T_mcomm

T_comm
∑r

i=1
T_p2p +

∑l

i=1
T_collective

T_p2p a ⋅ stot + b

T_collective a ⋅ log(P) + b ⋅ stot + c

T_stalli Fitting from RESOURCE_STALLS.LB(ST) counter
T_L1i Fitting from MEM_LOAD_UOPS_RETIRED.L1_HIT_PS counter
T_L2i Fitting from MEM_LOAD_UOPS_RETIRED.L2_HIT_PS counter
T_LLCi Fitting from MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS counter
T_mmi Fitting from MEM_UOPS_RETIRED.ALL_LD(ST)_PS counter
instructionsi Fitting from INST_RETIRED.ANY_P counter
T_others Fitting from P



140 N. Ding et al.

1 3

may note that CPI of one kernel may change rapidly because 
the cache misses/stalled memory instructions may lower 
the instruction throughput. Therefore, the CPI in this paper 
refers to the computation time and computation cycles only. 
The CPI_i is the average CPI from the three profiling runs 
using different number of processes of one kernel. We use 
a standard deviation (Eq. (4)) to evaluate the data volatility.

Communication model construction. For the point-to-point 
(p2p) communication, we assume a linear relationship 
because all processes can carry on their operations in paral-
lel. The time cost t of sending a certain number of message 
n of size s equals to t = n ⋅ (a ⋅ s + b) according to the well-
known Hockney model (Chou et al. 2007). We modeling the 
p2p communication time t with total communication size 
( s_tot = n ⋅ s ) as a ⋅ stot + b (m=1, k=0 of our pre-defined 
fitting function in Table 2).

For collective communications, we consider the 
MPI_Bcast , MPI_Alltoall , and MPI_Allreduce in the subset 
of MPI collective operations. Take MPI_Bcast as an exam-
ple, the time cost t of a broadcast a message of size s among 
all processes P equals to t = a ⋅ log(P) + b ⋅ s + c . For a sake 
for simplicity, we do not model each message sizes, and we 
use an average message size among processes.

(4)deviation =

∑n

p=1
(CPI_ip −

̄CPI_ip)
2

n − 1

3.4  Model refinement

The model results sometimes can be far away from the 
realities. Such error either stems from the communication 
contention or the computation part. Therefore, if the model 
error comes from communication, we refine the total com-
munication volume by conducting two more profiling runs 
using different process numbers. One profiling run is used 
to re-fitting the functions, and the other one is used for 
validation. The overhead of refining communication is two 
more application profiling runs.

If the model error comes from the computation part, 
we believe it results from the model parameters CPIi and 
BF_memi . Let’s think the model parameter CPI repre-
sents the effective cycles per instruction. We then define 
CPI_core that stands for the CPI if all memory references 
are served by cache (Clapp et al. 2015), as Eq. (5) shows. 
If we take the cache as an infinite cache, CPI equals to 
CPI_core . If we add cache misses, the memory block-
ing factor will increase to reflect the impact of memory 
latency.

However, refining CPIi and BF_memi can not be easily 
resolved due to the complexity of the shared memory sys-
tems and applications. Here we provide a methodology to 
refine CPIi and BF_memi which requires changing the CPU 
frequency and repeating the test using one parallelism in 
the previous profiling runs. Thus, we can make the memory 
faster compared to the speed of executing instructions by 
lowering the CPU frequency. After that, we can get two sets 

Fig. 3  An example of how 
to derive model param-
eters. The example is a kernel 
(laplace_sphere_wk) 
from HOMME with 32 ⋅ 32 ⋅ 6 
grids. We use the average com-
pute amount assigned to each 
MPI rank ( 32⋅32⋅6

P
 ) as the x-axis, 
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of CPI_i and T_memi . We then can calculate the CPI_corei 
and BF_memi by solving the linear equation (Eq.(5)). As 
shown in Fig. 10, the y-intercept of the line is CPI_corei and 
the gradient is BF_memi . Therefore, the overhead of refining 
computation parameters are higher than refining communi-
cation. In addition, the computation refinement may only 
work for the machines who can reboot parts of the compute 
nodes without interrupting other ongoing jobs.

Finally, we get a hierarchical and fine-grained performance 
modeling framework that combines the advantages of ana-
lytical and empirical methods. APMT combines easily 
interpretable linear and logarithmic functions into robust 
and accurate non-linear application performance models.

4  Evaluation

In this section, we first describe the experiment platforms 
and configurations. We then apply APMT to two real-world 
applications and one proxy application, and show how to use 
APMT to understand run-time performance.

4.1  Experiment platforms and configurations

The experiments are carried out on two platforms, a 4-node 
Intel Xeon cluster and an Intel cluster in National Supercom-
puting Center in Wuxi of China (NSCC-Wuxi). Each node 
of the 4-node Intel Xeon cluster contains two Intel Xeon 
E5-2698v3 processors running at 3.0 GHz with 64 GB of 
DDR3-1600 memory. The operating system is CentOS 6.7. 
Each NSCC-Wuxi node contains two Intel Xeon E5-2680v3 
processors running at 2.5 GHz with 128 GB memory. The 
operating system is RedHat 6.6. The MPI version of two 
clusters is Intel MPI 15.0, and the network of both clusters 
is FDR InfiniBand.

We use APMT to predict the run-time performance of 
two real-world applications: HOMME Dennis et al. (2012) 
and CICE Hunke et al. (2010), and one proxy application: 
NPB Bailey et al. (1991). HOMME Dennis et al. (2012) is 
the dynamical core of the Community Atmospheric Model 
(CAM) being developed by the National Center for Atmos-
phere Research (NCAR). The Los Alamos sea ice model 
(CICE) Hunke et al. (2010) is a widely used sea ice model 
in the famous CESM project (Craig et al. 2015). The NPB 
is a well-known suite of benchmark that proxy scientific 
applications Asanovic et al. (2006) by mimicing the com-
putation and communication characteristics of large scale 
computational fluid dynamics (CFD) applications. The 

(5)CPIi = CPI_corei + BF_memi ∗ T_memi

applications all run on a single node to better understand 
the memory contention. We perform the predictions across 
nodes to prove the effectiveness and robustness of APMT. 
Furthermore, we evaluate CICE (up to 1024 processes) and 
HOMME (up to 3000 processes) on NSCC-Wuxi for large 
scale runs. I/O is not considered in our evaluation.

4.2  Results

In this section, we show how APMT breaks down the appli-
cations into kernels, provided performance insights, and 
conduct the model refinement. In the CICE case, we show 
how to use APMT to predict the strong-scaling run-time and 
how APMT can help the users and developers to learn the 
performance characteristics. In HOMME, we present how 
we estimate the time-to-solution performance for large prob-
lem size, and how non-scalable kernels behave when con-
duct strong scaling application runs. In NPB, we focus on 
how to apply the model refinement technique to the kernel.

Kernel identification. Table 3 lists our experiment con-
figurations, the number of kernels detected by our hardware 
counter-assisted profiling, the number of loop-level ker-
nels Bhattacharyya et al. (2014) of the small problem size. 
Compared to the number of loop-level kernels (“Lker” in 
Table 3), we reduce the number of kernels by more than an 
order of magnitude.

CICE We detect seven kernels on the 4-node cluster while 
five kernels on NSCC-Wuxi. Due to the different run-time 
performance on the two computing platforms, short-
wave_compute_dEdd and transport_remap_
gradient on the 4-node cluster are not taken as kernels on 
NSCC-Wuxi. The function shortwave_compute_dEdd 
computes the transports across each edge by integrating the 
mass and tracers over each departure triangle, which only 
costs 0.52% time proportion on NSCC-Wuxi while it takes 
9.57% on the 4-node cluster. The function transport_
remap_gradient computes a limited gradient of the sca-
lar field phi in scaled coordinates which costs 1.87% time on 
NSCC-Wuxi while it takes 5.00% on the 4-node cluster. The 
sum of all the kernel’s run-time can cover 99% computation 
time of CICE on both of the two computing platforms.

The prof iling process number of CICE are 
P = {4 8 10 16 20 24}  o n  N S C C - W u x i  a n d 
P = {2 8 16 20 24} on the 4-node cluster. As Fig. 4 shows, 
each CICE kernel’s CPI deviation (Eq. (4)) using different 
number of processes is around 10−3 - 10−2 on the 4-node 
cluster and NSCC-Wuxi. Therefore, we use a constant aver-
age CPI as default option during the performance modeling 
for low overhead.

We observe that Limited_gradient and trans-
port_integrals have similar CPIs on the two com-
puting platforms in Fig.  4, respectively. However, by 
looking into its memory behavior (Fig.  5), we can see 
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that limited_gradient and transport_inte-
grals have different memory performance characteristics 
( BF_mem). limited_gradient has a higher BF_mem 
than transport_integrals which indicts that lim-
ited_gradient suffers from a lower memory traffic.

Recall  that  BF_mem  is  est imated by using 
T_stall

T_L1+T_L2+T_LLC+T_mainmemory
 with seven hardware counters 

(Table 2). Take the the BF_mem of limited_gradient 
and transport_integrals on NSCC-Wuxi as an 
example, we can see that most of the memory access happen 
in L1 cache for both kernels (orange line is close to the green 
line) in Fig.  6. However, the stall cycles due to store 

operation ( RESOURCE_STALLS.ST  ) of limited_gra-
dient is much higher than the kernel transport_
integrals which denotes the differences of BF_mem . 
The large store stall cycles indict that there exists a relatively 
strong data dependency in limited_gradient than 
transport_integrals. Based on the above insights 
from the model, reducing data dependencies of limited_
gradient should be performed in next optimization step.

For communication, we focus on inter-node communi-
cation. Therefore, we profile inter-node communication on 
NSCC-Wuxi using a 32-process run, a 96-process run and a 
128-process run as shown in Fig. 7. We see that there exists 
a lot of p2p communications. These communications are 
used to update halo regions (ghost cells) using MPI_Send 
and MPI_Recv.

Table 3  Number of functions 
(Func), total number of kernels 
(ker), number of non-scalable 
kernels (nonk), LOCs, number 
of kernels from loop-level 
(Lker) modeling work 
(Bhattacharyya et al. 2014)

Func ker nonk LOCs Lker Size

CICE 109 7 2 75,000 116 ⋅ 100

384 ⋅ 320

HOMME 210 11 6 113,095 32 ⋅ 32 ⋅ 6 ⋅ 128

256 ⋅ 256 ⋅ 6 ⋅ 128

EP 5 3 0 359 12 228

230

MG 16 5 1 2,568 98 256 ⋅ 256 ⋅ 256 ⋅ 4

512 ⋅ 512 ⋅ 512 ⋅ 20

FT 10 5 2 2,034 39 256 ⋅ 256 ⋅ 128 ⋅ 6

512 ⋅ 256 ⋅ 256 ⋅ 20

SP 15 5 1 4,902 229 64 ⋅ 64 ⋅ 64 ⋅ 400

102 ⋅ 102 ⋅ 102 ⋅ 400

LU 11 6 2 5,957 165 64 ⋅ 64 ⋅ 64 ⋅ 250

102 ⋅ 102 ⋅ 102 ⋅ 250

BT 14 8 2 9,162 211 64 ⋅ 64 ⋅ 64 ⋅ 200

102 ⋅ 102 ⋅ 102 ⋅ 200

CG 3 6 1 1,901 30 14, 000 ⋅ 15

75, 000 ⋅ 75

Fig. 4  CPIs and their deviations of each kernel with CICE runs using 
different number of processes on the 4-node cluster and NSCC-Wuxi

Fig. 5  Memory blocking factor of each CICE kernel on NSCC-Wuxi 
using problem size gx3. The horizontal resolution of gx3 is 116 ⋅ 100
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HOMME. We profile the small problem size ne32 (grid 
number: 32 ⋅ 32 ⋅ 6 , vertical level: 128). Fig. 3 shows the 
computation performance, and Fig. 8 shows the communica-
tion performance. For a strong scaling evaluation, p2p com-
munication contributes the most in its total communication 
time. With the help of our model, we can see that the total 
p2p communication volume increases with a growing num-
ber of processes. On the contrary, the total communication 
volume remains the same (24KB) for MPI_Allreduce 
and MPI_Bcast, respectively.

The run-time performance prediction for a larger problem 
size D_large is according to the average compute amount per 
MPI rank. This is because most of the current HPC 

applications follows the well-known BSP model (Stewart 
2011). Of course, the memory resource contention plays an 
important role in run-time performance, especially the main 
memory access time. In this paper, we define a threshold 
E = ‖ N_LLCmiss_ip

N_totalmem_ip
‖ to evaluate the effectiveness for Dlarge 

run-time prediction from the harm of memory contention. 
N_LLCmiss_ip represents the number of last level cache 
misses of kernel i with a number of processes p, and 
N_totalmem_ip is the total number of memory access of p. 
Our experiments show that last level cache does not play an 
important role if E ≤ 1e − 4 . Otherwise if E > 1e − 4 , it 
indicts that the effect of memory contention has already 

Fig. 6  Hardware counter-assisted profiling of two CICE kernels 
on NSCC-Wuxi using problem size gx3. The horizontal resolution 
of gx3 is 116 ⋅ 100 . The R_square Hu et  al. (1999) of our hardware 

counter-assisted profiling is around 0.9. This indicates a good quality 
of fitting between the model and the measured performance data. The 
range of R_square is [0, 1], and the higher, the better

Fig. 7  Communication time of 
CICE with problem size (gx3) 
of 116 ⋅ 100 on NSCC-Wuxi. 
The dotted points are the meas-
ured data, and the (green) lines 
are plotted with our model. The 
y-axis are the accumulated total 
communication volume (Bytes) 
and accumulated total commu-
nication time of all MPI ranks

Fig. 8  Measured vs. Predicted communication time of the ne32 problem size in HOMME on the Intel cluster of NSCC-Wuxi
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revealed in the profiling cases. Thus we have to choose suit-
able numbers of processes to conduct the profiling runs. We 
exploit the observation that the significant performance fluc-
tuation of last level cache rarely happens.

We then use performance models built using ne32 to 
predict the run-time of problem size ne256 (grid number: 
256 ⋅ 256 ⋅ 6 , vertical level: 128). We do not predict the 
performance per kernel because our observation shows 
that the compute amount increment of each kernel is 
inconsistent to the ratio =

ne256

ne32
 , but highly depends on its 

inputs. Users with little domain knowledge are hard to 
estimate the increment without profiling. Therefore, we 
predict the computation time for the overall computation 
rather than functions’ time to give a total run-time for large 
problem size. Taking the 1536 MPI rank prediction as an 
example, the average computation amount of 1536 MPI 
ranks (problem size ne256) is 256⋅256⋅6

1536
= 16 grids. Thus 

we can find the model prediction using the ne32 computa-
tion performance model with 16 grids (Fig. 3). With this 
method, the estimated computation run-time for ne256 is 
in Fig. 9, which shows a satisfying accuracy of our pro-
posed performance model.

For the communication part, we estimated the total 
communication volume by a factor of 256

32
 . Thus, the p2p 

communication model for large problem size is equal to 
t = a ⋅ ratio ⋅ s + b , where s represents the total communi-
cation volume of small problem size. The collective commu-
nication model is t = a ⋅ log(P) + b ⋅ ratio ⋅ s + c . As Figs. 8 
and  9 show, the communication time is measured twenty 
times and we can see that our model can capture the key 
performances. Therefore, one may focus on reducing p2p 
communication volume, and improving computation and 
communication overlap in the next step.

NAS Parallel Benchmarks. We use a 4-process run, a 
9-process run, and a 16-process run to collect the profiling 
data for BT and SP because they need a square number of 
processes. We use a 2-process run, a 4-process run, and an 
8-process run to collect the profiling data for the rest of NPB 
benchmarks.

BF_comm in NPB equals to 1 because they follows 
the well-known BSP model (Stewart 2011). We take the 

timing analysis of a typical HPC application, BT, as an 
example. The BT benchmark has eight steps in one super 
time-step, four for computation and the others for com-
munication. In the communication steps, the communica-
tion along the x, y and z axes are MPI p2p communica-
tions and the communications across all grids performs 
MPI collective communications (MPI_Allreduce and 
MPI_Bcast). Following its timelines, the total run-time 
of each process in one super time-step can be estimated 
from the accumulation of computation and communica-
tion times, which works for a lot of today’s real-world 
HPC applications.

BT. The largest model error is originally 18% for the BT 
kernel for the scales less than 40 cores. The computation 
time takes 80% of the total run-time. We refine the CPI_i 
and BF_memi for three kernels in BT. We change the CPU 
frequency from 3GHz to 2GHz and measure the CPI and 
T_mem . Here, we use newCPI_1 , and newT_mem1 to repre-
sent the newly measured data at 2GHz. CPI_1 and T_mem1 
are the data at 3GHz. According to Eq. 5, we can calculate

Fig. 9  Measured vs. Predicted 
total computation time of the 
ne256 problem size in HOMME 
on the Intel cluster of NSCC-
Wuxi. The solid lines are pre-
dicted results using the model 
built from ne32. The marked 
dots are measured data

Fig. 10  Refined CPI_corei and BF_memi of CICE on 4-node cluster

Table 4  Model refinement of BT benchmark on CPI_corei and 
BF_memi

CPI_corei B_memi

Kernels Before After Before After

1 2.26 2.20 10−2 10−5

2 1.58 1.50 10−2 10−7

3 1.62 1.56 10−3 10−6
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As Fig. 10 shows, the y-intercept of the line is the refined 
CPI_core1 and the gradient is the refined BF_mem1 . Table 4 
lists our refined results. And the model errors can be reduced 
to less than 7% (Table 3).

EP. EP has a better scaling performance compared to the 
other kernels. Because the communication time is extremely 
small and the magnitudes of BF_memi for EP is 10−7.

FT. There are numerous MPI_Bcast and MPI_Reduce 
calls in FT. Although the impact of MPI communication is 
not significant for the scales less than 128 cores, the com-
munication time is increasing as the number of processes 
grows. This indicates that when FT is scaled, collective MPI 
may become its performance bottleneck.

MG and SP. There are numerous p2p communications in 
MG and SP, and they become communication-bound when 
the number of processes is larger than 20. It indicates that 
the optimization of p2p communications for MG and SP can 
improve their run-time performance.

LU. LU is not as sensitive as MG and SP to commu-
nications. Although there are many p2p communications 
in LU, their total communication volumes are smaller 
than MG and SP. For example, the total communica-
tion volume of LU is (6.52E + 07) ⋅ P + (5.92E + 09) and 
(3.05E + 08) ⋅ P + (3.15E + 09) for SP. Therefore, the total 
run-time of LU first decreases and then increases more 
slowly than MG’s and SP’s run-time performance.

CG. BF_memi remains at 10−7 , and the calculation time 
decreases rapidly with the increased parallelism. Both make 
the total computation time decrease. When the number of 
processes is larger than 50, the point at which computa-
tion time approaches zero, then communication dominates 
performance.

5  Comparisons and discussions

A typical work is the domain language-based performance 
modeling Spafford and Vetter (2012) which requires domain 
experts write the performance model for each compute ker-
nel using domain language ASPEN. Such performance 
model can capture the detailed implementation of applica-
tions. However, for most of the users who want to build the 
performance models, it makes no difference compared to 
building the models by learning the complex source code. 
Besides, users has to learn a new domain language to build 
the model.

(6)
CPI_core1 =

CPI_1 − newCPI_1

T_mem1 − newT_mem1

BF_mem1 =
CPI_1 − CPI_core1

T_mem1

By learning the algorithms and implementation of 
the application, a manual analytic performance model 
is built (Nan et  al. 2014). Their computation model 
is built with problem size and number of processes: 
T_compute = a ⋅ (

problem size

P
) + b . To formulate the equa-

tion, they manually analyzed the source code of the appli-
cation and building this kind of performance model is very 
labor- and time-intensive. In addition, such case-by-case 
modeling suffers from portability across applications. As 
Fig. 11 shows, we reduce the model error up to 25% for 
CICE’s (small problem size) strong scaling tests compared 
to the manual analytic performance model (Nan et al. 2014).

With less domain knowledge taken into account, empiri-
cal performance modeling profiles applications with vary-
ing configurations and uses regression to build performance 
models from the desired fitting functions (Bauer et al. 2012; 
Worley et al. 2011; Lee et al. 2007). However, choosing 
the correct fitting functions is critical for the performance 
model accuracy. The best set of such functions is hard to 
determine due to the increasing complexity of real-world 
applications running on modern hardware platforms. As one 
solution for this issue, machine learning techniques have 
been introduced to predict the execution time from observed 
performance results of a large number of application runs 
(Lee et al. 2007). It usually takes a long time to profile and 
train the model, especially for the cost-expensive applica-
tions (Craig et al. 2015).

An empirical model Worley et al. (2011) is built based on 
a variation of Amdahl’s law, T_app = a∕P + b ⋅ Pc + d , to 
estimate the whole application run-time. The term a/P rep-
resents the time spent in the perfectly scalable portion of the 
application, The term b ⋅ Pc is the time spent in a partially 
parallelized portion, such as initialization, communication, 
and synchronization. The term d indicates the time spent in 
the non-parallelized portion. This model generates accurate 
predictions, but it lacks performance insights. For example, 
when the application time does not decrease anymore, the 
model cannot tell the leading cause (calculation, memory, 
or communication). As Fig. 11 shows, we reduce the model 
error by up to 52% compared to the empirical model (Worley 
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Fig. 11  Strong-scaling model error comparisons among our model, 
the analytical model Nan et al. (2014), and the empirical model Wor-
ley et al. (2011) on the 4-node cluster using 128 processes
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et al. 2011). We provide a relatively fine-grained perfor-
mance model with the consideration of architecture-level 
details for critical kernels.

Making accurate run-time predictions for different prob-
lem size is even more challenging since the performance 
behavior may change obviously with different input size. 
Compared to the analytic performance model (Nan et al. 
2014), we improve large problem size run-time prediction 
accuracies by 50% on average with CICE and NPB. The 
empirical model Stewart (2011) gets even larger model 
errors for large problem size than the analytic model (Nan 
et al. 2014), as shown in Fig. 12.

Another feasible solution is to break the whole program 
into several kernels with the assumption that kernels can 
have simpler performance behaviors (Bhattacharyya et al. 
2014). There are two methods for kernel identification 
according to the information required Arenaz et al. (2008): 
application-level kernel detection and compiler-assisted ker-
nel detection. Application-level kernels Craig et al. (2015) 
are often picked manually by domain experts, which can-
not be used for automatic performance modeling. Craig 
et al. manually identified at least nine kernels of CICE with 
domain knowledge (Craig et al. 2015). These manual kernels 
do not have different representative performance behaviors 
due to two reasons. The first reason is that they do not sepa-
rate the computation and communication parts. However, 
the computation and communication have different perfor-
mance behaviors for modeling. The second reason is that 
each of the nine manual kernels contains many functions. 
The certain function may be invoked by different parent 
functions from different kernels. With our kernel identifica-
tion method, we can only use seven kernels to represent the 
performance behavior of CICE accurately.

The compiler-assisted kernel detection usually comes 
with online profiling. Bhattacharyya et al. use on-line pro-
filing and automatic performance modeling to reduce the 
temporal and spatial overhead of fine-grained kernel identi-
fication and modeling (Bhattacharyya et al. 2014). However, 
this loop-level kernel identification will introduce as many 
kernels to be instrumented and modeled as there are loops. 

This can be hundreds for the NAS parallel benchmarks as 
listed in column “Lker” Table 3. Bhattacharyya et al. (2015) 
tried to use static code analysis to detect and fuse similar 
kernels. But it is not effective to handle the complex loops 
and functions. Moreover, the fine-grained kernel modeling 
with statistical regression for each kernel (loop or function) 
makes the performance results hard to interpret. As shown in 
Table 3, we can achieve the required model accuracy (around 
10%) while using up to an order of magnitude fewer kernels, 
compared to loop-level kernel modeling (Bhattacharyya 
et al. 2014).

Pallipuram et al. (2015; 2014) uses regression-based 
method combined with an analytical model framework: 
T_comp = a ∗ FLOPS + b ∗ BYTES + c , where FLOPS and 
BYTES are derived from hardware counters. They argue that 
the hardware counters profiling technique is not accurate. 
The large errors come from the short execution times of the 
target program. Our experiments show that we can get 96% 
confident intervals when the application runtime is larger 
than 100ms with precise event-based sampling (Sprunt 
2002).

6  Conclusions

We present APMT, an automatic performance model build-
ing tool, with hardware counter-assisted profiling. The out-
put from APMT is easy-to-understand and reasonably accu-
rate while keeping low overheads. We believe that APMT 
can offer a convenient mechanism for users and developers 
to learn the scaling performances of complex real-world 
applications. Hardware counter-assisted profiling is used to 
quantify important performance characteristics. The com-
bination of these hardware counter can be easily interpreted 
to motivate future code optimization. We demonstrate that 
APMT not only can improve the performance model’s pro-
ductivity but also successfully accelerate the performance 
model building procedure. Our performance model errors 
are 15% on average. Compared with the well-known analyti-
cal model and the empirical model, APMT can improve the 
model accuracy of performance predictions by 25% and 52% 
respectively in strong scaling tests and can get even more 
accuracy improvements for the run-time predictions with 
larger problem size. In the future, we will apply our method 
to understand the load imbalance and I/O performance in 
HPC applications.
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