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Abstract
Performance diagnosing for HPC applications can be extremely difficult due to their complicated performance behaviors.

One hand, developers used to identify the potential performance bottlenecks by conducting detailed instrumentation, which

may introduce significant performance overheads or even performance deviations. On the other hand, developers can only

conduct small numbers of application runs for profiling the performance with the limitations on both computing resources

and time duration. Meanwhile, the performance bottlenecks of HPC applications may vary with the degree of parallelism.

To address these challenges, our paper proposes a systematic performance diagnosing method focusing on building an

accurate and interpretable performance model with performance counters. Our method is able to diagnose the HPC

application scaling issues by predicting its runtime and performance behaviors in different functions. After applying this

modeling method on three real-world HPC applications, HOMME, CICE and OpenFoam, our evaluations show that our

diagnosing method based on the performance model has the ability to diagnose the potential scaling issues, which is

typically missed by the traditional performance diagnosing method and achieves about 10% prediction errors in a scale of

4096 MPI ranks on two problem sizes.

Keywords Performance modeling � Hardware counter � Performance issue

1 Introduction

Ever-growing supercomputers lead to more and more

processing units. The scalability is regarded as one of the

most important design objectives of HPC applica-

tions [1–5]. To diagnose an application’s scaling perfor-

mance, developers have to profile the applications several

times on a given number of processes with instrumentation,

which may introduce more than 10% overhead for each

profiled application run [6, 7] as well as the possible per-

formance deviation. At the same time, the detected per-

formance issues using a specific number of processes may

not still be issued when scaling the application. Even

conducting laborious analysis on a few selected kernels of

the whole application may lead to high risk of missing

crucial bottlenecks. Besides, developers may not diagnose

applications on real systems because they only have limited

opportunities to access the large-scale machine.

Performance modeling is an effective way to understand

the scaling performance behaviors and identify the scaling

issues earlier. Compared to the traditional diagnose

method, performance modeling method is able to predict
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the scaling performance behaviors by profiling on small-

scale parallelisms. Alexandru et al. [1, 2] proposed a per-

formance model to find potential kernels may become

bottlenecks when scaling to a large number of processes.

However, the kernels they detected do not separate com-

munications and computations. The detected kernels all

contain communications. Such results are easily predicted

since the time cost of communication usually increases

with the growing number of processes. Thus, the compu-

tation code sections that do not scale well are still hidden in

the complex code.

Analytical performance modeling [8–11] has ever been

widely used to predict application execution time by ana-

lyzing the source code and algorithms. It utilizes algorithm

details such as iteration times and the number of key

variables, to diagnose the scaling runtime of each domain

knowledge-oriented kernels. However, such method is

highly depended on the algorithm and implementation.

Such case-by-case performance modeling approach is very

time- and labor-consuming, as well as lacking the porta-

bility across applications.

Statistical model [12, 13] tries to overcome the disad-

vantages by predicting the scaling performance according

to a large number of sampled application runs without

digging into the source codes. However, it introduces a

large number of application runs to train the performance

model for achieving satisfying accuracy.

To address the challenges, we propose a resource-based

performance modeling method which has the relatively

good portability across applications and low diagnose

overhead. We diagnose applications’ scaling issue using

the performance model-based method with consideration

of both resource usages and interactions between applica-

tions and the hardware.

To summary, our contributions are:

1. Employing resource-based modeling method to

predict large-scale/problem size application runtime

using small configuration application profiling efficiently

and effectively We propose a resource-based performance

modeling technique to predict the scaling runtime and

architecture-oriented behaviors of each function. The

general idea of our model is to build the performance

model from the architecture and system perspective and

identify the key and basic performance factors. For

compute kernels, these factors are the different types of

operations such as executed instructions, loads and stores.

We predict these basic operations of each function and

combine these predictions into an performance model for

the whole application on the target system. For the com-

munication part, the factors are the number and the size of

messages. We measure them using the standardized PMPI

interface, which is portable across all MPI

implementations. And then use LogGP model [14] to

predict the communication time. We can build the per-

formance model for different HPC applications with the

same modeling methodology and give a comprehensive

timing breakdown of the target application as well as the

architectural behaviors of each function, without intro-

ducing more overhead and potential performance

deviation.

2. Employing performance model-based guidance for

performance diagnostics Given the fact that users are

usually interested in the causes and positions of perfor-

mance bottlenecks, for example, it is less helpful to tell that

a program execution takes square time than pointing to the

set of most expensive kernels in the program, and their

scaling issues. We use performance modeling technique to

predict the application runtime with key performance

characters and to discover the performance issue before-

hand on three real applications, HOMME [15], CICE [16]

and OpenFoam [17]. By using our model, we apply (1)

strong scaling diagnostics, (2) week scaling diagnostics, (3)

non-scalable compute kernel diagnostics on HOMME and

CICE. And we apply (1) strong scaling diagnostics, and (2)

load imbalance diagnostics on OpenFoam.

With these efforts, our performance diagnosing method

is feasible to provide scaling performance insights and

identify the potential performance issues in production-

level quality with interpretability and low overhead. We

believe our method can be further elaborated to conduct a

variety of deeper analyses and possible optimizations for

the complex code base.

2 The performance diagnostic framework

The primary objective of our method is to identify the

potential scaling issues as well as the corresponding code

functions. We use a resource-based modeling alongside

time approach for the scaling diagnostics. In our work, we

split the parallel application into computation and com-

munication two parts and then predict the computation and

communication performance separately and the accumu-

lation of these two part is the final runtime prediction.

The computation runtime equals the accumulation of all

compute kernels’ runtime. We use hardware counters to

profile the computation scaling characteristics to overcome

the large overhead of instrumentations [18]. The commu-

nication time is the accumulation of point-to-point (p2p)

MPI operations and collective MPI operations. We mea-

sure MPI operations using the standardized PMPI interface,

and then use LogGP model [14] to conduct the commu-

nication time prediction. Such method is portable across

applications. The framework includes the following four
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key modules. Figure 1 gives an overview of the key steps

necessary to predict runtime and potential performance

issues.

1. Performance measurements We generate the hard-

ware counter profiles for computation using the driver of

Intel VTune, which records the executions times plus

various hardware counters, such as the number of CPU

cycles waiting for memory, the number of executed

instructions. All metrics are broken down by call path and

MPI ranks. Here, we define each element on the call path is

a function without including its children. We use precise

event-based sampling (PEBS) [19] for hardware counter

profiling. The PEBS mechanism is armed by the overflow

of the counter with a precise program counter address at

granularity of functions. Thus we can obtain the function

list after the profiling runs, together with the hardware

counter information. However, manual instruction can be

added to profiling a lower-level performance, such as

loops. We choose functions as kernels because it is clearly

to separate communication and computation in parallel

applications to enable us to predict them separately.

Assume that we use two MPI ranks in one compute

node. The hardware counter profiling results of each

function are the total amount of the two MPI ranks. We

generate communication traces, namely the message size,

the message count, the source and destination, by using the

standardized PMPI interface. Figure 2 illustrates how we

generate the performance measurements on hardware

counters and MPI operations.

To summary, the metrics we collected include resource-

based metrics and time-based metrics, as Tables 1 and 2

show. Resource-based metrics, such as number of

instructions, or the number of messages sent/received, are

usually a function of application configuration, and there-

fore deterministic. We define them as resource-based

metrics because they can reflect the resource utilization of

a program on the target platform. The resource-based

metrics play an important role in our method. Because they

can be used to determine the model functions easily, and

can be used to predict large-scale performance easily. The

model functions are usually a set of pre-defined functions

that potentially can be used as a good approximation.

Time-based metrics, such as communication time and

computation time, are used to determine the coefficients of

our model functions. We conduct the performance mea-

surements on several parallelisms. The profiling results of

these parallelisms are used to determine the model func-

tions and verify the approximation.

2. Profiling validity Performance measurements may

have serious run-to-run variation because of OS jitter,

network contention and other factors. To ensure the pro-

filing validity, users can repeat measurements until the

variance stables.

Hardware counter profiling validity can be controlled by

its overflow intervals. Our observations show that the

default overflow interval, namely 2000 thousands CPU

cycles can have 96% confidence intervals on identifying

the functions in the program for a 100 ms application run.

3. Resource-based modeling alongside time After per-

formance measurements, a performance model framework

is generated according to Table 2 to convolute the com-

munication and computation performance (Eq. 1). In this

paper, we assume that applications are implemented fol-

lowing the Bulk Synchronous Parallel (BSP) programming

model [20]. Follow the BSP programming model, the total

runtime can be calculated by the accumulation of compu-

tation runtimes and communication runtimes, which can be

found correct in most of today’s real-world HPC

applications.

T app ¼
Xn

i¼1

ðT compi þ BF memi � T memiÞ

þ BF comm � T commþ T others

ð1Þ

The computation part consists of a number of kernels.

The computation time of a kernel can be estimated by two

components. The first part is the time taken to execute the

computation instructions. The second part is the time

associated with fetching the data from storage to com-

pute [21]. There is typically some degree of overlapping

between these two components. We introduce a variable

named memory blocking factor (BF memi), which mea-

sures the non-overlapping part for loading data from local

memory. The variable i is the index of the detected func-

tions. The accumulation of the p2p and the collective

communication times is used to predict the total

Fig. 1 Workflow of scaling issue diagnostics. Solid boxes represent actions, and banners are their inputs and outputs. Dashed arrows are optional

actions taken by user decisions
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communication time. A variable named BF comm is

measured to evaluate the non-overlapped communication

and computation time. Below, we explain how we build the

resource-based performance models, and match them with

time-based metrics in detail. CPI is regarded as a com-

prehensive indicator for the performance of kernels, but it

Fig. 2 An example of

performance measurement

Table 1 Resource-based metrics and how they are derived from hardware counters

Resource-based

metrics

Description How are they derived?

T stalli Waiting time for memory Fitting from RESOURCE_STALLS.LB(SB) counter

T L1i L1 cache access time Fitting from MEM_LOAD_UOPS_RETIRED.L1_HIT_PS counter

T L2i L2 cache access time Fitting from MEM_LOAD_UOPS_RETIRED.L2_HIT_PS counter

T LLCi Last-level cache access time Fitting from MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS counter

T mainmemoryi Main memory time Fitting from MEM_UOPS_RETIRED.ALL_LOADS(STORES)_PS counter

Instructions Executed instructions Fitting from INST_RETIRED.ANY_P counter

T collective Collective MPI communication Fitting from P and S

T p2p Point-to-point MPI communication Fitting from S

T others Initialization and finalization time Fitting from P

Definitions Description How are they derived?

S Total communication volume Measured

P Number of processes Input

D Problem size Input

n Total number of kernels Detected
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alone cannot help us to identify the different performance

patterns of kernels since the similar CPIs of kernels can be

gained from lower instruction efficiency and better mem-

ory traffic, or better instruction efficiency and poorer

memory traffic.

The general idea of a resource-based performance model

is to account for all key cost factors. For the computation,

as Table 1, model terms, such as T stalli, T L1i, T L2i,

T LLCi and T mainmemoryi are derived from different

types of hardware counters listed in the third column.

Take T stalli term as an example, we show how to use

hardware counters derived it. In an ideal case, all CPU

cycles should be spent to produce useful work. However,

there always exists certain part of CPU cycles is spent

stalling. At hardware level, the stalling time (T stalli)

represents the waiting time for memory, namely the result

of unavailability of processing units or data. Such sce-

narios often degrade the performance of an application as

the number of cores increases [22]. We use the accumu-

lation of two hardware counters, namely

RESOURCE STALLS:LB and RESOURCE STALLS:SB to

calculate the stall cycles. In this paper, we use five dif-

ferent process configurations for profiling set, and the

sixth parallelism is used to verify the regression results.

We do the regression for the hardware counters with the

best model function in our pre-defined model function set,

including one order of polynomial, exponent and loga-

rithm [1, 2]. Because based on massive analysis and

experiments, those three kinds of functions and their

combinations can cover most of the situation.

Figure 3 is the model results of a kernel called

laplace_sphere_wk from HOMME. Figure 3a is the accu-

mulation of RESOURCE STALLS:LB and

RESOURCE STALLS:SB (equals to T stall), and Fig. 3b

is the number of L1 cache access time. The x-axis is the

average compute amount per MPI rank. We do the

regression fitting according to the average compute amount

because it is easier to predict the performance for another

problem size. We will explain it later in the paper. We use

one-order power equation, a � xb þ c, for the T stall and

number of L1 access time. The model parameter b is

positive for T stall while is negative for the number of L1

access time. It represents that as we assign more MPI ranks

in one node, the waiting time for memory (T stall)

decreases, and we can fetch more data from L1 cache. Such

performance insights can help the users draw a conclusion

that the kernel is computation driven in the present cases.

According to Table 1, we can model the T mem and

T comp as Fig. 3c and d shows. Through the model term

BF mem, users can obtain the non-overlapped memory

time. Therefore, if users want to assign more MPI ranks in

the node, they should put their effect on optimizing the

memory. Because the total computation time T comp

becomes closer to BF mem � T mem.

For the point-to-point (p2p) communication, we assume

a linear relationship because all processes can carry on

their operations in parallel. The time cost t of sending a

certain number of message m of size s equals to

t ¼ m � ða � sþ bÞ. We model the p2p communication time

t with total communication size ts as a � tsþ b. For the

collective communications, the time cost t of a broadcasts a

message of size s among all processes P equals to

t ¼ a � logðPÞ þ b � sþ c. For a sake for simplicity, we do

not modeling each individual message sizes, we use an

average message size among processes.

To summary, we first model the resource-based metrics

separately for each function. We then match the resource-

based metric of the functions with time-based metrics using

the best one in our pre-defined linear fitting functions. The

accumulation time of the compute kernels plus the com-

munication time is the total estimated application runtime.

The model inputs are the problem size and number of

Table 2 Time-based metrics used to derive the model

Time-based metrics Description How are they derived?

T compi Calculation time of each kernel T compi ¼ instructionsi � CPIi
CPUfrequency � P

T memi Total memory time T memi ¼ T L1i þ T L2i þ T LLCi þ T mainmemoryi

BF memi Ratio of non-overlapped memory time BF memi ¼ T stalli
T memi

BF comm Ratio of non-overlapped communication time BF comm ¼ T mapp�T mcomp
T mcomm

T comm Average communication time T comm ¼
Pr

i¼1 T p2pþ
Pl

i¼1 T collective

CPIi Cycles per instruction Measured

T mapp Total application time Measured

T mcomp Total computation time Measured

T mcomm Total communication time Measured
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processes. The outputs are the predicted runtime of each

kernel and estimated scaling resource-based metrics.

4. Scaling performance prediction Our model predicts:

(1) the execution time T app of a given parallel applica-

tion on a target scale Pt by using several applications runs

with q processes, where q 2 f2; ::P0g, P0\Pt; (2) the

execution time T app of a given parallel application on a

target scale Pk with a different problem size Ds. Once the

model coefficients are determined, we can use the equa-

tions in Table 1 to predict the runtime in Fig. 3.

Our motivation is to identify the kernels from a small

problem size D, and build the performance models. We

then predict the application runtime for large problem size

Ds without running the application of Ds.

The prediction for another problem size Ds is conducted

according to the average compute amount per MPI rank. Of

course, the memory resource contention plays an important

role in runtime performance, especially the number of main

memory access time. In this paper, we define a threshold

E ¼ N LLCmiss ip
N totalmem ip

���
��� to evaluate the effectiveness for Ds

runtime prediction from the harm of memory contention.

N LLCmiss ip represents the number of last-level cache

misses of function i with number of process p, and

N totalmem ip is the total number of memory access. Thus

by using the profiling results of the five parallelism men-

tioned above, if E� 1e� 4, it indicts that the performance

of last-level cache does not fluctuate much when assigns

different compute amount to each MPI rank. Otherwise if

E[ 1e� 4, it indicts that the affect of memory contention

has already revealed in the profiling cases. Thus, we have

to choose suitable numbers of processes to conduct the

profiling runs. We exploit the observation that the big

performance fluctuation of last-level cache rarely happens.

Besides, it is a common sense in HPC applications that one

should choose a suitable number of processes for an

application run following certain rule. For example, the

number of processes should follow 6 � n2 when we run an

atmosphere model with the spectral element dynamical

core.

Take HOMME as an example, we predict the runtime of

problem size ne256 (grid number: 256 � 256 � 6, vertical

level: 128) on a target scale 1536 MPI ranks from ne32

(32 � 32 � 6, vertical level: 128). We do not predict the

performance per function because our observation shows

that the compute amount increment of each function is

inconsistent to the ratio ¼ Ds

D
, but highly depends on its

own inputs. Users with little domain knowledge are hard to

estimate the increment without profiling. Therefore, we

(a) (b)

(c) (d)

Fig. 3 An example of

performance modeling the

resource-based metrics along

time. The example is a kernel

(laplace_sphere_wk)
from HOMME with 32 � 32 � 6
grids. We use the average

compute amount assigned to

each MPI rank (32�32�6
P

) as the x-

axis, therefore as the values of

x-axis become bigger, the

smaller number of MPI ranks

we use
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predict the computation time for the overall computation

rather than functions’ time to give a overall runtime for

large problem size. The average compute amount of 1536

MPI ranks (problem size ne256) is 16 grids. Thus, we can

find how the resource-based metrics behave when we

assign 16 grids in one MPI rank by using the models built

from ne32. For the communication, we estimate the total

message size among processes according to its data

decomposition which can be learned from the application’s

technical report and its building scripts.

3 Evaluation

The experiments are carried out on the Intel cluster in

National Supercomputing Center in Wuxi of China

(NSCC-Wuxi). Each NSCC-Wuxi node contains two Intel

Xeon E5-2680v3 processors running at 2.5 GHz with

128 GB memory. The operating system is RedHat 6.6. The

MPI version is Intel MPI 15.0, and the network is Mel-

lanox� FDR InfiniBand. The time of I/O part isn’t taken

into consideration in our experiments.

For all the experiments, the profiling overhead of our

framework is 3% on average. As we know, the overhead of

instrument-based profiling tools, such as Score-P [6], and

Scalasca [7], usually exceeds 10%.

3.1 HOMME

HOMME [15] is the dynamical core of the Community

Atmosphere System Model (CAM) being developed by the

National Center for Atmosphere Research (NCAR). The

two cases we used are as listed in Table 3.

3.1.1 Strong scaling diagnostics

Figure 4 presents the communication performance of ne32

problem size based on six profiling and evaluation data points

with the number of processes P ¼ f12 24 36 48 96 120g.
The sub-figure on the left is the communication time, and the

right one is the total communication volume. We first

extrapolate these data up to 768 processes for the same

problem size (ne32). In this paper, model error is defined as

ðmeasuredtime� predictedtimeÞ=ðmeasuredtime � 100Þ: The
error of our model is 12% on average. The communication

model is built with resource-based metric: total communica-

tion size. Point-to-point communication time consumes the

most communication time followed by the communication of

MPI_Allreduce. According to the right sub-figure, we can

infer that the p2p time suffers from the large communication

volume. The boundary updating occurs in the halo regions for

each process in every time step. Every process has to com-

municate to its eight neighbors. The total communication

volume grows with
ffiffiffi
P

p
. MPI_Allreduce is ranking the

second in MPI time. By using our performance model, we can

find that MPI_Allreduce comes from the diagnostics in

prim driver mod:F90, which can be turned off during

application runs. Therefore, to achieve a better performance,

users can focus on reducing p2p communications volume by

reducing the p2p communication invoking count or reducing

the size directly.

As mentioned in Sect. 2, Fig. 3 is the strong scaling com-

putationmodel results. The computationmodel error is around

6%.

3.1.2 Week scaling diagnostics

For the large problem size ne256, our motivation is to

predict its performance using the model built from ne32

instead of running and profiling ne256 cases. Ratio of total

communication volume of different communication pat-

terns is decided by domain knowledge in our model. For

p2p, the increment of communication volume is ratio ¼ 256
32

(the right sub-figure in Fig. 5), therefore the p2p time of

ne256 equals to a � ðratio � sizene32Þ þ b. Similarly, the

collective communication is predicted with a � logðPÞþ
b � ðratio � sizene32Þ þ c. Different from p2p communica-

tions, ratio of MPI_Bcast is 1 and for MPI_Allre-

duce it is 2�256
32

. Figure 5 is the communication

performance of ne256. The most expensive communication

kernel is still p2p communication and the maximum pre-

diction error for large problem size is 12%. With the

guidance of our model, the p2p communication should be

put in the first place when tuning the code.

Figure 6 is the predicted overall application runtime of

ne256. As mentioned in Sect. 2, we conduct the prediction

based on the compute amount assigned to each MPI rank.

The validation data points in Fig. 6 are

P ¼ f512 768 1; 024 1; 536 2; 048 3; 072g. The compute

amount assigned to each MPI rank is

f768 512 384 256 192 128g. Then we can find the time

cost of the certain compute amount assigned to each MPI

by using the performance model built from ne32. We can

keep the model error of large problem size prediction

Table 3 Configurations of the two HOMME cases

Case name ne32 ne256

Horizontal grids 32 � 32 � 6 256 � 256 � 6
Numerical method Spectral element

Simulation method J & W baroclinic instability

Vertical layer 128

Simulation time 2-h simulation
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10.6% on average. The prediction error comes from the

load imbalance caused by the ill-considered number of

processes. Because ne256 has a total of 6 � 256 � 256 ¼

393; 216 ways of MPI parallelism in the problem. There-

fore, process count 1536 ¼ 6 � 16 � 16 in Fig. 6 has a better

load balance workload thus better prediction accuracy.

3.1.3 Kernel ranking diagnostics

Usually users pay much attention to optimize the perfor-

mance of kernel compute_rhs and euler_step.

Because they are also the key computation parts based on

the domain knowledge and they truly contain a lot of

floating-point operations. However, there are five other

kernels that should be taken into account. They are

edgevpack, edgevunpack, laplace_sphere, di-

vergence_sphere and vertical_remap. Function

vertical_remap is embarrassingly parallel. The func-

tions edgevpack and edgevunpack are used to pack/

unpack for one or more vertical layers into an edge buffer.

Kernel laplace_sphere and divergence_sphere

compute the gradient after communications. Figure 7 lists

the top seven time-consuming kernels at different scales.

Take edgevunpack as an example, it is compute-driven

Fig. 4 Measured versus Predicted MPI time and total communication

volume of the ne32 problem size in HOMME on the Intel cluster of

NSCC-Wuxi. The left sub-figure is communication time in which p2p

communication consumes most of the total communication time. The

right sub-figure is the communication sizes in which p2p

communication is the largest. The zoom-in figure is the communi-

cation size of MPI_Allreduce and MPI_Bcast. Thus with the

model report, we can infer that p2p time is a potential performance

issue and it suffers from the large communication volume

Fig. 5 Measured versus

predicted MPI time and

communication volume of the

ne256 problem size of

HOMME. The solid lines are

predicted results using the

model built from ne32. The

marked dots are measured data

Fig. 6 Measured versus predicted total computation time of the ne256

problem size of HOMME. The solid lines are predicted results using

the model built from ne32. The marked dots are measured data. The

overall model error is 10.6% on average
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when P\40 processes, and its time does not decrease

anymore after the number of processes is larger than 300.

That is to say, we cannot find the edgevunpack function

is the performance critical one at large scale if we don’t

conduct the application run with over 300 processes. With

the help of our performance model, we don’t need to con-

duct large-scale application run but can efficiently predict

the performance variation of different functions and give the

correct candidates for tuning at scale.

3.2 CICE

The Los Alamos sea ice model (CICE) [16] is a widely used

sea ice model in the well-known CESM project [23]. The

configurations are listed in Table 4.

3.2.1 Strong scaling diagnostics

Function stress is the most time-consuming function,

and transport_integrals is less time-consuming

functions. The two functions have similar CPIs (as shown

in the left sub-figure of Fig. 8). However, CPI alone cannot

distinguish such performance that comes from lower

instruction efficiency and better memory traffic, or better

instruction efficiency and poorer memory traffic. Normally

users would measure the Flops / Bytes to see whether it is a

memory-driven program or a compute-driven program.

Compared to the ratio of theoretical Flops / Bytes, if the

measured ratio is smaller than the theoretical one, it indi-

cates that the code is memory intensive, and then users

would focus on memory optimization of stress

(Table 5). However, with the help of our model, the

memory blocking factor of stress scales well (4:2e� 4

to 0:2e� 4 for a scale of 2 to 20 processes, while

transport_integral changes from 0:9e� 4 to

0:3e� 4. The memory has a more obvious impact on

kernel transport_integral. It is the reason that the

speedup (shown in the right sub-figure of Fig. 8) of

Fig. 7 Kernel ranking list of the top seven time-consuming functions

at different scales of HOMME. Different colors represent different

kernels. We can see that the kernel ranking list is changing according

to different parallelisms. The zoom-in figure is the fifth–seventh

functions for a scale of 500–700

Table 4 Configurations of the two CICE cases

Case name gx3 gx1

Horizontal grids 116 � 100 384 � 320
Grid decomposition method slenderX2

Simulation time 1 month

Fig. 8 The CPIs of the function stress and transport_inte-
gral of CICE using gx3 resolution are very similar. However, the

similar CPIs of kernels can be gained from lower instruction

efficiency and better memory traffic, or better instruction efficiency

and poorer memory traffic. With the help of our model, the memory

blocking factor of stress scales well (4:2e� 4 to 0:21e� 4) while

transport_integral changes from 0:9e� 4 to 0:3e� 4. The

memory has a more obvious impact on kernel transport_inte-
gral. It is the reason that the speedup (right sub-figure) of stress
is better than transport_integral
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stress is better than transport_integral. By

further looking up the source code, we find that stress is

mainly a stencil computation with add and multiply oper-

ations which is considered having a relatively good overlap

between computation and memory. Kernel trans-

port_integral is mainly the assignment operations.

Therefore, the memory impact of stress may not be an

issue when scales to large number of processes.

3.2.2 Week scaling diagnostics

Figure 9 is the predicted results for 384 � 320 problem size

using the model from 116 � 100. In CICE, p2p communi-

cation is the key part to slow down the performance while

computation scales well for a scale to 128 cores. Because

p2p communication happens in boundary data exchange,

and every evp sub-cycling has to communicate the data for

calculating the sea ice mask.

In addition, we find that there are two functions

(ice_timer_stop and ice_timer_start) do not

decrease with the number of processes. These two func-

tions are used to control the timer start and stop to measure

the timing information of each function, which are not

scalable. Therefore, to achieve a better performance for

large-scale runs, users may turn off the timer.

3.3 OpenFOAM

OpenFOAM [17] is an open source computation fluid

dynamics (CFD) solver. The test configurations are listed

in Table 6. In this example, we show how we detect the

load imbalance and improve its performance with our

performance diagnostic framework.

3.3.1 Load imbalance diagnostics

The default data decomposition is to try best to decompose

the data in each dimension evenly. However, such decom-

position is not always good for time-to-solution perfor-

mance. For example, the default data decomposition of

case motorBike using 12 MPI ranks is 3, 2, 2 in

x, y, z directions. Its profile results show that the idle time is

up to 15% of the total application runtime. According to our

model, it is because in each time step the MPI ranks have to

wait until all communications among three directions are

done. We then change the data decomposition into 4, 3, 1 to

cancel the communication with z direction which reduces

6% p2p MPI communication invoking counts. And we can

achieve 15% performance improvement by changing the

data decomposition with user decisions (Fig. 10).

3.3.2 Strong scaling diagnostics

With the manually decided data decomposition method, we

profile the case motorBikewithP ¼ f48; 64; 96; 120; 160;
200g. As Fig. 11 shows, the p2p communication prediction

error is 13.6% at themost, and the overall model error is 7%on

average. By using the user-decided data decomposition, we

can achieve 25% at the most (13.7% on average) p2p com-

munication performance improvement, and 6% perforamance

benefits for the overall performance.

4 Related work

Scaling performance prediction of parallel applications has

numerous prior work. There are two well-known approaches.

One is using a trace-driven simulation to capture detailed

Table 5 Theoretical flops/bytes versus measured flops/bytes

Number of cores Theoretical Measured

2 0.29 0.01

8 1.18 0.05

20 2.94 0.07

Fig. 9 Large problem size

(384 � 320) runtime prediction

of CICE. The solid line is the

predicted runtime by our model.

The marked dots are the

measured validation data

Table 6 Configurations of the OpenFoam cases

Case name motorBike

Cell number 20 � 8 � 8
Decomposition method ptscotch

Simulation time 200 steps
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performance behavior at a required level, such as MPI-SIM

and BigSim [24, 25]. However, it is extremely expensive, not

only in terms of time cost of the simulation, but especially in

the memory requirement. Zhai et al. [26] extrapolate single-

node performance by using representative process to reduce

the memory requirements. Wu et al. [27] predict communi-

cation performance by extrapolating traces to large-scale

application runs. Engelmann et al. [28] develop a simulator

permits running an HPC application with millions of threads

while observing its performance in a simulated extreme-scale

HPC system using architectural models and virtual timing.

However, all above works aim to accurately performance

prediction but not provide scaling issues for the high-end users

beforehand.

Another approach is using analytical performance

modeling technique. It is well understood that an analytical

performance model has the ability to provide performance

insights of a complex parallel program [29, 30]. Hoefler

et al. [31] use a simple six-step process to build a perfor-

mance model for applications with detailed insights.

However, it requires tedious code analysis and not being

used to predict scalability issues. Calotoiu et al. [1] use

performance models to find performance scalability bugs

for parallel applications in aspects of communication and

floating-point operations. This is probably the most similar

work with ours. The main differences are that (1) they aim

to report the kernel rankings while they do not separate the

computation and communication. However, such results

are easily predicted since the time cost of communication

usually increases with the growing number of processes.

Thus, the computation code sections that do not scale well

are still hidden in the complex code while in our work, we

separate the communication and computation; and (2) they

use communications and floating-point operations as met-

rics to evaluate the large-scale performance issues, while

we provide the possible causes of the potential scaling

issues by separating the memory effect from computations.

To better understand the fine-grained performance, Bhat-

tacharyya et al. [32] break the whole program into several

loop kernels with the assumption that kernels can have

Fig. 10 We find that the idle time of data decomposition 3, 2, 2 is up

to 15% of the total runtime of OpenFoam. According to our model,

such long idle time comes from waiting for communication between

directions x and z. We then change the data decomposition to 4, 3, 1

to reduce the communication with z direction which reduces 6% p2p

MPI communication invoking counts. As shown in the right figure,

the average idle time is reduced to 5.65ms, and the idle time variance

is reduced to 4.82 from 42.30 with average idle time 18.72 ms

Fig. 11 The user-decided data decomposition has gained 25% at the

most (13.7% on average) for p2p communication performance

compared to the default data decomposition of OpenFoam. The

model prediction error is 13.6% at the most. The right sub-figure is

the total runtime of motorBike, the communication time reveals

gradually after 100 processes. The overall model error is 7% on

average. The zoom-in figure is the total runtime from 100 processes to

480 processes. The user-decided data decomposition can improve 6%

performance of the total runtime
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simpler performance behaviors. However, this loop-level

kernel identification will introduce as many kernels to be

instrumented and modeled as there are loops. This can be

hundreds even for the NAS parallel benchmarks, and it is

not effective to handle the complex loops and functions in

real applications. Besides, it lacks the insights for resource

consumption of each kernel. Chatzopoulos et al. [22] use

the hardware counters to extrapolating the scalability of in-

memory applications. There is a consensus that perfor-

mance modeling technique can be an effective approach for

understanding the resource consumption and scalability.

Other approaches focus less on general purpose models

but rather on modeling for a specific purpose [33–35].

Martinasso et al. [36] develop a congestion-aware perfor-

mance model for PCIe communication to study the impact

of PCIe topology. Mondragon et al. use both simulation

and modeling technique to profile next-generation inter-

ference sources and performance of the HPC bench-

marks [12]. Yang et al. [37] performance modeling the

applications by running kernels on the target platform and

then conduct the prediction cross-platform based on rela-

tive performance between the target platforms.

5 Conclusions

Our work demonstrates that performance modeling tech-

nique with hardware counters can be used to help users to

understand the potential performance bottlenecks of large-

scale runs and large problem size runs. Compared to the

laboriously detailed performance models by hand, our

performance model is competitive to give an earlier report

on the potential performance issues as well as their causes

and code positions. Compared to the traditional perfor-

mance diagnostic method, our method can predict the

scaling performance behaviors efficiently and effectively

by profiling the application runs on small-scale paral-

lelisms rather than profiling large-scale runs several times.

Our model is currently used to conduct the predictions on

the same system. The projection across architectures are

not considered in the current version of our model. How-

ever, the resource-based modeling alongside time makes it

easy to build a new model for different architectures.

Besides, our resource-based metrics can be used as a pre-

liminary suggestion on how a system is designed to achieve

the best performance for a given application.
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