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ABSTRACT
The ability to predict the performance of irregular, asyn-
chronous applications on future hardware is essential to the
exascale co-design process. Adaptive Mesh Refinement (AMR)
applications are inherently irregular and dynamic in their
computation and communication patterns, resulting in com-
plex hardware/software interactions. We have developed a
methodology to use architectural simulators to assess the
performance of different AMR data placement strategies on
a selection of potential hardware interconnect topologies for
exascale-class supercomputers. We use our framework to
study the CASTRO AMR compressible astrophysics code
for the simulation of supernovae. The results show a per-
formance improvement of up to 18 percent may be obtained
through the use of locality-aware data distributions for some
network topologies on an exascale-class supercomputer.

1. INTRODUCTION
The trend in high performance computing toward expo-

nentially increasing parallelism presents daunting challenges
for irregular and dynamically adaptive scientific applica-
tions. These tectonic shifts in computer architecture re-
quire a fundamental re-evaluation of both hardware archi-
tecture and design of applications to meet these emerging
challenges. Co-design is a promising technique to optimize
software and hardware together to create more efficient and
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effective machines for science. By integrating the design of
algorithms and applications together into the hardware de-
sign optimization process, we can achieve a more efficient
overall solution than optimizing software and hardware sep-
arately [13]. However, in order to co-design effectively, we
must have tools to quickly predict the performance of our
applications on the potential hardware configurations under
consideration.

Data movement has emerged as one of the most impor-
tant factors influencing performance on today’s machines,
and it will become even more important on exascale ma-
chines due to the relative performance and energy scaling of
processor and memory technology [7, 14]. In the context of
adaptive mesh refinement (AMR) applications, data move-
ment costs are largely determined by the machine’s network
topology and the distribution algorithm used to assign boxes
(or grids) of data to machine locations. Furthermore, the
desire to hide the cost of data movement and improve par-
allel efficiency has spurred the development of asynchronous
runtimes, which replace the traditional alternating phases of
computation and communication with a data-driven execu-
tion style, making performance modeling even more difficult.

Given the complex time-dependent interactions of applica-
tions, runtime, and hardware, structural simulation is often
the only means to evaluate the performance of hypotheti-
cal system designs. SST/macro [5, 2] is one such tool that
enables this analysis by using efficient, validated, coarse-
grained models and running application code in an online
execution-driven environment. Typically, simulation effi-
ciency is enhanced by a process known as skeletonization [15],
which reduces application code to the parts necessary to re-
produce communication. However, for irregular asynchronous
applications like AMR, this is virtually impossible.

In order to achieve highly efficient structural simulation
while maintaining accurate application behavior, we have
developed an AMR dependency analysis tool that parses box
lists taken from the BoxLib AMR library [3] and generates
dependency graphs and parameterized performance models
that enable the evaluation of alternative application/run-
time designs on hypothetical exascale systems. The depen-
dency graph illustrates the evolution of data along with the
necessary computation and communication events that must
occur during program execution. The application perfor-
mance model is encapsulated in an XML file that can be
used to drive an asynchronous execution using SST/macro
to simulate network traffic over a configurable network. Our
framework allows us to test configurations for which it would
be infeasible to collect traces from real machines.
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Figure 1: Workflow

Kerbyson et. al. [6] developed a performance model for an
AMR code using a bulk-synchronous execution model over a
parameterized network, but it would be unable to give per-
formance predictions for future machines that exhibit com-
plex runtime interactions, such as asynchronous execution
or congestion-adaptive routing. Previous evaluation of hi-
erarchical data distribution techniques on existing machines
include various studies of static and dynamic load balancing
[12, 10, 8, 9, 11]. Our work improves upon these works by
providing an automated framework and methodology that
spans from problem specification to dependency graph gen-
eration to network simulation, helping us to explore and
evaluate our algorithms and architectures for co-design. The
goal of our framework is more to provide qualitative com-
parisons between algorithmic strategies and hardware con-
figurations, rather than accurate quantitative predictions.
These qualitative comparisons can then be used to guide
the use of more detailed simulators and emulators as part of
an ensemble co-design toolchain.

2. FRAMEWORK DESCRIPTION
Our methodology relies on an analysis framework that

includes several components: the BoxLib library for prob-
lem specification and box distribution, an AMR dependency
analysis tool, and the SST/macro network simulation tool.

Figure 1 shows the components in our workflow. A prob-
lem specification including initial state and boundary con-
ditions is specified within the BoxLib [3] framework, as an
application code normally would. BoxLib can then generate
a list of boxes that covers the interesting areas of the domain
following some parameters supplied by the user such as max-
imum and minimum box sizes and covering efficiency. The
box distribution can be specified by one of the algorithms
in BoxLib or optionally configured later in the tool chain.
This list of boxes is then parsed by our AMR dependency
analysis tool, which produces a dependency graph and an
XML description of computation and communication. This
XML description is then read by SST/macro, which repro-
duces the behavior of each simulated process running on a
configurable network.

2.1 BoxLib
BoxLib is a hybrid C++/Fortran90 software framework

that provides support for the development of parallel block-
structured AMR applications. We utilized BoxLib to create
box lists for the CASTRO application, which involved set-

ting up initial and boundary conditions of the simulation,
tagging cells of interest, and covering the cells with boxes.
The boxes are distributed among processes using one of the
available box distribution schemes, which include round-
robin (RR), knapsack (KS) and space-filling-curve (SFC).
The round-robin and knapsack algorithms balance computa-
tional workload among the processes while the space-filling-
curve algorithm assigns boxes that are near each other in
space to adjacent processes in the machine in order to min-
imize data movement. Our study examines the effects of
these distribution algorithms on application performance.

Listing 1: Example Box List File
Level 0 4 grids 40960 cells 100 % of domain
0: (( 0, 0, 0) (15 ,31 ,15)) 16 32 16 :: 3
0: ((16, 0, 0) (39 ,31 ,15)) 24 32 16 :: 1
...

Level 1 12 grids 146368 cells 44.668 % of domain
1: ((30, 0, 0) (47 ,31 ,31)) 18 32 32 :: 2
1: ((48 ,14 ,10) (67 ,29 ,29)) 20 16 20 :: 3
...

Level 2 78 grids 403440 cells 15.39 % of domain
2: ((72, 0,34) (83 ,19 ,59)) 12 20 26 :: 1
2: ((72, 0,60) (83 ,15 ,75)) 12 16 16 :: 2
...

Listing 1 shows an excerpt from an example box list out-
put by BoxLib. This file specifies a three level AMR hierar-
chy where each box has a line that specifies its level, start
and end points, dimensions, and process assignment.

2.2 AMR Dependency Analysis Tool
The AMR Dependency Analysis Tool takes the hierarchi-

cal list of boxes produced by BoxLib as input and generates
an internal representation of the box hierarchy and two anal-
ysis outputs: a dependency graph and an XML file contain-
ing events and communications. While the tool currently
supports files generated by BoxLib, it can be modified to
parse box list files generated from other AMR libraries as
well.

The internal representation generated by our tool from
the box list is a hierarchical graph, where the nodes rep-
resent boxes and edges are drawn between pairs of boxes
that interact during the course of the AMR computation.
In order to determine the edge locations and properties, we
built an algebraic box set library of parameterized dimen-
sion to compute interactions between logical regions of the
domain space. Regions of space are represented by unions
of disjoint rectahedral boxes encapsulated within BoxSet ob-
jects. The main operations on BoxSet objects supported by
the library include intersections, unions, inversions, and set
differences. Utility functions include extending the bound-
aries of a BoxSet by a specified number of cells, as well as
constructing the ghost halo region around a BoxSet. These
utility operations facilitate the identification of the interac-
tions that occur during an AMR computation.

The internal graph representation of the AMR hierarchy
is compact in the sense that it is agnostic to the refinement

Figure 2: Compact representation of two-box hierarchy



Figure 3: Example dependency graph output corre-

sponding to the two-box AMR hierarchy for one time

step with a refinement ratio of two. This dependency

graph corresponds to an “unfurled” version of the inter-

nal representation shown in Figure 2.

ratio and number of simulation time steps. Figure 2 de-
picts the internal representation of a two-box hierarchy cor-
responding to the input file in Listing 2. The parallelograms
represent the boxes in the input file, while the rectangles
represent intermediate regions where the boxes interact for
operations such as ghost region interpolation, averaging, and
refluxing. The different colors represent the different types
of interactions that occur between the boxes. The compact
representation can be“unfurled”to generate full dependency
graphs for an AMR computation with arbitrary refinement
ratio and number of time steps.

Listing 2: Two-level, Two-box Example
Level 0 1 grids
0: (( 0, 0, 0) (31 ,31 ,31)) 32 32 32 :: 0

Level 1 1 grids
1: ((24 ,24 ,24) (39 ,39 ,39)) 16 16 16 :: 1

2.2.1 Dependency Graph Output
Figure 3 shows the output dependency graph of our tool

run on the two-box compact graph representation shown in
Figure 2, which represents the execution of one coarse time
step. This graph is used for visualizing program execution
and for task scheduling and data management within an
asynchronous runtime that we are developing. The depen-
dency graph output includes nodes for data, computations,
and communications that occur during the execution of the
simulation, and edges represent dependencies between the
nodes. The nodes are annotated with metadata, such as
size and physical location information.

Each box and intermediate region may appear multiple
times in the output graph because their contents change as
the simulation progresses. Thus, the nodes are also anno-
tated with time stamps that correspond to the simulation
time for which the data is valid. Note that communica-
tions are implicit in the figure, corresponding to the blue
edges between data nodes. Depending on context, it may be
worthwhile to unfurl the dependency graph on an as needed
basis to help reduce the program’s memory footprint during

execution.
The dependency graph is mapped to the machine’s net-

work topology using a data distribution algorithm. After
the nodes in the dependency graph are mapped to physical
locations and the costs of the compute and communication
events determined, the overall performance of the applica-
tion can be estimated.

2.2.2 Dependency XML Output
The dependency XML is a stripped version of the de-

pendency graph that contains a list of boxes and a list of
computation and communication events. The XML does
not contain any direct information about the boxes them-
selves (such as their size or spatial extent), nor is there any
notion of box hierarchy. It does however, specify a list of
abstract regions within which computations may occur and
between which communications may occur. The region and
event information are sufficient to drive the next phase of
the analysis: the SST/macro network event simulation tool.

Listing 3: Example XML Output
<boxes>
<box id="R1" loc="0" />
<box id="R4" loc="1" />
</boxes>
<events >
<comp id="E10" dep="E5,E11" type="integrate" at="R4"

size="4096" time="0.0676" />
<comp id="E11" dep="E12 ,E8" type="interpolate" at="R4

" size="1736" time="0.001" />
<comm id="E12" dep="E2" type="copy" from="R1" to="R4"

size="1512" />
...
</events >

Listing 3 shows an example XML output containing two
sections. The first section consists of a list of boxes as well
as their location assignments, which may be modified to ex-
plore alternative data distribution strategies. The second
section contains a list of computation and communication
events. Each event is annotated with the type of the event,
its location (or source and destination), the size of the data
that needs to be processed or communicated, and (if the
event is a computation) an estimate of the time to execute.
The computation times may be generated by using a per-
formance model such as the ExaSAT static analysis model
[4]. This allows us to have a completely parameterized sys-
tem model that captures both on-node and off-node perfor-
mance. The compute times may also be estimated by other
means, such as using performance profiles on current ma-
chines or a discrete event simulator.

2.3 SST/macro
SST/macro [5, 2] is an open-source coarse-grained sim-

ulator for large parallel high-performance applications and
machines that enables the exploration of current and fu-
ture implementations of applications, libraries, and runtimes
on performance models of typical supercomputer hardware.
Typically, interfaces such as MPI are implemented in the
simulator, effectively providing an on-line emulation envi-
ronment for applications which can execute natively on the
simulation host. SST/macro has been validated against ex-
isting HPC hardware [16] using formal Uncertainty Quantifi-
cation techniques, demonstrating the effectiveness of coarse-
grain modeling in efficiently capturing performance charac-
teristics. In this work, we leverage SST/macro to provide
network simulation capability to our analysis toolchain. An
XML parsing application was written to be run in SST/-



Box Distribution Algorithm Network Topology
Round-Robin (RR) 3D Torus

Knapsack (KS) 7D Torus
Space-Filling-Curve (SFC) 4-ary Fat-Tree

16-ary Fat-Tree

Table 1: Experimental parameters explored
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Figure 4: Simulated execution time for different net-

work topologies and box distribution algorithms. RR =

round-robin, KS = knapsack, SFC = space-filling-curve.

macro which interprets the computation and communication
tasks output by the AMR dependency tool, and makes MPI
calls accordingly.

3. RESULTS AND FUTURE WORK
To demonstrate our framework, we used the CASTRO ra-

diation hydrodynamics application [1, 17, 18] developed for
computational astrophysics. CASTRO is a block-structured
AMR code that uses compressible Eulerian hydrodynamics
with self-gravity and multigroup flux-limited radiation dif-
fusion. For computational efficiency and accuracy, the algo-
rithm subcycles in time so that regions that are refined in
space are also refined in time, with a synchronization step
that occurs when adjacent levels reach the same physical
time. For the experiments considered here we only use the
hydrodynamics component of the code.

We have conducted some preliminary experiments using a
variety of box distribution algorithms and network topolo-
gies for a fixed problem size of 967 boxes split over 3 AMR
levels and distributed over 480 processes. Some of the ma-
jor parameters explored are displayed in Table 1. Network
parameters (i.e. bandwidths and latencies) were chosen to
reflect estimates of exascale-class machine network capabil-
ities. Computation event time estimates were generated by
profiling the execution of the CASTRO code on NERSC’s
Hopper supercomputer and using a regression model to esti-
mate the on-node performance on an exascale-class machine.
Future work will incorporate using the ExaSAT analysis tool
[4] to make more detailed estimates of the CASTRO appli-
cation’s compute performance.

Figure 4 shows the results of our simulations. The dis-
tribution algorithms perform similarly except for the space-
filling-curve (SFC) algorithm, which performs roughly 18
percent faster than the next best algorithm on the fat tree
topologies. This advantage is likely due to the SFC algo-
rithm exploiting locality between boxes, effectively reducing
network traffic, while the other algorithms focus exclusively

on computational load balance.
Our framework allows users to evaluate the performance

of various AMR codes on potential network configurations
without requiring physical access for benchmarking, which is
a valuable capability for software/hardware co-design, espe-
cially in advance of hardware arrival. We plan to utilize our
simulation methodology to help evaluate other data distribu-
tion algorithms and network topologies for large-scale prob-
lems consisting of hundreds of thousands boxes or more. We
will also apply our framework to the evaluation of dynamic
load balancing schemes coupled with more detailed on-node
performance estimation tools. We believe the dependency
graph analysis presented here may also be generalized to
simulate the asynchronous execution of other irregular ap-
plications, such as graph algorithms.
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