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Abstract
In this paper, we present two new algorithms for computing all Schur functions
sκ(x1, . . . , xn) for partitions κ such that |κ| ≤ N . For nonnegative arguments,
x1, . . . , xn , both algorithms are subtraction-free and thus each Schur function is com-
puted to high relative accuracy in floating point arithmetic. The cost of each algorithm
per Schur function is O(n2).

Keywords Schur function · Hypergeometric function of a matrix argument ·
Computing · Accuracy
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1 Introduction

We consider the problem of accurately and efficiently evaluating the Schur func-
tion sκ(x1, x2, . . . , xn) and series thereof for nonnegative arguments xi ≥ 0, i =
1, 2, . . . , n. The Schur functions are indexed by partitions κ . We say that κ =
(κ1, κ2, . . .), κ1 ≥ κ2 ≥ · · · ≥ 0, is a partition of an integer k, denoted κ � k, if
κ1 + κ2 + · · · = k. Only finitely many of the κi can be nonzero.
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Our ultimate goal is to efficiently compute the hypergeometric function of an n×n
semidefinite matrix argument X and parameter α > 0:

pF
(α)

q (a1, . . . , ap; b1, . . . , bq ; X) =
∞∑

k=0

∑

κ�k

1

k! · (a1)(α)
κ · · · (ap)(α)

κ

(b1)
(α)
κ · · · (bq)(α)

κ

· C (α)

κ (X), (1)

where
(c)(α)

κ ≡
∏

(i, j)∈κ

(c − (i − 1)/α + j − 1) (2)

is the generalized Pochhammer symbol, and C (α)
κ (X) is the Jack function. The latter

is a generalization of the Schur function and is normalized so that
∑

κ�k C (α)
κ (X) =

(tr(X))k [24,31,39]. The argument X in (1) is a matrix for historical reasons only;
C (α)

κ and pF
(α)
q are scalar-valued symmetric functions in the eigenvalues xi ≥ 0, i =

1, 2, . . . , n, of X .
The practical importance of computing the hypergeometric function of a matrix

argument stems from far reaching applications in multitude of fields. For example,
in multivariate statistics it provides a closed-form expression for the distributions
of the eigenvalues of the Wishart, Jacobi, Laguerre, and MANOVA random matrix
ensembles [9,10,23,34]. These distributions, in turn, are needed in critical statistical
tests in applications ranging from genomics [37] to wireless communications [14,25,
38], finance [20], target classification [22], etc.

Despite its enormous practical importance, only limited progress has been made in
the computation of this function since the 1960s. The problems with its computation
come from two sources: (1) it converges extremely slowly, and (2) the straightfor-
ward evaluation of a single Jack function is exponential [8]. The frustrations of many
researcherswith the lack of efficient algorithms are long standing andwell documented
[3,17,19,21,32,34,36].

The recent progress in computing the hypergeometric function of amatrix argument
has focused on exploiting the combinatorial properties of the Jack function leading to
new algorithms which are exponentially faster than the previous best ones (see Sect. 2
for an overview).

Interestingly, the computational potential of the combinatorial properties of the
Jack function had been missed for quite some time. It is thus our hope to draw the
attention of the combinatorics community to this problem and its far reaching practical
applications.

Although the hypergeometric function of a matrix argument is defined for any
α > 0 and there are corresponding theoretical interpretations [11], most applications
focus on α = 1 and α = 2 only. This is largely because these values correspond to the
distributions of the eigenvalues of complex and real random matrices, respectively.

In this paper, we focus on α = 1. In this case, the Jack function C (1)
κ (X) is a

normalization of the Schur function sκ(x1, . . . , xn) (see (3) in Sect. 2 for the exact
relationship).

One way to compute the hypergeometric function of a matrix argument in practice
is to truncate the series (1) for k ≤ N for some sufficiently large N .
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Since sκ(x1, x2, . . . , xn) = 0 if κn+1 > 0, our goal is thus to compute, as quickly
and accurately as possible, all Schur functions corresponding to partitions κ in not
more than n parts and size not exceeding N .

Denote the set of those Schur functions bySN ,n :

SN ,n ≡ {sκ(x1, . . . , xn)| κ = (κ1, . . . , κn), |κ| ≡ κ1 + · · · + κn ≤ N }.

Computing even a single Schur function accurately and efficiently is far from trivial.
We elaborate on this briefly.

There are several determinantal expressions for the Schur function (the classical
definition as quotient of alternants [30, (0.1)], the Jacobi–Trudi identity [30, (0.2)],
its dual version—the Nägelsbach–Kostka formula [30, (0.3)], [43], the Giambelli [31,
p. 47] and Lascoux–Pragacz [31, (2), p. 87] determinants). Each one would seemingly
provide a very efficient way to compute the Schur function. The problem with this
approach is that the matrices involved quickly become ill conditioned as the sizes of
the matrix argument (n) and the partition (|κ|) grow. This implies that conventional
(Gaussian-elimination-based) algorithmswill quickly lose accuracy to roundoff errors.
The loss of accuracy is due to a phenomenonknownas subtractive cancelation—loss of
significant digits due to subtraction of intermediate (and thus approximate) quantities
of similar magnitude.

The analysis in [8] shows that the loss of accuracy in evaluating the determinantal
expressions for the Schur function can be arbitrarily large in all but the dual Jacobi–
Trudi identity. In the latter, the amount of subtractive cancelation can be bounded
independent of the values of the input arguments xi . By using extended precision, one
can compensate for that loss of accuracy leading to an algorithm that is guaranteed to
be accurate and costs O((n|κ| + κ3

1 )(|κ|κ1|1+ρ)).1

Subtraction is the only arithmetic operation that could lead to loss of accuracy; mul-
tiplication, division, and addition of same-sign quantities always preserve the relative
accuracy.

In this paper, we present two new algorithms for computing the Schur function.
Both algorithms are subtraction-free, meaning that both are guaranteed to compute
the value of the Schur function to high relative accuracy in floating point arithmetic.
Both are also very efficient—the cost per Schur function, when computing all Schur
functions in the setSN ,n , is O(n2).

This represents a major improvement over the previous best result in [8] in the
sense that no extended precision arithmetic is required to achieve accuracy and the
cost of computing a single Schur function is reduced fromO((n|κ|+κ3

1 )(|κ|κ1)1+ρ))

to O(n2).
While both our new algorithms have the same complexity and accuracy character-

istics, each is significant in its own right for the following reasons:

– The first algorithm implements the classical definition of the Schur function as a
sum of monomials over all semistandard Young tableaux. Since the coefficients in
this expression are positive (integers), such an approach is subtraction-free, thus
guaranteed to be accurate. The full expression of the Schur function as a sum of

1 Here ρ is tiny and accounts for certain logarithmic functions.
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monomials contains exponentially many terms (O(n|κ|) [8]) and thus the similarly
exponential cost of the previous algorithms based on it [8]. Since the practical
evaluation of the hypergeometric function requires summation over partitions of
size N much larger than the number of variables n, the computational savings in
reducing the cost of an individual Schur function are considerable.
We use dynamic programming and exploit various redundancies to reduce the
cost toO(n2) per Schur function so long as all Schur functions in the setSN ,n are
computed. This algorithm is not efficient for computing individual Schur functions
(since it requires the computation of most functions inSN ,n). However, this is not
an issue when computing the hypergeometric function of a matrix argument since
all functions in SN ,n need to be computed there anyway. These ideas generalize
the approach of Neuman in [35, (5.1)] and may generalize further beyond α = 1;
we elaborate on this in Sect. 6.
In contrast, the second algorithm does allow the efficient computation of individual
Schur functions, but is based on identities with no known generalizations beyond
α = 1.

– The second algorithm represents an accurate evaluation of the expression of the
Schur function as a quotient of (generalized, totally nonnegative) Vandermonde
determinants. Since virtually all linear algebra with totally nonnegative matrices
can be performed efficiently and in a subtraction-free fashion [27,28], this leads to
an accurate algorithm for the evaluation of individual Schur functions at the cost
of only O(n2κ1) each. The cost reduces further to O(n2) each if all of SN ,n is
computed.

This paper is organized as follows. We present background information and survey
existing algorithms for this problem in Sect. 2. Our new algorithms are presented in
Sects. 3 and 4. We draw conclusions and outline open problems in Sect. 6.

We made software implementations of both our new algorithms available online
[26].

2 Preliminaries

Algorithms for computing the hypergeometric function of a matrix argument for spe-
cific values of p, q, and α can be found in [2,4,5,18,19].

In this section, we survey the approach of Koev and Edelman [29] which works
for any α > 0. We also introduce a few improvements and set the stage for our new
algorithms in the case α = 1.

We first recall a few definitions that are relevant. For a partition κ , its conjugate
partition κ ′ = (κ ′

1, κ
′
2, . . .), is defined as κ ′

i = #{κ j |κ j ≥ i, j = 1, 2, . . .}. For positive
integers i and j we say that (i, j) ∈ κ if i ≤ κ ′

j and j ≤ κi ). The upper and lower
hook lengths at (i, j) ∈ κ are defined, respectively, as:

h∗
κ(i, j) ≡ κ ′

j − i + α(κi − j + 1);
hκ∗(i, j) ≡ κ ′

j − i + 1 + α(κi − j).
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The products of the upper and lower hook lengths are denoted, respectively, as:

H∗
κ ≡

∏

(i, j)∈κ

h∗
κ(i, j) and Hκ∗ ≡

∏

(i, j)∈κ

hκ∗(i, j).

We introduce the “Schur” normalization of the Jack function

S(α)

κ (X) = Hκ∗
α|κ||κ|!C

(α)

κ (X). (3)

This normalization is such that S(1)
κ (X) = sκ(x1, . . . , xn) [39, Proposition 1.2].

The hypergeometric function of a matrix argument in terms of S(α)
κ (X) is:

pF
(α)

q (a1, . . . , ap; b1, . . . , bq ; X) =
∞∑

k=0

∑

κ�k

(a1)(α)
κ · · · (ap)(α)

κ

(b1)
(α)
κ · · · (bq)(α)

κ

· αk

Hκ∗
· S(α)

κ (X). (4)

Denote the coefficient in front of S(α)
κ (X) in (4) by:

Qκ ≡ (a1)(α)
κ · · · (ap)(α)

κ

(b1)
(α)
κ · · · (bq)(α)

κ

· α|κ|

Hκ∗
.

Let the partition κ = (κ1, κ2, . . . , κh) have h = κ ′
1 nonzero parts. When κi > κi+1,

we define the partition:

κ(i) ≡ (κ1, κ2, . . . , κi−1, κi − 1, κi+1, . . . , κh). (5)

The main idea in the evaluation of (4) is to update the κ term in (4) from terms
earlier in the series. In particular, we update Qκ from Qκ(h)

and S(α)
κ (x1, . . . , xn) from

Sμ(x1, . . . , xn−1), μ ≤ κ .
In order to make the Qκ update as simple as possible, we first express Hκ∗ in a way

that does not involve the conjugate partition, κ ′:

Hκ∗ =
h∏

r=1

κr∏

c=1

(
κ ′
c − r + 1 + α(κr − c)

)

=
h∏

r=1

r∏

j=1

κ j∏

c=κ j+1+1

( j − r + 1 + α(κr − c))

= α|κ|
h∏

j=1

j∏

r=1

(
j − r + 1

α
+ κr − κ j

)

κ j−κ j+1

,

where (c)t = c(c + 1) · · · (c + t − 1) is the rising factorial, the univariate version of
the Pochhammer symbol defined in (2).
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Defining κ̃i ≡ ακi − i we obtain:

H
κ(h)∗
Hκ∗

= 1

ακh − α + 1

h−1∏

j=1

κ̃ j − κ̃h

κ̃ j − κ̃h + 1
. (6)

Using (6), Qκ can be updated from Qκ(h)
as

Qκ = Qκ(h)
·
∏p

j=1(a j + κ̄h)
∏q

j=1(b j + κ̄h)
· α

ακh − α + 1
·
h−1∏

j=1

κ̃ j − κ̃h

κ̃ j − κ̃h + 1
, (7)

where κ̄h ≡ κh − 1 − h−1
α

.

The Jack function S(α)
κ (X) can be dynamically updated using the formula of Stanley

[39, Proposition 4.2] (see also [29, (3.8)] and (3)):

S(α)
κ (x1, . . . , xn) =

∑

μ

S(α)
μ (x1, . . . , xn−1)x

|κ/μ|
n σκμ, (8)

where the summation is over all partitions μ ≤ κ such that the skew shape κ/μ is a
horizontal strip (i.e., κ1 ≥ μ1 ≥ κ2 ≥ μ2 ≥ · · · [40, p. 339]). The coefficients σκμ

are defined as

σκμ =
∏

(i, j)∈κ

hκ∗(i, j)

h∗
κ(i, j)

∏

(i, j)∈μ

h∗
μ(i, j)

hμ∗ (i, j)
, (9)

where both products are over all (i, j) ∈ κ such that κ ′
j = μ′

j + 1. For α = 1, clearly,
σκμ = 1 for all κ and μ.

Once again, instead of computing the coefficients σκμ in (8) from scratch, it is
much more efficient to start with σκκ = 1 and update the next coefficient in the sum
(8) from the previous ones. To this end, let μ be a partition such that κ ′

j = μ′
j for

j = 1, 2, . . . , μk − 1, and κ/μ be a horizontal strip. Then, we update σκμ from σκμ(k)

using:

σκμ(k)

σκμ

=
k∏

r=1

h∗
κ(r , μk)

hκ∗(r , μk)

k−1∏

r=1

hμ∗ (r , μk)

h∗
μ(r , μk)

=
k∏

r=1

1 + κ̃r − μ̃k

α + κ̃r − μ̃k

k−1∏

r=1

μ̃r − μ̃k + α − 1

μ̃r − μ̃k
,

(10)
which is obtained directly from (9).

We use (8) to compute S(α)
κ (x1, . . . , xi ) for i = h + 1, . . . , n. For i = h, the result

of Stanley [39, Propositions 5.1 and 5.5] allows for a very efficient update:

S(α)
κ (x1, . . . , xh) = (x1 · · · xh)κh ·S(α)

κ−κh I
(x1, . . . , xh)·

κh∏

j=1

h∏

i=1

h − i + 1 + α(κi − j)

h − i + α(κi − j + 1)
,

(11)
where κ − κh I ≡ (κ1 − κh, κ2 − κh, . . . , κh−1 − κh).
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The new results in this section comprise of the updates (7) and (10), which are more
efficient than the analogous ones in [29, Lemmas 3.1 and 3.2]. These new updates do
not require the conjugate partition to be computed and maintained by the algorithm
and cost 2(p+q)+4h and 9k, down from 2(p+q)+11κh+9h−11 and 12k+6μk−7,
respectively.

Additionally, the use of (11) reduces the cost of an evaluation of a truncation of (1)
by a factor of about N/2.

3 The first algorithm

In this section, we present the first of our two new algorithms for computing all Schur
functions of the setSN ,n .

We first recall the definition of a Young diagram and a semistandard tableau.
A Young diagram of a partition κ � k is a finite collection of k boxes arranged

in left-justified rows, with κi boxes in row i , i = 1, 2, . . .. For example, the Young
diagram below corresponds to the partition κ = (4, 2, 1) � 7:

When the boxes of the Young diagram are filled with the numbers 1, 2, . . . , n
such that the numbers increase nonstrictly along rows and increase strictly along
columns we obtain a semistandard tableaux. We say that the content of the tableaux
is (c1, c2, . . . , cn) if there are c1 ones, c2 twos, etc. For example, the following semi-
standard tableau of shape (4, 2, 1) has content (2,2,1,2):

1 1 2 3
2 4
4

To every semistandard tableau of content T = (c1, c2, . . . , cn), we associate the term
XT = xc11 xc22 · · · xcnn .

Our algorithm is based on the classical definition of the Schur function [40, Sec-
tion 7.10]:

sκ(x1, . . . , xk) =
∑

T∈Aκ

XT ,

where the summation is over the set Aκ of all semistandard κ-tableaux T filled with
the numbers 1, 2, . . . , k.

Extending the notation, let

smκ (x1, . . . , xk) =
∑

T∈Aκ,m

XT ,
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where the summation is over the set Aκ,m , which equals Aκ with the additional restric-
tion that k does not appear in the first m rows.

Note that sκ(x1, . . . , xk) = s0κ (x1, . . . , xk) and sκ(x1, . . . , xk−1) = skκ (x1, . . . , xk).

Lemma 1 The following identity holds for all sm−1
κ (x1, . . . , xk):

sm−1
κ (x1, . . . , xk) =

{
smκ (x1, . . . , xk), if κm = κm+1;
sm−1
κ(m)

(x1, . . . , xk) · xk + smκ (x1, . . . , xk), otherwise,

where the partition κ(m) is defined as in (5).

Proof In the first case (κm = κm+1), no k is allowed in the mth row of T because of
the strictly increasing property of each column of T . Therefore, the restriction that no
k appear in the first m − 1 rows of T is equivalent to the restriction that no k appear
in the first m rows of T , and Aκ,m−1 = Aκ,m .

In the second case, there are two possibilities for the κ-tableau T ∈ Aκ,m−1. If the
entry in position (m, κm) is not equal to k, then none of the entries in the mth row can
equal k due to the nondecreasing nature of each row. Thus, the tableaux fitting this
description are exactly the set Aκ,m .

If the entry in position (m, κm) is equal to k, then removal of that square of the tableau
clearly results in an element of Aκ(m),m−1. Further, for every tableau in Aκ(m),m−1,
the addition of a square containing k to the mth row results in a valid semistandard
tableau in Aκ,m−1. The tableau retains its semistandardness because every element
in the mth row (and in the entire table as well) can be no larger than k, and every
element in the κm th column above the new square can be no larger than k − 1 due
to the restriction that every tableau in Aκ(m),m−1 cannot have k in the first m − 1
columns.

We have thus constructed a bijection f mapping Aκ(m),m−1 to the set (call it
B) of tableaux in Aκ,m−1 where the entry in position (m, κm) equals k. Clearly,
for each T ∈ Aκ(m),m−1, X f (T ) = XT · xk , so ∑

T∈B XT = ∑
T∈Aκ(m),m−1

XT ·
xk .

Combining these two possibilities for T ∈ Aκ,m−1, we obtain

sm−1
κ (x1, . . . , xk) =

∑

T∈Aκ,m−1

XT

=
∑

T∈Aκ,m

XT +
∑

T∈Aκ(m),m−1

XT · xk

= smκ (x1, . . . , xk) + sm−1
κ(m)

(x1, . . . , xk) · xk,

concluding our proof. 
�
Our algorithm, based on Lemma 1, is very simple.

Algorithm 1 The following algorithm computes all Schur functions inSN ,n.

for all κ ∈ SN ,n initialize sκ = xκ1
1 if κ ∈ SN ,1 and sκ = 0 otherwise

for k = 2 to n (Loop 1)
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for m = k down to 1 (Loop 2)
for all κ ∈ SN ,k such that κm > κm+1, in reverse lexicographic

order
sκ = sκ + sκ(m)

· xk
endfor

endfor
endfor

After the first lineAlgorithm1, the variables sκ contain sκ(x1). During each iteration
of Loop 1, the values stored in sκ for κ ∈ SN ,k are updated from sκ(x1, . . . , xk−1) =
skκ (x1, . . . , xk) to sκ(x1, . . . , xk) = s0κ (x1, . . . , xk). During each iteration of Loop 2,
the values in sκ for κ ∈ SN ,k are updated from smκ (x1, . . . , xk) to sm−1

κ (x1, . . . , xk).
The last line of the algorithm implements Lemma 1. Since the partitions are

processed in reverse lexicographic order, sκ(m)
will have already been updated for

each κ when this line is executed. Thus, at the time sκ is updated, sκ(m)
contains

sm−1
κ(m)

(x1, . . . , xk), and sκ is updated from smκ (x1, . . . , xk) to sm−1
κ (x1, . . . , xk). The

algorithm updates the Schur functions “in place” using a single memory location for
each partition.

One implementation issue is the need to retrieve the value of sκ(m)
in the innermost

loop of the algorithm. Since κ is a partition in n parts, figuring the memory location
of sκ(m)

on the fly would take O(n) time, an unfortunate situation since sκ(m)
only

participates in two floating point operations. Our solution to this problem was to
precompute a lookup table, which given the index of a partition κ and m contains the
index of sκ(m)

.

4 The second algorithm

Our second algorithm is based on the expression of the Schur function as a quotient
of totally nonnegative generalized Vandermonde determinants:

sκ(x1, . . . , xn) = detG

det Vn,n
, (12)

where

G ≡ (
x
j−1+κn− j+1
i

)n
i, j=1 and Vn,n ≡ (

x j−1
i

)n
i, j=1

are n × n generalized and ordinary Vandermonde matrices, respectively.
Since sκ(x1, x2, . . . , xn) is a symmetric polynomial, we can assume that the xi ’s

are sorted in increasing order: 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn . This choice of ordering
makes G and Vn,m totally nonnegative [13, p. 76]; thus, the methods of [28, Section 6]
can be used to evaluate (12) with guaranteed accuracy in O(n2κ1) time. The matrices
G and Vn,m are notoriously ill conditioned [15] meaning that conventional Gaussian-
elimination-based algorithms will quickly lose all accuracy to roundoff [8].
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The contribution of this section is to show how to eliminate the removable singu-
larity at xi = x j , i �= j, and to arrange the computations in such a way that the cost
per Schur function is only O(n2) when evaluating all of SN ,n .

To this end,wewill represent theSchur function as a determinant of certain complete
symmetric polynomials (see also [1,6,33,43] for other exampleswhere the general idea
of using other bases for the representation of symmetric functions has proven useful).

Since the generalized Vandermonde matrix G is a submatrix of the rectangular
Vandermonde matrix

Vn,m ≡ (
x j−1
i

)n,m
i, j=1,

m = n+κ1, consisting of columns 1+κn, 2+κn−1, . . . , n+κ1,we consider the LDU
decomposition Vn,n+κ1 = LDU , where L is a unit lower triangular n × n matrix, D
is a diagonal n × n matrix, and U is a unit upper triangular n × (n + κ1) matrix.

The critical observation here is that the value of det G is unaffected by L , namely

det G = det D · det Ū ,

where Ū is the (n×n) submatrix ofU consisting of columns 1+κn, 2+κn−1, . . . , n+
κ1.

However, det D = det Vn,n , thus

sκ(x1, x2, . . . , xn) = det Ū . (13)

The explicit form of U is known [12, Section 2.2], [41, Eq. (2.3)], [42, Section 3]
allowing us to write (13) also as:

sκ(x1, . . . , xn) = det
(
hi− j+κn− j+1(x1, . . . , xi )

)n
i, j=1,

where hk, k = 1, 2, . . . , are the complete symmetric polynomials and, by default,
hk ≡ 0 for k < 0.

The bidiagonal decomposition of U , has a particularly easy form:

BD(U ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 x1 x1 . . . x1 x1 x1 . . .

0 1 x2 . . . x2 x2 x2 . . .

0 0 1 . . . x3 x3 x3 . . .

. . .

0 0 0 1 xn xn . . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (14)

For example, for n = 3, m = 4 [27, Section 3]:

U =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦

⎡

⎢⎢⎣

1 x1
1 x2

1 x3
1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 x1
1 x2

1 0
1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 x1
1 0

1 0
1

⎤

⎥⎥⎦ .
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In order to compute the Schur function, it is therefore sufficient to compute the
determinant of the matrix obtained by removing the appropriate κ1 columns of U .
This can be readily done using existing techniques—Algorithm 5.6 from [28] starts
with the bidiagonal decomposition of a totally nonnegative matrix and produces the
bidiagonal decomposition of the totally nonnegative matrix obtained by removing any
given column. This is done in a subtraction-free fashion and thus to high relative
accuracy.

Therefore from BD(U ) we obtain BD(Ū ) in O(n2κ1) time. This is the cost per
individual Schur function.

In order to compute the hypergeometric function of a matrix argument, we compute
the Schur functions in reverse lexicographic order. For a given Schur function sκ , let
i be the smallest index such that κi > κi+1, i.e., κ = (κi , κi , . . . , κi , κi+1, . . .).

The generalized Vandermonde matrix Gκ corresponding to sκ has exponents

(κn, 1 + κn−1, . . . , n − i − 1 + κi+1, n − i + κi , . . . , n − 1 + κi , . . .).

Consider now the partition λ = (κi −1, κi −1, . . . , κi −1, κi+1, . . .). It comes earlier
in the reverse lexicographic order than κ , thus sλ is already computed. The generalized
Vandermonde matrix Gλ that corresponds to sλ has exponents

(κn, 1 + κn−1, . . . , n − i − 1 + κi+1, n − i − 1 + κi , . . . , n − 2 + κi , . . .).

Therefore Gκ can be obtained from Gλ by removing its (i +1)st column. The same
is true for the corresponding bidiagonal decompositions and can be achieved in O(n2)
time using Algorithm 5.6 from [28].

The cost per Schur function when computing the hypergeometric function of a
matrix argument is again O(n2).

5 Numerical experiments

We performed extensive numerical experiments to confirm the correctness and perfor-
mance of our algorithms against the algorithm mhg from [29]. We present the results
of one typical experiment on the logarithmic plot in Fig. 1. We timed all three algo-
rithms for different values of N on a matrix argument of size n = 5. For N  n the
number of partitions of N in not more than n parts grows as O(Nn). Both our new
algorithms performed, roughly, as N 5, which was expected. They are also way faster
than the algorithm mhg from [29]. The practical implementation of Algorithm 1 of
this paper is also clearly faster than that of Algorithm 2.

6 Open problems

It is natural to ask if the ideas of this paper can extend beyond α = 1 and in particular
to α = 2, the other value of α of major practical importance [34].

123

Author's personal copy



Journal of Algebraic Combinatorics

10 20 30 40 50 60 70 80 90 100 110

Max size partition, N

10-4

10-3

10-2

10-1

100

101

102

T
im

e

mhg
Alg. 1
Alg. 2

Fig. 1 Logarithmic plot of the performance of Algorithms 1 and 2 versus the algorithm of [29] on a 5 × 5
matrix argument

None of the determinantal expressions for the Schur function are believed to have
analogues for α �= 1, thus we are skeptical of the potential of the ideas in Sect. 4 to
generalize.

The results of Sect. 3, however, may extend beyond α = 1.
Consider the (column) vector s(n) consisting of all Schur functions inSN ,n ordered

in reverse lexicographic order. Let s(n−1) be the same set, but on n − 1 variables
x1, . . . , xn−1. Then

s(n) = Ms(n−1)

where M is an |SN ,n| × |SN ,n−1| matrix whose entries are indexed by partitions and
Mμν = x |μ|−|ν| ifμ/ν is a horizontal strip and 0 otherwise. The contribution of Sect. 4
was to recognize that M consists of blocks of the form

A =

⎡

⎢⎢⎣

1
x 1
x2 x 1
x3 x2 x 1

⎤

⎥⎥⎦ .

Since A−1 is bidiagonal:

A−1 =

⎡

⎢⎢⎣

1
−x 1

−x 1
−x 1

⎤

⎥⎥⎦ ,
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given a vector (call it z), the matrix-vector product y = Az can be formed in linear
(instead of quadratic) time by solving instead the bidiagonal linear system A−1y = z
for y.

This was our original approach in designing Algorithm 1. Ultimately, we found the
much more elegant proof which we presented instead.

The question remains whether this approach can be generalized to other values of
α. Unfortunately, the matrix A in general has the form:

A(α) =

⎡

⎢⎢⎣

1
x 1

1
2! x

2(α + 1) x 1
1
3! x

3(1 + α)(1 + 2α) 1
2! x

2(α + 1) x 1

⎤

⎥⎥⎦ ,

where the general expression for the entries A(α) is a(α)

i j = xi− j

(i− j)!
∏i− j−1

k=0 (kα+1), i >

j .
The matrix (A(α))−1 is not bidiagonal for α �= 1; thus, the approach of Sect. 3

cannot be carried over directly. One could consider exploiting the Toeplitz structure of
A(α) to form a matrix-vector product with it in O(k log k) instead of k2 time (assuming
A(α) is k × k) [16, p. 193]. Current computing technology, however, limits N to about
200 and since k ≤ N , this approach does not appear feasible in practice at this time.
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