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Abstract

Calculations of X-ray wave propagation in large objects

are needed for modeling diffractive X-ray optics and for

optimization-based approaches to image

reconstruction for objects that extend beyond the

depth of focus. We describe three methods for

calculating wave propagation with large arrays on

parallel computing systems with distributed memory:

(1) a full-array Fresnel multislice approach, (2) a tiling-

based short-distance Fresnel multislice approach, and

(3) a finite difference approach. We find that the first

approach suffers from internode communication delays

when the transverse array size becomes large, while the

second and third approaches have similar scaling to

large array size problems (with the second approach

offering about three times the compute speed).
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1. Introduction

Diffraction limited storage rings are providing the next

advance in X-ray brightness from quasi-time-continuous

synchrotron light sources [1]. These allow one to

combine the high penetrating power and short

wavelength of X-rays for nanoscale imaging of

increasingly large specimens. Due to the overlap of

features in a single view of an extended object, one

must use tomography to obtain a 3D view of a

specimen from a series of 2D projection images.

However, as the transverse spatial resolution δres is

improved, the depth of focus (DOF) decreases

according to [2,3]

where θ is the numerical aperture of the imaging

optic, and 0.61 = 1.22/2 comes from the Airy function

for circular optics. Because of the depth of focus,

features at different depths in an extended

specimen are no longer sharply viewed in a single

projection image. One way to overcome this

limitation is to move to an optimization-based

approach to image reconstruction, where one

constructs a guess of the 3D object, calculates

wavefield propagation through the object leading to

an exit wave (and subsequently to predicted image

intensities), and then adjusts the guess of the object

until the difference between predicted and

measured image intensities is minimized. Variations

of such an approach have been demonstrated in

electron microscopy [4,5], light microscopy [6–8],

and X-ray microscopy [9–12].

DOF = 2
λ

θ2
=

2

0.612
δ2res
λ ≃ 5.4

δ2res
λ ,

https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/OA_License_v1


In order to accurately represent the forward problem,

these approaches all require one to implement

computational wavefield modulation and propagation

through a complex 3D object, and thus determine the

complex exit wave leaving the object. This propagation

is usually done with a multislice approach [13–15],

where for one illumination direction one treats the

object as being comprised of a set of slices along the

beam direction ẑ with each slice being thinner than the

DOF of Eq. (1). In this approach, the wavefield entering

each slice is first modulated by the cumulative non-

uniform refractive index variations of the slice along the

beam direction, after which the resulting wavefield is

transferred through the homogeneous average

refractive index of the slice of material to the entrance

of the next slice.

Once one has calculated the coherent exit wave leaving

the specimen, one can model the subsequent transfer

of this wave to measured intensities. This might be

done using a lens to produce a direct measure of this

exit wave in absorption contrast, or a lens with a

Zernike phase ring to transfer weak phase variations to

intensities, or holography over modest propagation

distances, or far-field diffraction in methods such as

coherent diffraction imaging and ptychography. Each of

these approaches have their own relative merits, but in

all cases, one needs to know the exit wave in order to

calculate the expected intensities and compare them

with measured intensities to improve one’s guess of the

complex refractive specimen.

Because of the potential for X-rays to be used for high

resolution, beyond-DOF imaging of thick materials, we

consider the question of the computational speed of

various approaches for solving the forward problem

when extended to large datasets. As an example, X-ray

ptychography has been used to obtain δres = 12 nm

images of integrated circuit features through 300 μm of

silicon [16], and 8 nm resolution through 130 μm [17].

Both examples were of near-planar feature layers so

that beyond-DOF imaging methods were not required.

However, if one were to extend these results to a more



general 3D object with a pixel size of half the achieved

spatial resolution, one would need to propagate 2D

wavefields with an array size of [(300 μm)/(6 nm)]2

=50,0002 or [(130 μm)/(4 nm)]2=32,5002. Even larger

array sizes are imaginable given that about 10% of a 15

keV incident X-ray beam is transmitted through 1 mm

of silicon. It is therefore valuable to consider the

computational costs of various approaches for large-

array-size wave propagation through inhomogeneous

materials.

The most commonly employed method [18–22] for

computing evolution of an X-ray wavefield through an

inhomogenous refractive object is to use the multislice

(MS) method with Fresnel propagation to transfer the

wavefield to the position of the next slice. As will be

described in Sec. 2.1, this approach involves fast Fourier

transforms (FFTs) and multiplication with the Fresnel

propagator kernel of Eq. (8). However, another

computational approach as described in Sec. 2.3 is to

use the Helmholtz equation as a starting point, and

solve for the exit wave using finite difference (FD)

methods for solving partial differential equations

(PDEs). In calculations for wave propagation in X-ray

waveguides, this FD approach has been shown to offer

speed and accuracy advantages [23,24].

We compare here multislice and finite difference based

approaches for the calculation of large-array-size

problems in X-ray wave propagation in inhomogeneous

media. Comparisons of the two approaches at

optical/UV wavelengths for fibres [25] and waveguides

[26], and in the X-ray regime for waveguides as noted

above, suggest that finite-difference methods are

faster, and also more accurate as the propagation step

size increases. However, those comparisons have been

on problem sizes that fit on a single computational

node, whereas for future X-ray experiments we wish to

compare their performance on array sizes of 50,0002 or

more pixels, as noted above. Therefore, we consider

distributed memory parallel implementations of both

methods. In the case of the multislice method using

FFTs, we consider both a simple whole-array FFT



approach, as well as a parallelized version of a short-

distance tiling-based approach [27]. For the multislice

and finite difference method, we make use of a well-

developed software toolkit for solving partial

differential equations PETSc/TS framework [28,29] on

workstations as well as supercomputers. We first

describe the mathematics of our approaches in Sec. 2,

provide implementation details in Sec. 3, before

discussing metrics in Sec. 4 and results in Sec. 6.

2. Algorithms

We consider here the forward problem of how to

calculate the exit wave leaving a heterogeneous

refractive index distribution for a large object. In the

full-array Fresnel multislice approach, this is done by a

sequence of wavefield propagation calculations for one

guess of the object, which in turn, is nested within the

iterative adjustment of the guess of the object to

minimize the difference between predicted and

measured image intensities. Because the calculation of

wavefield propagation in a heterogeneous medium is

undertaken repeatedly, we are interested in

approaches that minimize computational time.

Specialized hardware has been developed that can

calculate (10,000)2 pixel holograms in just 100 ms [30],

though this hardware only solves one step in the overall

optimization problem, as noted above. Using a single

workstation with a graphical processing unit (GPU), a

solid-state drive (SSD) for rapid transfer of partial data

to and from limited random access memory (RAM), and

efficient tiling strategies as will be discussed in Sec. 2.2

below, single instances of short-distance wavefield

propagation of (131,072)2 pixel arrays have been

demonstrated with an impressive calculation time of

3.6 minutes [27]. Doing calculations like this in a shorter

computational time, and within the context of an

optimization-based image reconstruction approach, can

be achieved if one utilizes distributed memory

parallelism in high performance computing clusters.

These clusters typically consist of nodes that are

connected by high-bandwidth, low-latency



interconnects (with many advances on the latest

supercomputers [31]), and protocols such as the

message passing interface (MPI) for distribution and

coordination of parallelized operations [32].

Because of our interest in X-ray microscopy

applications, we limit ourselves to considering the

refractive effect of an inhomogeneous medium. Most

transmission imaging in X-ray microscopy is either done

at soft X-ray photon energies around light element K
absorption edges (0.2-0.8 keV), or energies of 2–15 keV

where one obtains good penetration while still

maintaining reasonable contrast from microscopic

features [3,33]. In our energy range of interest, X-ray

interactions are well described by a complex refractive

index n of

where we have used the sign convention

appropriate for writing forward wave propagation in

the propagation direction ẑ as exp[ − iknz] with

k = 2π /λ. The phase shifting part δ and absorptive

part β of the refractive index are well tabulated [34],

and are typically in the range of 10 −3–10 −7, with

δ ≫ β in most cases. When representing an object in

a 3D array with slice thickness Δz along the

illumination direction ẑ, the net refractive effect of

the jth slice is determined by

leading to an advance in the phase φ of

n(x, y, z) = 1 − δ(x, y, z) − iβ(x, y, z)

δj(x, y) =
1
Δz
∫zj+Δz
zj

δ(x, y, z) dz

βj(x, y) =
1
Δz
∫zj+Δz
zj

β(x, y, z) dz



and a magnitude reduction exp[ − a] of

for the slice. In visible light one might want to use

the mean refractive index n̄ for propagation to the

plane of the next slice, and the refractive index

variations n(x, y, z) − n̄ the calculation of Eq. (3) for the

effect of inhomogeneities within a slice. However,

the small values of δ and β for X-rays make that

unnecessary.

2.1 Full-array Fresnel multislice

As noted above, full-array Fresnel multislice is a well-

known approach developed first in electron microscopy

[13,14] and subsequently applied in visible light optics

[15] and in X-ray microscopy [18–21] studies. With our

particular interest in X-ray optics, this approach has

been shown to produce results for very thick optics that

are equivalent to those provided by coupled-wave

equations [22], allowing for the simulation of the

focusing properties of combinations of diffractive X-ray

optics [35] as well as accurate modeling of the forward

problem for image recovery of objects extending

beyond the depth of focus limit [11,12]. What the

approach leaves out is the ability to account for

backscattered waves [36], but this effect is weak in X-

ray interactions with non-crystallline media. Starting

with a wave ψs incident on a slice, we first apply the

phase advance and magnitude reductions of Eqs. (4)

and (5) produced by the slice, giving

exp[iφ] = exp[ikδj(x, y) Δz]

exp[ − a] = exp[ − kβj(x, y) Δz]

ψjs(x, y) = ψs(x, y) ⊙ {exp ikΔzδj(x, y) exp −kΔzβj(x, y)[ ] [ ]



as the modulated wavefield, where ⊙  represents

pointwise multiplication. We then propagate this

modulated wavefield to the exit plane of this slice,

giving a downstream wavefield ψd(x, y) of

F represents a Fourier transform and F −1 its inverse,

and (u, v) are the transverse coordinates in the

Fourier transform domain. The reciprocal space

Fresnel propagation kernel H(u, v, Δz) of

is preferred (rather than the equivalent kernel in real

space) for short propagation distances to avoid

aliasing artifacts [37,38]. One then has

slices for the overall calcuation for a specimen with

thickness t. This leads to Algorithm 1 for full-array

Fresnel multislice.

How thin should the slices be in the multislice method?

Based on Eq. (1), one would expect to require Δz ≤ DOF.

One comparison tested the full-array Fresnel multislice

method (which can model arbitrary refractive index

distributions) against coupled wave equation methods

(which can be applied to easily defined, regular

ψd(x, y) = F −1 F ψjs(x, y) ⊙ H(u, v, Δz){ { } }

H(u, v, Δz) = exp − ikΔz√1 − λ2(u2 + v2)[ ]

Nz = t /Δz



structures) [22]. This comparison used a

parameterization that (in hindsight) is equivalent to the

Klein–Cook parameter Q [39] of

for X-ray volume gratings with period 2Δr and

thickness z aligned to the propagation direction ẑ.
When Q is well below 1, one can use simple scalar

diffraction to describe the effects of the grating,

whereas Q ≥ 1 corresponds to the case where

volume grating effects become pronounced. If we

limit the slice thickness to a value such that Q ≤ 0.5
and assume 1 − δ ≃ 1, the slice thickness Δz should

be kept below a value zK-C of

or zK-C ≃ 0.32δ2res /λ instead of DOF ≃ 5.4δ2res /λ.

However, this is an extreme case that applies to

regular gratings at the Nyquist limit, aligned to the

beam propagation direction ẑ. In practice, a good

approach is to start with Δz = DOF, and reduce it

towards Δz = zK-C while watching for asymptotic

convergence of the exit wave.

The refractive modulation step of Eq. (6) is a per pixel

operation (i.e., each pixel in the output array depends

only on the corresponding pixel in the input array),

leading it to be trivially parallelizable, and one could

even distribute the set of δj(x, y) and βj(x, y) from all

depth planes to the appropriate nodes prior to

initiating the calculation. However, the Fourier

transform of Eq. (7) is a whole-2D-array operation, so it

Q =
π

2(1 − δ)
λz

Δ2r

zK-C ≤
1
π

δ2res
λ



is not trivially parallelizable. While there is considerable

activity on developing efficient large-array parallel FFT

implementations [40–42], inter-node communication

requirements still set performance limits [43]. This

motivates the use of other approaches for carrying out

the operation of Eq. (7).

2.2 Tiling-based short-distance Fresnel multislice

In the mathematical definition of a discrete Fourier

transform, the value of one input plane pixel affects all

pixels in the transform, and vice versa. However, in

short-distance wavefield propagation, information is

localized due to the finite angle θ = λ / (2Δr) of first-order

diffraction from the finest features that are Nyquist

sampled when using a pixel size of Δr [44,45]. For a

propagation distance zprop, this means that Nyquist-

sampled diffraction information at the subsequent slice

is contained within a radius r1 of

where the identity tan(sin −1(x)) = x /√1 − x2 has been

used; the approximate result applies to our case

because the pixel size Δr is much larger than the X-

ray wavelength. However, this does not incorporate

the reality that interference fringes from weak

features taper off in amplitude at large transverse

distances. An alternative criterion is to consider

diffraction from a half-edge, which can be

characterized using the Cornu spiral [46] in terms of

a dimensionless parameter w = r2 2/ (λzprop). This

gives

r1 = zproptan(θ) = zproptan sin −1
λ
2Δr

=
λzprop

(2Δr)
2 − λ2

≃

λ( ) √

√



as an expression for the transverse distance r2 for a

given propagation distance zprop. In half-edge Fresnel

diffraction from a fully opaque object, one reaches

the 8th dark fringe, where the intensity modulation is

down to 8%, at a value of w = 5.61. Since X-ray

microscopy usually involves weak phase objects,

their effect at this transverse distance will be quite

small; as a result, we use w = 5.61 to give

as a reasonable transverse distance beyond which

there should be little effect from neighboring

features.

Recognizing the limited transverse extent of diffraction

from upstream features, one can use a tiling approach

to parallelize the short-distance Fresnel multislice

calculation [27]. In this approach, a large 2D array is

split into a large series of much smaller tiles with buffer

zones around their edges as shown in Fig. 1. One can

then propagate these tiles separately, discard the

buffer zones, and recombine the tiles to form the large

2D array at the downstream plane. These tiles can be

sized to fit GPU memory [27] or other specialized

hardware [30]. They can also be distributed to nodes on

a high performance computing cluster, which is the

approach we use here. Consider a large input wavefield

array ψs(Nx, Ny), and a refractive index array

δj=1…Nz
(Nx, Ny) + iβj=1…Nz

(Nx, Ny). The number of slices

is Nz from Eq. (9), with Δz no larger than the depth of

focus DOF of Eq. (1) and possibly as small as zK-C of

Eq. (11). The tiles will have dimensions ψs(Nx , tile, Ny , tile)

r2 =
w

√2
λzprop√

r2 = 3.97 λzprop√



so that there are Nx /Nx , tile and Ny /Ny , tile tiles in the x

and y dimensions, respectively. To any interior tile, one

must add a buffer zone of physical width r2 from

Eq. (14), or pixel width

to each side of the tile with information from

neighboring tiles as shown in Fig. 1. This allows one

to account for diffraction from features at the edge

of nearby tiles into the field of view of the particular

tile being processed. For a multislice calculation, one

can choose between two alternative approaches to

tiling-based Fresnel diffraction using these arrays:

• 2D tiling: In this approach, at each slice one

divides ψs(Nx, Ny) into tiles

ψs(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer), and also the

refractive index distribution n = 1 − δ − iβ for slice

j into tiles of δj(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer)

and βj(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer). In this

case, r2 (Eq. (14)) and Nbuffer (Eq. (15)) are

calculated for the thickness of one slice, or z = Δz.

The tiles with their buffer zones are distributed to

nodes. The refractive index modulation is then

applied using Eq. (6), after which propagation by

the slice thickness z = Δz is carried out using

Eq. (7) to yield ψd(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer).

The buffer zone is then stripped, and

ψd(Nx , tile, Ny , tile) is then returned. The various tiles

of ψd(Nx , tile, Ny , tile) are then used to form the full

input wavefield ψs(Nx, Ny) entering the next slice,

and the process is repeated. Because the free

space propagation step of Eq. (7) is carried out

over a small distance z = Δz ranging between

z = DOF and z = zK-C, this approach has the

advantage of requiring a smaller buffer zone size

Nbuffer. However, at each of the Nz slices of the

calculation, it requires collecting the

Nbuffer = r2 /Δx,



ψd(Nx , tile, Ny , tile) tiles from the computational

nodes to re-form the full array ψd(Nx, Ny) which

then is used to distribute the set of

ψs(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer),

δj+1(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer), and

βj+1(Nx , tile + 2Nbuffer, Nx , tile + 2Nbuffer) tile arrays to

the computational nodes.

• 3D tiling: In this approach, at the outset one

divides the input wavefield ψ0(Nx, Ny) into tiles

ψ0(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer) with r2
(Eq. (14)) and thus Nbuffer (Eq. (15)) calculated

using z = t, the total sample thickness (a much

larger value than the slice thickness Δz). One also

generates 3D tilings of the refractive index arrays

δj=1…Nz
(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer) and

βj=1…Nz
(Nx , tile + 2Nbuffer, Ny , tile + 2Nbuffer) for all the

Nz slices, which are then distributed to

computational nodes. The multislice calculation

through all Nz slices can then be calculated on

each node, after which the buffer zone is

removed and the wavefield exiting the sample at

each tile position is returned as ψd(Nx , tile, Ny , tile)

so that the overall specimen exit wave ψd(Nx, Ny)

can be assembled. This approach has the

advantage of not requiring any data transfer

between computational nodes during the

multislice calculation, but it involves each node

carrying out its calculations on a larger array due

to the increased size of Nbuffer with z = t.

Fig. 1. For tiling-based short-distance Fresnel multislice,

one can use a tiling approach to split a large 2D array of

dimension Nx × Ny into a set of smaller arrays, each of size

Nx , tile × Ny , tile, so that these smaller arrays can be



processed on separate computational nodes. When doing

so, one must add a buffer zone of physical width r2
(Eq. (14)), and pixel width Nbuffer = r2 /Δx (Eq. (15)), to each

side of the tile with information from neighboring tiles. This

accounts for diffraction from features at the edge of nearby

tiles coming into the field of view of the tile being

processed.
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We use the 3D tiling approach, as described in

Algorithm 2. Before conducting numerical experiments

using the choice of r2 = 3.97 λzprop as in Eq. (14), we

conducted a validation test using a 2563 voxel object

that was also used in another publication [12]. The

object array contains a hollow capillary tube positioned

in the middle. We propagated a plane wave through the

object, with the object divided into four 3D tiles of

128 × 128 × 256 in a 2 × 2 grid. This way, each tile has a

part of the non-vacuum object filling up to its edge;

when the buffer zone width is too small, diffraction

fringes of the object would wrap around and reenter

from the opposite side, causing errors compared to the

result given by full-array Fresnel multislice (the

reference). We repeated the propagation simulation to

sweep the value of w /√2 from 1 to 8, leading to the

results shown in Fig. 2. When using w /√2 = 4, which is

very close to the value of 3.97 that we have chosen, the

mean-squared-error (MSE) of the wavefield moduli

between the output of tiling-based propagation and the

reference falls to about 1 × 10 −9. Given that the

variance of the reference modulus is 4 × 10 −6, this is a

negligible error and should lead to sufficiently accurate

results.

√
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Fig. 2. Mean squared error of the exit wave of a subregion

of a 3D object as a function of the buffer zone width

r2 = (w /√2) λzprop of Eq. (13), showing that the choice of

r2 = 3.97√λz of Eq. (14) gives good results (a mean squared

error of 10 −9 compared to a variance in the reference

modulus of 4 × 10 −6). Shown here is the result of using

tiling-based short-distance propagation through a 2563

voxel object as used in another publication [12]. The object

was split into 4 128 × 128 tiles with the “seams” of the tiles

running across the object, and buffer zones are added

around each tile.
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2.3 Finite difference methods

The scalar Helmholtz equation of [2]

describes the propagation of a wave ψ with

wavenumber k = 2π /λ through an inhomogeneous

medium with refractive index n(x, y, z). To simplify its

solution, the wave ψ is separated into two parts: a

part u(x, y, z) that varies in the weak refractive

medium, and a part exp[ − ikz] that is an unmodified

forward-propagating wave in the propagation

direction ẑ. This gives

√

∇
2ψ + k2(n(x, y, z))2ψ = 0

ψ(x, y, z) = u(x, y, z)exp[ − ikz].
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Given the weak X-ray refractive index of Eq. (2), we

can assume ∂2u /∂z2 ≪ ∂2ψ /∂z2 and approximate

Eq. (16) with the parabolic wave equation [47,48] of

If we make the definitions

we can write Eq. (18) as

The expression of Eq. (21) presents a linear second

order parabolic differential equation that describes

a boundary value problem. Given that we know

u(x, y, zs) (at the source plane) and require u(x, y, zd)

(at the destination plane), it is more appropriate to

rewrite Eq. (21) as an initial value problem [23] so

that the equation being solved for at each plane is

−2ik
∂u
∂z +

∂2

∂x2
+

∂2

∂y2
u + k2(n2 − 1)u = 0.( )

A ≡
− i
2k

F(x, y, z) ≡ −
ik
2

n2(x, y, z) − 1[ ]

= kβ(x, y, z)(δ(x, y, z) − 1) +
ik
2
(β(x, y, z)2 − δ(x, y, z)2),

A
∂2u

∂x2
+
∂2u

∂y2
−
∂u
∂z

+ F(x, y, z) u = 0.( )



elliptic. Note that while a more recent formulation of

an equivalent to Eq. (22) exists [24], the expression

of Eq. (22) is sufficiently accurate for our purposes

given the fact that we work at the hard X-ray energy

regime. The formulation of Eq. (21) has also been

used in prior studies of X-ray wave propagation in

thick zone plates [49] and waveguides [23]. We can

rewrite Eq. (21) as

The expression of Eq. (22) can be discretized by the

use of finite difference methods. Traditionally, the

space derivatives are evaluated using a central

difference scheme and the time integration is

performed via implicit methods (where we have

defined time to be the coordinate along the

propagation axis). As noted in Sec. 1, this finite

difference method has been shown to outperform

the full-array Fresnel multislice algorithm when

comparing compute time for the same degree of

accuracy on single node computers [23,24].

The general Helmholtz equation problem is known to

be challenging to solve using finite difference methods

[50]. Previous implementations have favored methods

that only require tridiagonal matrix inversions using the

Thomas algorithm [51]. For one-dimensional systems,

the Crank-Nicolson method [52] has been used, while

two-dimensional problems have been tackled using

Alternating Direction Implicit schemes [51,53] where

the wave is propagated along one axis at a time to

generate the familiar tridiagonal system of equations.

The main disadvantage of ADI is poor scalability to

large-scale problems [54].

∂u
∂z

= A
∂2u

∂x2
+
∂2u

∂y2
+ F(x, y, z) u.( )



Instead of formulations that require tridiagonal

inversions, we employ iterative solvers along with

preconditioners to enable the use of the Crank-

Nicholson method for both one- and two-dimensional

problems. As expanded upon in the implementation

section, we are not required to program these

algorithms since we express the problem using PETSc

[28,29] which allows us to compose scalable solvers.

The recent availability of high-level discrete adjoint

frameworks [55,56] offers another approach for the

optimization problem. These frameworks allow one to

access the sensitivity of the parameters necessary for

an optimization-based inverse-problem reconstruction

algorithm. These automatically generated adjoint

solvers utilizing the same mode of parallelism as the

equations, and potentially run faster than the forward

problem (owing to the properties of adjoints and the

fact that the adjoints are implemented as a series of

linear solves). This is in contrast to the approach used

by algorithmic differentiation [57,58], which operates

on low-level operations and therefore does not offer

quite as high performance.

3. Implementation

The full-array Fresnel multislice (Sec. 2.1) and finite

difference (Sec. 2.3) algorithms described above have

been implemented using the 3.13.1 release of the

PETSc/TS framework [28,29] which is designed to

support scalable solvers for partial differential

equations (with code available [59]). PETSc supports

distributed memory computing using the Message

Passing Interface (MPI) [60] as well as the use of

graphical processing units. The tiling-based short-

distance Fresnel multislice algorithm (Sec. 2.2) was

implemented in Python (with code available [61]) using

the mpi4py package [62,63] for distributed memory

parallelism, and the scientific Python stack SciPy [64]

for multithread parallelism for each MPI task. All

algorithms used the HDF5 library [65] for parallel disk

I/O.



Table 1. Compute systems used and their

configuration. The machine “xrmlite” is a

Linux workstation at Northwestern

University. The cluster “bebop” is at the

Laboratory Computing Resource Center

(LCRC) at Argonne National Laboratory (with

four Northwestern University nodes

included), while the cluster “theta” is at the

Argonne Leadership Computing Facility

(ALCF) [69,70]. With both “bebop” and

“theta,” we used only a fraction of the large

number of available nodes for the strong

scaling studies described in Sec. 6.2. We

PETSc was installed on workstations and clusters using

the spack package manager [66] with the Intel Compiler

Collection to take full advantage of the underlying

hardware. The Intel Math Kernel Library was chosen as

the BLAS/LAPACK implementation for optimal

performance for all algorithms.

Initial development and debugging was done on a

Linux-based workstation “xrmlite.” Algorithm

composition and tuning for optimal distributed memory

performance were carried out on the cluster “bebop,”

while final scaling studies were performed using the

supercomputer “theta,” both at Argonne National

Laboratory. The characteristics of these systems are

listed in Table 1. PETSc does not use multi-threading,

but benefits from higher memory bandwidth, which is

available on the KNL processor at high process counts.

The tiling-based short-distance Fresnel multislice

method prefers the number of ranks per node to be a

perfect square, which in this case, happens to match

the maximum number of physical cores. Thus, for tests

of all three approaches on “theta,” we set the CPU

affinity to “depth”, used one thread per rank, and one

thread per core. The terminology for the configuration

options is given in [67]. We used the balsam workflow

manager [68] to pack multiple jobs for queue

submission.



note that “xrmlite” has two Quadro P5000

GPUs, each connected to the CPU via

PCIe3.0.

View Table

3.1 Full-array Fresnel multislice

The full-array Fresnel multislice algorithm was

implemented using the PETSc [28,71] framework which

provides data structures for scalable and efficient linear

algebra [72].

The PETSc application programmer interface (API)

conceptualizes the fast Fourier transform (FFT) as a

matrix multiplication by an “FFT” matrix, where FFT(x) is
a matrix multiply A ∗ x, but the A matrix is never

explicitly constructed. Behind the scenes, the FFT is

executed by the FFTW library [73] on CPUs. This matrix

multiply can, however, only be performed on a specific

class of vectors, since FFTW has its own requirements

for distribution of data. PETSc also includes

functionality to either create vectors that conform to

the FFTW format (with the correct data distribution and

padding), or the ability to scatter data from a regular

MPI vector to a FFT-compatible vector.

We choose the “FFTW format” as the data structure for

all of the vectors that are used in the full-array Fresnel

multislice algorithm. This frees us from the tedious task

of performing explicit data restructuring to switch

between having the wave be FFTW-aligned and having it

be distributed as a regular array for dot products

(corresponding to Eq. (6)). The only downside to this

approach is the poor scalability of distributed memory

FFT for a large number of MPI ranks [40,41].

The above implementation of the multislice algorithm

makes it straightforward to carry out the functions

described in Algorithm 1 using the PETSc API.



3.2 Tiling-based short-distance Fresnel multislice

We used a hybrid programming model combining the

message-passing interface (MPI) and multi-threading to

implement the tiling-based short-distance Fresnel

multislice algorithm. After propagation, the buffer zone

of size Nbuffer on each edge of a wavefield tile is

discarded, and the valid region of the wavefield is

written directly into the correct position of the output

array. The output array is stored in an HDF5 file that is

accessed in parallel by all ranks. The HDF5 [65] library

was accessed via the Python interface h5Py [74,75].

Distributed memory programming was done via the

mpi4Py package [62,63] which provides Python

bindings to the MPI standard. Fast Fourier transforms

(FFTs) were performed using the Intel-processor-

optimized package mkl-fft [76] via its NumPy bindings.

3.3 Finite difference

For the finite difference approach, the TS ODE/DAE [29]

integrator library (distributed as part of PETSc/TAO)

provides a wide variety of scalable solvers for ordinary

differential equations (ODEs) and differentiable-

algebraic equations (DAEs), obviating the need to write

explicit time integration algorithms. Therefore, we

chose to implement the finite difference problem as a

linear time-step (TS) object in PETSc. To manage the

distributed memory grid, we used PETSc’s data-

management distributed-array (DMDA) object [28]

which is designed for optimal performance when using

logically rectangular grids (it re-orders the memory

mapping to suit typical differential equation solver

operations). As mentioned earlier, previous

implementations [23,24] of parabolic wave equation

solvers relied on algorithms that were not easily

scalable to distributed parallel compute nodes. PETSc

enables using a wide variety of preconditioners and

Krylov solvers which can be tuned to the problem at

hand, thus allowing us to design an algorithm with

superior performance and scaling characteristics for

parallel computing.



The discretization in space was performed via the

central differencing scheme for space derivatives, and

the time integration was performed by the TS object

using either a first or second-order implicit method as

dictated by the needs to the problem being solved.

Because our eventual goal is to go from solving the

forward propagation problem for a particular object

guess (the forward problem), to solving for the object

(the inverse problem), maintaining large propagation

sizes per step is important as this ensures a minimal

size of the refractive index grid while still accurately

modelling the diffraction phenomenon. For this reason,

we did not test explicit methods such as Euler or non-

adaptive Runge-Kutta, as these are unstable at large

step sizes. While a one-stage second order implicit

method (known as the implicit midpoint method) gives

the same result as a two-stage second order implicit

method (with endpoint, known as Crank-Nicholson), the

two-stage method is significantly faster. Therefore, we

used the Crank-Nicholson scheme [52] in PETSc.

We used a GMRES linear solver [77,78] with

preconditioning determined by the nature of diffracting

object. When the object has some order to its structure

(such as for simulating the focusing of thick Fresnel

zone plates), algebraic multigrid preconditioning [79–

81] was used. When the object of interest is better

characterized as being irregular, we observed that an

additive Schwarz preconditioner [82,83] was faster. For

elliptic problems, one-level additive Schwarz methods

are known to be non-optimal with increasing problem

size (hence one needs multigrid methods). Depending

on the ratio of the time-step size to the subdomain size

squared for parabolic problems, it is possible to show

the algorithms are optimal [84]; that is, the coarser level

solvers of multigrid are not needed. This phenomena is

similar to the fact one can replace the full-array Fresnel

multislice method with the tiling-based short-distance

Fresnel multislice method.

The general idea of multigrid schemes arises from the

observation that low frequency residuals are

challenging to eliminate using classical relaxation-based



preconditioning schemes. Thus multigrid

preconditioning works by transferring the residual to a

coarser grid (where the residual now contains high

frequency components), solving for which gives an

estimate for the error which is then transferred back to

the fine grid. Classical geometric multigrid

preconditioning [85] uses interpolation operators based

on the grid geometry to generate the coarse grids.

However, algebraic multigrid preconditioning requires

no information about the grid, and constructs coarse

grids based on the system of equations being solved

[80,81]. The selection of coarse grids (akin to graph

partitioning) and construction of interpolation

operators (with a Galerkin process) together form the

“setup” phase. These coarse grids and interpolation

operators can be reused for subsequent applications

[80,81] of the preconditioner, thereby amortizing the

cost of the setup phase. Algebraic multigrid

preconditioning has been shown to work well for

discretized Helmholtz operators [86].

The general idea of domain decomposition schemes is

to split the task of solving the system of equations

(arising from the partial differential equation

discretization) from one large domain into smaller

overlapping domains [82,83,87]. These sub-blocks are

then solved independently and these solutions are then

iteratively combined. In particular, we used the

restricted additive Schwarz method as a preconditioner,

which has been shown to improve performance when

compared to using it as a solver [87].

4. Wavefield convergence metric

In order to numerically compare the step size sensitivity

of each method, we measured the minimum number of

slices Nz ,min that each method takes to yield a

converged result. In the limit of taking thinner slices

(that is, as the number of slices Nz is increased towards

Nz , ∞), multislice calculations converge on an exit wave

ψd with magnitudes A∞ , i and phases ϕ∞ , i at pixel

positions i. However, if one were to calculate



convergence using the phase ϕ∞ , i of the exit wave ψd,

one would possibly need to use phase unwrapping

from the complex wavefield, which can be time-

consuming and prone to error. The problem can be

circumvented by calculating the root-mean-square

(RMS) difference of the complex wavefields. Suppose

the magnitude of the wavefield calculated using Nz

steps is An , i at pixel i, while the converged magnitude

one would obtain using an infinite number of

infintitessimally thin slices is A∞ , i; also, suppose the

phases in the two cases are ϕn , i and ϕ∞ , i, respectively.

The complex wavefield RMS difference is given by

Because phase contrast dominates in hard X-ray

imaging, we can assume An , i ≃ A∞ , i ≃ Ā everywhere,

with Ā ≃ exp[ − kβ̄t] using the Lambert-Beer law of

I = I0exp[ − 2kβt] with the X-ray refractive index

n = 1 − δ − iβ [3], and β̄ indicating the spatial average

within the inhomogenous specimen. Since

cos(x) ≈ 1 − x2 /2, Eq. (23) reduces to

This approximation is illustrated in Fig. 3. Since the

RMS phase error ξϕ represents the standard

ξcomplex =
1
N∑
i

An , iexp(iϕn , i) − A∞ , iexp(iϕ∞ , i)
2

1
2

=
1
N∑
i

A2n , i + A2∞ , i − 2An , iA∞ , icos( | ϕn , i − ϕ∞ , i

[ [ ] ]
[ [

Ā ξcomplex = Ā
1
N∑

i
2 − 2cos( | ϕn , i − ϕ∞ , i | )

≃ Ā
1
N∑

i
| ϕn , i − ϕ∞ , i |

2

≃ Ā ξϕ.

√ [ ]

√



deviation of a Gaussian distribution, the net

reduction in the summation of amplitudes from

many waves [3,88,89] is given by exp[ − ξ2ϕ /2].

Therefore if we set the requirement

we see that we obtain errors in the unattenuated

amplitude (Ā ≃ 1) of a wave no greater than 4.8%,

since exp[ − (0.05(2π))2 /2] = 0.952. This is far more

stringent than the usual Rayleigh quarter wave

criterion for tolerance of phase errors. We therefore

judge convergence by decreasing the slice thickness

Δz (and thus increasing the number of slices Nz for a

given specimen thickness t) until further decreases

in Δz lead to changes in ξϕ of less than (0.05)2π = 0.31

in accordance with Eq. (25). This gives us a

measurement for the number of slices nC required

to reach convergence of

which we will report for various tests of calculating

X-ray wave propagation through thick

inhomogeneous media.

Fig. 3. Illustration of the metric for measuring the RMS

average Ā ξϕ of the magnitude error at one pixel i between

the complex value before convergence (An , iexp[iϕn , i];

shown in blue) and after convergence (A∞ , iexp[iϕ∞ , i]; shown

ξϕ ≤ (0.05) 2π,

nC = min{n | Ā ξϕ(n) ≤ Ā (0.05)2π}



in red). When obtaining a particular measure of the phase

difference ϕn , i − ϕ∞ , i from a complex value z̃ = Aexp[iϕ] on

the real (Re) and imaginary (Im) plane, one could obtain

erroneous values in the case shown where the phase

before convergence is reported as π − ϵn , i while the phase

after convergence is reported as −(π − ϵ∞ , i), one would

obtain an erroneous phase difference ϕn , i − ϕ∞ , i of near 2π.

Calculating the RMS difference between complex

wavefields (Eq. (24)) circumvents this problem by

measuring the end-to-end distance between the red and

blue vectors at individual pixels i, a result that does not

require phase wrapping. When the moduli An , i and A∞ , i are

similar, the average modulus of the green vector (labeled

here as Ā ξϕ using Eq. (24)) is approximately linearly related

to the RMS average of Ā | ϕn , i − ϕ∞ , i |  subtended by the blue

and red vectors.
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For cases where the inhomogeneous object is

surrounded by a featureless outer border (such as is

the case for circular zone plates within a rectangular

array), the calculation of the RMS amplitude error

ξcomplex ≃ Ā ξϕ shown below will be from the feature-

containing region, with featureless regions excluded.

5. Experiments

Our goal is to understand the characteristics of the full-

array Fresnel multislice, tiling-based short-distance

Fresnel multislice, and finite difference methods for

propagating large area X-ray wavefields through thick

inhomogeneous media. To do this, we carried out

numerical tests using two different diffracting objects: a

Fresnel zone plate thick enough that waveguide effects

become apparent (Sec. 5.1), and a X-ray

microtomography reconstruction of a charcoal

specimen scaled to match the conditions of nanoscale
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imaging (Sec. 5.2). In order to understand the relative

scattering power of these objects, we calculated the

object’s RMS phase deviation as

where δ̄(z) refers to a uniform object with the phase

shifting part of the refractive index set to the

weighted mean of the refractive indices of the same

slice (with axial coordinate z). For our calculations,

we assumed a photon energy of E = 15 keV (giving

λ = 0.0827 nm), and a transverse calculation grid size

or pixel size of Δx = 2 nm. Assuming that half-period

features can be as small as δres = Δx, one can use

Eq. (1) to find a calculation depth of focus of

DOF = 26.0 nm, and Eq. (11) to find that the

thickness at which the Klein-Cook parameter

becomes Q = 0.5 is given by zK-C = 1.54 nm (so that

one can assume scalar diffraction, without

waveguide effects, within one slice thickness).

However, one can in fact use larger slice thicknesses

Δz and still meet our convergence criteria

ξϕ ≤ 0.05(2π) from Eq. (25), as will be shown below.

5.1 Fresnel zone plate test object

Fresnel zone plates (Fig. 4) are widely used as X-ray

nanofocusing optics [3], since they offer normal

incidence mounting and easy energy tunability. For

conventional Fresnel zone plates, the spatial resolution

is given by δres = 1.22drN where drN is the width of the

outermost, finest zone, and for gold zone plates at

E = 15 keV a thickness along the X-ray beam direction ẑ
of about t = 3 μm is required to achieve focusing

efficiencies that can in theory be as high as about 25%.

Since we wish to test the ability of different wave

propagation calculation methods to account for

waveguide effects in thick structures, we chose to

σϕ =
2πΔz
λ

1
Nx , y

∑
x , y

[∑
z
δ(x, y, z) − δ̄(z)]2

1
2[ ]



simulate a zone plate with a finest outermost zone

width of drN = 20 nm and a thickness of t = 30.81 μm,

giving a Klein-Cook parameter (Eq. (10)) of Q = 10 for the

zone width rather than the pixel size. For this zone

plate, the depth of focus DOF corresponding to the

spatial resolution of δres = 1.22drN is DOF = 38.7 μm

(Eq. (1)), while the distance over which the zone width

would produce a value for the Klein-Cook parameter of

Q = 0.5 is zK-C = 2.3 μm (Eq. (11)). The magnitude of the

exit wave for a zone plate averaged over the central

region ( ≈ 25% side length) is Ā ≈ 0.43 for a plane wave

input with a magnitude of unity. Thus, threshold for

convergence (Eq. (24)) for the zone plate test object is

Within this central region, the diffractive power

(Eq. (27)) was calculated to be σϕ = 13.60.

Fig. 4. Fresnel zone plate test object, with a thickness t and

a finest zone width of drN. The beam propagation direction

ẑ is also indicated.
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Because we wanted to explore the scaling of our

calculation with increasing array size (Nx, Ny) with

constant pixel size Δx = 2 nm, at each array size we

generated a zone plate with the above minimum zone

width drN and thickness t, but with a diameter d equal to

80% of the array size, or d = 0.8NxΔx. We used partial

[Ā ξϕ]zp = Ā (0.05)2π = 0.135.
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voxel filling of the zone plate material’s refractive index

to handle the cases where the boundary of a zone plate

zone was within a voxel [22]. Since there is no variation

of the zone structure along the direction of propagation

ẑ, we only need to store one two-dimensional array for

each (Nx, Ny) array which greatly simplifies storage

issues. When using a plane wave ψs for illumination, we

would be able to propagate the exit wave ψd to the

focus position f given by

which we have done in other studies [22,35].

However, for our present purposes, we just wish to

find the minimum number of slices that lead to

convergence of the exit wave to approximately the

same value obtained with using a much larger

number of slices in the calculation: that is, nC as

described by Eq. (26).

5.2 Porous aluminum test object

As noted above, a Fresnel zone plate provides a

structure that can be extended axially to the case

where waveguide effects come into play. However, a

zone plate is also a highly regular structure, whereas

more general specimens in X-ray microscopy are quite

irregular.

For a test object that more accurately represents

objects that are imaged at synchrotron sources, we

used part of an X-ray tomographic reconstruction of an

activated charcoal sample acquired in a previous study

[90], and now available as the dataset “activated-

charcoal” in TomoBank [91]. This 4 mm diameter

specimen was imaged using 25 keV X-rays, with a

reconstruction pixel size of 0.6 μm, resulting in object

slices of 6613 × 6613 pixels, and a total number of 4198

object slices (or a 6613 × 6613 × 4198 voxel array). We

f =
d ⋅ drN

λ



then generated a baseline phantom from a subvolume

from this array in a manner we now describe (and

which is illustrated in Fig. 5). Each object slice in the

original reconstruction had a slight ring artifact near the

rotation axis center due to imperfect alignment of the

data on the reconstruction rotation axis, and these

rings could have contributed to a cylindrical waveguide

artifact in the final phantom. Therefore, a

2448 × 2448 × 4198 voxel subregion was selected that did

not include this ring artifact. This subregion was then

replicated into a 2 × 2 grid in the plane of the object

slices, with pyramid blending [90,92] used at the tile

overlaps, and the outermost 15% of the object slice

area blended out to vaccum (that is, to a specimen

density of zero). This resulted in a 4096 × 4096 × 4198

voxel volume, which was then rotated so that the

original tomographic rotation axis became the beam

propagation direction. Since the multislice propagation

slice thickness Δz is usually much larger than the

transverse pixel size Δx, we then selected 51

tomographic reconstruction object slices (each

separated from its neighbor by 50 slices, out of the

center 51 ⋅ 50 = 2550 slices in the 4198 slice direction)

from this volume. This way, the selected slices are

sufficiently different to avoid waveguide effects. This

yielded a 4096 × 4096 × 51 voxel array, with 4096 × 4096

pixels in the transverse direction and 51 pixels along

the beam propagation direction ẑ. Finally, the “baseline”

phantom in our numerical study is assumed to contain

500 slices of thickness Δz = 147.46/500 = 0.295 μm along

the beam propagation direction ẑ. This

(Nx × Ny × nz) = (4096 × 4096 × 500) voxel baselone object

was formed by looping the 51 object slices back and

forth (i.e., arranging the slices in the order 1, 2, …, 50,

51, 50, 49, …, 2, 1, 2, … and its repeat). For convergence

tests where Nz was varied to find nC of Eq. (26) in both

Fresnel multislice methods, a smaller number of slices

were obtained by linear interpolation of the baseline

object along the propagation direction ẑ, leading to a

modified phantom of 4096 × 4096 × Nz voxels.



Fig. 5. The process used to generate the porous aluminum

phantom object (right). A larger scale tomographic

reconstruction of an activated charcoal specimen (left) was

used as the data source. From the 4198 tomographic

reconstruction slices of 6613 × 6613 pixels each, a

2448 × 2448 × 51 voxel subregion was selected through all

slices to avoid ring artifacts near the rotation axis. This

subregion was then replicated into a 4 × 4 grid in the plane

of the object slices, with pyramid blending used at the tile

overlaps and the edges blended out to vaccum (that is, to a

specimen density of zero). The resulting 4096 × 4096 × 51

voxel array was then rotated so that the original data

rotation axis (veritcal, at left) became the beam

propagation direction ẑ in the phantom object at right, after

which both the pixel size and the contrast of the object

were modified to yield the porous aluminum phantom

object.
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The original tomographic reconstruction was acquired

using absorption contrast, whereas we wished to

simulate a complex object. Therefore we normalized

the absorption map so that it had a mean occupancy of

1, and multiplied it by the tabulated value [93] of δ + iβ
(Eq. (2)) for aluminum at 15 keV, effectively giving each

voxel a different fractional filling with aluminum. The

histogram of the resulting densities shown in Fig. 6

reveals that this led to some pixels having unphysically

high densities (which we realized after our convergence

and scaling tests were complete), but this only serves to

make the object have slightly larger refractive

properties with no impact on measuring convergence

or calculating speeds of the algorithms tested. We also

added to each slice 10–20 disk-shaped gold particles
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with radii ranging from 5 to 20 pixels (10–40 nm), and a

thickness of one slice (or Δz = 0.295 μm) to create

strongly scattering features. This was accomplished by

replacing the δ + iβ of aluminum with that of gold at

those positions. The total object thickness was set to

t = 147.5 μm so that the object gave the same diffractive

power σϕ = 13.60 (Eq. (27)) as the zone plate object. The

object thus created had a magnitude of its exit wave of

A = 0.78 averaged over the central region, leading to a

threshold for convergence (Eq. (24)) of

We refer to this test specimen as the porous

aluminum phantom.

Fig. 6. Histogram of voxel densities of the porous

aluminum test object. By setting the average occupancy of

the charcoal test object to 1 and then multiplying by the

refractive index of aluminum, the porous aluminum test

object was inadvertently created with voxel densities

exceeding the actual density of aluminum. This means that

the test object was more strongly refracting than a true

aluminum object would be, but this does not affect our

measurement of the convergence or timing properties of

the algorithms tested.
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[Ā ξϕ]Al = Ā (0.05)2π = 0.245.
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6. Results

6.1 Convergence results

Our first test was to compare the convergence of the

three algorithms as a function of the number of slices

Nz = t /Δz (Eq. (9)). For this test, we used the porous

aluminum test object with thickness t = 147.5 μm and

(4096)2 transverse pixels. The object was re-sampled

along the propagation direction ẑ to vary Δz and thus Nz.

The exit wave was then calculated with the three

algorithms of Sec. 2 and successful convergence was

measured using Ā ξϕ of Eqs. (24) and (25) using the

value [Ā ξϕ]Al = 0.245 of Eq. (30). As seen in Fig. 7, the

Fresnel multislice approaches gave similar values for

the minimum number of slices nC = 84 for full-array

Fresnel multislice and nC = 90 for tiling-based short-

distance Fresnel multislice. The corresponding

maximum slice thicknesses of Δz = 1.76 and Δz = 1.64 μ

m, respectively, are both well beyond the minimum

pixel value of DOF = 0.026 μm noted above. For the

finite-difference algorithm, a much larger minimum

number of slices of nC = 352 was required,

corresponding to Δz = 0.42 μm for this irregular object.

Fig. 7. Convergence test for the three algorithms of Sec. 2

using the porous aluminum test object. For this test, the

40962 transverse subarray of the object was selected, and

the thickness t = 147.5 μm was bilinearly re-sampled onto a

variable number of slices Nz. Using the convergence

criterion of Eq. (26) giving a tolerance for this sample of

[Ā ξϕ]Al = 0.245 (Eq. (30)), the full-array Fresnel multislice

approach reached convergence with nC = 84 slices with

Δz = 1.64 μm while the tiling-based short-distance Fresnel



multislice approach required nC = 90 slices with Δz = 1.64 μ

m. The finite difference method required nC = 352 slices

with Δz = 0.42 μm for this irregular object.
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We also used the porous aluminum object to test the

performance of the finite difference algorithm as a

function of the transverse array size Nx × Ny, with

results shown in Fig. 8. As the array size was decreased

from 40962 to 5122 transverse pixels, the minimum

number of slices decreased from nC = 352 to nC = 96,

with the nC = 96 result corresponding to a slice

thickness of Δz = 1.54 μm which is more similar to what

is required for the Fresnel multislice approaches.

Fig. 8. Convergence of the finite difference approach as a

function of transverse array size for the porous aluminum

object. As in Fig. 7, the indicated size of transverse array

(ranging from 5122 to 40962 pixels) was extracted from the

object, and the total object thickness t = 147.5 μm was

bilinearly sampled along the propagation direction ẑ to vary

Nz. For each array size, the minimum number of slices nC
(Eq. (26)) was calculated using the convergence threshold

[Ā ξϕ]Al = 0.245 of Eq. (30). As can be seen, the finite

difference method converges more quickly with smaller

transverse arrays, reaching nC = 96 (with slice thickness

Δz = 1.54 μm) at 5122 transverse grid size with this irregular

object.
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We then tested the three algorithms on the t = 30.81 μm

thick Fresnel zone plate test object, where one would

expect to see the finest zone width drN = 20 nm give rise

to depth of focus effects (Eq. (1)) at DOF = 38.7 μm and

waveguide effects (Eq. (11)) at zK-C = 2.3 μm. We tested

the convergence of all three algorithms as a function of

transverse array size as shown in Fig. 9, where the zone

plate diameter d (and thus focal length f) was adjusted

to fill 80% of the transverse array size in each case. With

this highly regular object, the finite difference algorithm

required fewer slices to converge (nC = 8, giving

Δz = 3.85 μm) while the two Fresnel multislice algorithms

required more slices (nC = 21 and Δz = 1.47 μm for full-

array Fresnel multislice, and nC = 23 and Δz = 1.34 μm

for tiling-based short-distance Fresnel multislice). Since

the finite difference method has been shown to

converge quickly in calculations of X-ray waveguides

[23,24], it is not surprising that it performs better with

the regular structure of thick zone plates. All three

cases required slice thicknesses that are within a factor

of 2 of the Klein-Cook thickness zK-C = 2.3 μm estimated

using Eq. (11), and all three cases had convergence

properties that did not depend on the transverse grid

size.

Fig. 9. Convergence test of the three algorithms for a

Fresnel zone plate as a highly regular test object. In all

cases, the zone plate thickness was t = 30.81 μm and the

minimum zone width was drN = 20 nm, but the diameter d

(and thus focal length f) of the zone plate was adjusted to

match 80% of the transverse array size for 40962, 163842,

and 655362 transverse pixels, respectively. Using the

convergence threshold [Ā ξϕ]zp = 0.135 (Eq. (28)) for this

object to find the minimum number of slices nC (Eq. (26)),

all three algorithms had minimum slice numbers nC that



were independent of transverse array size and that were

within a factor of 2 of the thickness zK-C = 2.3 μm (Eq. (11))

at which waveguide effects would be expected for this

specimen. The finite difference method required fewer

slices with nC = 8 and Δz = 3.85 μm, while the two Fresnel

multislice methods required slightly more slices (nC = 21

and Δz = 1.47 μm for full-array Fresnel multislice, and

nC = 23 and Δz = 1.34 μm for tiling-based short-distance

Fresnel multislice).
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6.2 Scaling results

Having established the convergence of each approach,

we then considered performance scalings on parallel

computing systems as required for future image

reconstruction problems with increasingly large array

sizes. Because of the need to adjust transverse array

sizes for these tests, we used the Fresnel zone plate

test object described in Sec. 5.1, where the zone plate

diameter was 80% of the transverse array size. Based

on the results shown in Fig. 9, we used nC = 8 slices for

the finite difference approach, nC = 21 for the full-array

Fresnel multislice approach, and nC = 23 slices for the

tiling-based short-distance Fresnel multislice approach.

We carried out these tests on the compute system

“theta” with properties described in Table 1. The tiling-

based short-distance Fresnel multislice approach

requires the number of ranks per node to be a perfect

square, so we were able to use 64 MPI ranks per

compute node, matching the number of compute cores

available on each node of “theta.”

The finite difference approach includes a “setup” phase

that constructs a new preconditioner object each time a

new calculation size is encountered (for the algebraic

multigrid preconditioner, this involves setting up the

coarse grids and interpolation matrices as described in

Sec 3). This preconditioner can then be reused for

subsequent applications on the same array size. In our
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tests below, a preconditioner was constructed for the

first propagation step and used, as is, for all the

following steps. In an optimization context where the

time-stepping (TS) object (which handles the time

integration, as described in Sec 3) is re-used, this setup

cost would amount to a negligible amount of total

runtime.

Our first test was to look at the total computation time

for a fixed transverse array size of 327682 pixels while

increasing the number of computational nodes used. In

the case of 100% parallel computing efficiency, this so-

called “strong scaling” test would be carried out in the

time it takes one node to do the entire problem divided

by the number of nodes used. As seen in Fig. 10, the

full-array Fresnel multislice approach shows only a

modest decrease in compute time when more nodes

are used, until at 64 nodes and above the calculation

time begins to increase, rather than decrease. The

“strong scaling” details shown in Fig. 11 show why: the

time for doing a fast Fourier transform (FFT) increases

with these many nodes as internode communication

speed limits outweigh the gains offered by using more

cores when carrying out FFTs on large arrays. Because

the tiling-based short-distance Fresnel multislice

approach gives each node a subarray to work on with

communication only at the calculation start (when each

node is given its data) and end (when the full exit wave

is assembled), it has improved scaling properties

especially in terms of FFT time as shown in the bottom

row of Fig. 11. The finite difference method

implemented using PETSc takes a longer time even

though a smaller number of slices nC are required

(Fig. 9), but using more nodes for the same problem

gives a more rapid relative decrease in calculation time

(that is, better “strong scaling”) until there is no further

gain when using more than about 100 nodes for this

problem size.



Fig. 10. Time for calculating the exit wave from the zone

plate test object as a function of the number of nodes used.

This “strong scaling” test was done with a constant

transverse grid size of Nx × Ny = 327682 pixels on the

computational cluster “theta” (see Table 1), and using the

number of slices nC each algorithm required for

convergence to the error tolerance [Ā ξϕ]zp of Eq. (28) (the

resulting values of nC were consistently within 1 or 2 slices

of the values shown in Fig. 9). While the finite difference

method takes the longest amount of time with a small

number of nodes, it benefits the most from increased

parallelization so that the calculation time drops

significantly by the time 128 nodes are employed. The full-

array Fresnel multislice method shows only a modest time

decrease as more nodes are employed, until at 64 nodes

the calculation time begins to increase due to the

requirement for considerable data communication

between nodes. Because the tiling-based short-distance

Fresnel multislice approach allows each node to proceed

through to the exit wave plane before inter-node

communication is again required, it takes the least time but

after 64 nodes one again sees a slight increase in

calculation time if additional nodes are used. Note that 64

nodes corresponds to a transverse array size of 40962

pixels per node. Further details on this “strong scaling” test

are provided in Fig. 11.
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Fig. 11. Further details on the “strong scaling” test results

shown in Fig. 10. These tests were of the zone plate test

object on a Nx × Ny = 327682 pixel transverse grid. For each

of the three calculation methods, we show at top the

speedup versus the number of nodes used (with a a linear

“perfect scaling” trend showing up as a curved line on this

log-linear plot). This shows that the finite difference method

has the best scaling to calculation speedup with increased

number of nodes. At bottom we show the time required for

key operations in the various methods: the time required

for a fast Fourier transform (FFT) in the full-array Fresnel

multislice and tiling-based short-distance Fresnel multislice

methods, and the time for problem setup and then

problem solution for the finite difference method. With the

full-array FFT approach, the advantage of having more

processors is outweighed by data communication overhead

when 64 or more nodes are used.
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Because our ultimate goal is to use parallel computing

to calculate X-ray propagation through increasingly

large objects, our next test was to consider array sizes

that scaled up with increasing numbers of nodes used.

Based on the observation in Figs. 10 and 11 that FFT

performance decreases when each node is required to

work with array sizes smaller than 40962, we used an

array size of (4096 Nnodes)
2 in this “weak scaling” test.

We increased the number of nodes Nnodes by factors of

4 (1, 4, 16, …) for the full-array Fresnel multislice method

in order to have radix-2 array sizes, and also for the

finite difference method; since the tiling-based short-

distance Fresnel multislice approach requires splitting a

large transverse array into an integer number of tiles in

each direction, for that method, we increased Nnodes by

a series of perfect squares (12, 22, 32, …). As shown in

Fig. 12, the total compute time for the full-array Fresnel

multislice approach increases dramatically when the

transverse array size goes beyond Nx × Ny = 327682, with

√
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Fig. 13 making it clear that this is due to the time of

calculating the FFT of a single large array with lots of

internode data communication. The tiling-based short-

distance Fresnel multislice approach is the fastest in

this test, with the FFT time essentially unaffected by

overall transverse array size as shown in Fig. 13; this is

as expected given that in this approach each node

works only on its local “tile” of the larger array. Once

again, the finite difference approach is slower than the

tiling-based short-distance Fresnel multislice approach,

but it also shows more favorable scaling efficiency with

larger problem size as shown in Fig. 13.

Fig. 12. Time for calculating the exit wave for the zone

plate test object as a function of increasing the transverse

array size along with the number of nodes, with each node

given a transverse grid size of Nx × Ny = 40962 (leading to a

net array size of 655362 for 256 nodes, as indicated just

below the top of the plot). For each algorithm, the number

of slices nC was as required for convergence to the error

tolerance [Ā ξϕ]zp of Eq. (28), giving values of nC that were in

all cases within 1 or 2 slices of the values shown in Fig. 9.

This “weak scaling” test shows that both the finite

difference and tiling-based short-distance Fresnel multislice

approaches scale well as the problem size increases with

the number of nodes used, consistent with the “strong

scaling” test results of Fig. 10. With the full-array Fresnel

multislice approach, the time required for data

communication between nodes for full-array FFTs means

that even with many nodes available large problems

require considerably more time to compute.
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Fig. 13. Further details on the “weak scaling” test results

shown in Fig. 12. These tests were of the zone plate test

object with a constant array size of Nx × Ny = 40962 per

node, leading to a net array size of 655362 for 256 nodes.

The top row shows the scaling efficiency for each of the

three algorithms, which is the completion time compared

to the 1 node result divided by the number of nodes used.

The bottom row shows the time for key operations in each

method: a fast Fourier transform or FFT for the Fresnel

multislice approaches, and problem setup and solution for

the finite difference method. As can be seen, the full-array

Fresnel multislice approach has especially poor “weak

scaling” performance due to the need for internode

communcation at each slice position, while the tiling-based

short-distance Fresnel multislice approach offers better

parallel performance. The finite difference approach takes

a longer time, but with less of a decrease in efficiency for

larger transverse array size.

Download Full Size (/viewmedia.cfm?uri=oe-28-20-

29590&figure=oe-28-20-29590-g013&imagetype=full) | PDF

(/viewmedia.cfm?uri=oe-28-20-29590&figure=oe-28-20-

29590-g013&imagetype=pdf)

While the largest transverse array size used in the

scaling tests described above was Nx × Ny = 655362, we

also carried out one calculation using the tiling-based

short-distance Fresnel multislice approach on a 1310722

pixel array. This was done on “theta” using 256 nodes

and 64 ranks per node. This calculation took 12 seconds

for data reading and tile division, 99 seconds for writing

the array out to an HDF5 file, and 25 seconds for a

series of nC = 22 slices, or about 1.1 seconds per slice.

Recognizing that the scale of compute power available

from “theta” makes this a completely unfair

comparison, this is much faster than the 3.6 minute

calculation time reported for the equivalent of 1 slice on
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a standard workstation [27]. We also carried out a tiling-

based short-distance Fresnel multislice calculation on a

40962 zone plate test object broken into four tiles, with

these tiles divided between two graphical processing

units (GPUs) on the compute server “xrmlite” (Table 1).

In this case, it took 3.68 seconds for CPU–GPU

communication, and 0.14 seconds for the FFT

calculation, confirming the benefits of GPU based

parallelism for FFTs (as expected [94]). Therefore,

distributed GPU parallelism is a viable approach for the

tiling-based short-distance Fresnel multislice algorithm

when the tiles fit in GPU memory.

While the main components of PDE solvers involve

sparse linear algebra that are also memory-bound due

to their low arithmetic intensity [28], optimal design and

implementation of solvers for good performance on

GPUs [95] remains a challenge that is being currently

addressed [96,97]. In particular PETSc’s algebraic

multigrd (GAMG) can execute the solve phase entirely

on the GPUs and there is ongoing development on

performing the setup phase on the GPUs as well [97].

These performance benefits are passed onto users and

do not require changes to application codes. Thus, we

note that our finite difference solver will be able to use

GPU parallelism when available with minimal code

changes.

7. Conclusion

To reach the full potential of X-ray microscopy of

combining high penetration in thick samples with

nanoscale spatial resolution, it will become necessary to

compute wave propagation through inhomogeneous

media with a very large array size. This can be used

both for calculating the performance of X-ray focusing

optics, and also for creating a forward model that can

be used for image reconstruction using numerical

optimization approaches.

Two approaches used thus far in X-ray microscopy are

the finite difference method [23,24], and the Fresnel

multislice method [18–22]. We have implemented the



finite difference method using the PETSc package

[28,29], which offers efficient scaling on distributed

memory compute systems. For the Fresnel multislice

approach, we have used the fast Fourier transform

interfaces built into PETSc for the full-array Fresnel

multislice algorithm. We have also used mpi4py to

implemented a parallelized version of the tiling-based

short-distance Fresnel multislice approach that has

been developed first for digital holography [27]. All

three algorithms can compute moderately large

transverse array problems in a reasonable time. In

contrast to multislice methods, the finite difference

approach requires fewer slices nC for convergence

when applied to the highly-regular, strong-waveguide-

effect zone plate test object (Fig. 9), with more slices, nC
required for the irregular porous aluminum test object.

Additionally, for an irregular object, the finite difference

approach requires fewer slices to convergence at larger

pixel sizes (Fig. 8), which is opposite to the behavior of

full-array Fresnel multislice approach. This behavior of

the finite difference approach could be used for robust

reconstructions at downsampled resolutions.

With the full-array Fresnel multislice approach, one

begins to suffer from internode communication

bottlenecks at array sizes of Nx × Ny = 327682 on the

compute cluster “theta” described in Table 1. The finite

difference method and the tiling-based short-distance

Fresnel multislice approach offer much better scaling to

large array sizes, as shown in Figs. 12 and 13, with the

latter approach requiring roughly a third less compute

time. We have also tested the tiling-based short-

distance Fresnel multislice approach on array sizes as

large as 1310722 with good results. Together, these

approaches show that parallelized software packages

on high performance compute clusters allow one to

calculate X-ray wave propagation in inhomogeneous

media with reasonable execution times for very large

array sizes. The combination of advances in bright X-ray

sources [1] and in high performance computing

therefore makes it possible to contemplate nanoscale

X-ray imaging of macro-sized objects. The methods



tested here show that the forward problem of

simulating the exit wave for a guess of the object is

computationally tractable, allowing for its use in an

optimization approach for object reconstruction.
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