N
= 00000 '"|
J - 3
'-'r.!r
W%:,. ¢,¢

Tk , gau " BERKELEY LAB

“*%| Lawrence Berkeloy National Laboratory

Distributed-Memory Algorithms for Cardinality
Matching using Matrix Algebra

Ariful Azad, Lawrence Berkeley National Laboratory

Joint work with Aydin Bulug (LBNL)

Support: DOE Office of Science

SIAM PP 2016, Paris

A matching in a graph

Matching: A subset of independent edges, i.e., at most one edge
in the matching is incident on each vertex.

Maximal cardinality matching: A matching where if another edge
is added it is not a matching anymore.

Maximum cardinality matching (MCM) has the maximum possible
cardinality

) (%2) (%)
Matched edge
@ @ @ @ —— Unmatched edge

Maximal Cardinality Matching Maximum Cardinality Matching
Cardinality = 2 Cardinality = 3

Matched vertex

O
O Unmatched vertex
]

Application of matching in scientific computing

Bipartite Cardinality Matching Bipartite Weighted Matching
v
g Maximal Cardinality 3 Maximum Cardinality Maximum-Weight Perfect Maximum Weighted
c Matching (1/2 approx.) Matching (MCM) P Matching (MWPM) Matching (MWM)
= l exact/approx. exact/approx.
(@)
ko)
< Block Triangular
Form (BTF)
" T\
c & Y v K ¥
ie Sparse QR KLU Sparse LU Pre- Graph
S L HSS-based
a east square on . AMG
< HBS matrices multifrontal solver

— Use relationship

Scope of this talk

a Problem: Cardinality matching in a bipartite graph
— Maximum cardinality matching (MCM)
— Maximal cardinality matching (used to initialize MCM)

Q Algorithm: Distributed-memory parallel algorithms

Q Approach: Matrix-algebraic formulations of graph primitives.
Inspired by Graph BLAS (http://graphblas.org/).

— More discussion on Friday (MS68): The GraphBLAS Effort: Kernels,
API, and Parallel Implementations by Aydin Buluc.

Q Covers two recent papers:
— Maximal matching: Azad and Bulug, IEEE CLUSTER 2015
— Maximum matching: Azad and Bulug, IPDPS 2016

MCM algorithm based on augmenting-path searches

A Augmenting path: A path that alternates between matched
and unmatched edges with unmatched end points.

Augment matching
A°
(%) (%)
© &

Q Algorithm: Search for augmenting paths and flip edges across
the paths to increase cardinality of the matching.

— Algorithmic options: single source or multi-source, breadth-first search
(BFS) or depth-first search (DFS)

Algorithmic landscape of cardinality matching

Duff, Kaya and Ucar (ACM TOMS 2011), Azad, Bulug, Pothen (TPDS 2016)
el e ———

Serial
Search strate .
By Complexity
Single-source
augmenting path search DFS or BFS O(nm)
Max.imum DFS w lookahead (Pothen-Fan) O(nm)
cardmaﬁty Mu-ltl-source BFS (MS-BFS) o(nm)
matching | augmenting path search |:
DFS & BFS (Hopcroft-Karp) O(Vnm)
Push relabel Label guided FIFO search O(nm)
Maximal Greedy
cardinality Karp-Sipser Local O(m)
matching Dynamic mindegree
' Hopcroft-Karp: best asymptotic complexity | | Initializes MCM

A . A 1\

MS-BFS: exposes more parallelism T~ ourf
ur focus

The need for distributed-memory algorithms

A When a graph does not fit in the memory of a node

Q The graph is already distributed
— Example: static pivoting in SuperLU_DIST (Li and Demmel, 2003)

— The graph is gathered on a single node and MC64 is used to
compute the matching, which is unscalable and expensive

25

Time to gather a graph
and scatter the matching
on 2048 cores of

NERSC/Edison (Cray XC30) .
Distributed algorithms]
are cheaper and scalable —
1M 10M 100M 500M 1000M

Number of edges in the graph

Time (sec)
= —)
o o o

ot

)

Distributed-memory cardinality matching

Q Prior work: Push-relabel by Langguth et al. (2011) and
Karp-Sipser on general graph by Patwary et al. (2010).

— does not scale beyond 64 processors

Q Challenge
— long paths passing through multiple processors
— lots of fine-grained asynchronous communication

Q Here we use graph-matrix duality and design matching
algorithms using scalable matrix and vector operations.
— A handful of standard operations
— Offers bulk-synchronous parallelism
— Jumping among algorithms is easier

Two required primitives
1. Sparse matrix-sparse vector multiply (SpMSpV)

Semiring Option: (multiply,add)
(select2nd, min)

o S O Unmatched columns: f,
20 £ 09
§€ 2% 21 T3]
= =2 cc?lilriﬁs vy M
1 2 3 4 5
gvg """"""""""""""""""""""""" | EB o 1]
2| X 1] 8
ONCHOG N
@ @ 3 x| X » 2|3
X X 5| @
(XAY OO0 @ : M
A | ’ > ol g
@ @ Matrix A In each row, retain
Bipartite graph the minimum product
G(R,C,E) from the selected columns
Graph Operation
: Matrix Operation
A matching Traverse

unvisited neighbors SpMSpV

Two required primitives
2. Inverted index in a sparse vector

__ Swap parents

- i and children i i

Graph Operation | | . | |

; i Duplicates removed | ;

1. Keep unique child) © © &)

2. Swap matched and) ()

unmatched edges | (@ @©@ @) | e j

Vector Operation Invert

Inverted index in a 111 5 1 4

sparse vector 1 2 3 4 5 1 92 3 4 5
Index: child Index: parent

Value: parent Value: child

Multi-source BFS (MS-BFS) algorithm
using matrix and vector operations

Not explored to maintain
vertex-disjoint trees

Roots of BFS trees
Sparse matrix-sparse vector

multiply (SpMSpV)

Inverted index using
matching vector

Sparse matrix-sparse vector
multiply (SpMSpV)

(a) A maximal matching
in a Bipartite Graph (b) Alternating BFS Forest

MS-BFS algorithm
using matrix and vector operations

Invert

Augment matching

Distributed memory parallelization (SpMSpV)

<€
n/p| |® ® ,: - e P processors are arranged in
o0 o9
p o _~- "o X e \/;x\/; Processor grid
o,- o @ o
O o0
O O
A frontier
ALGORITHM:

1. Gather vertices in processor column [communication]
2. Local multiplication [computation]

3. Find owners of the current frontier’s adjacency and exchange
adjacencies in processor row [communication]

Shared-memory parallelization (SpMSpV)

» T
v v ¥
YL _ |o|e O
o © o o o
”/(t\/;) g ® O
e el e | | | e| X (frontier)
o) ~ oo o
n/(t\/;) 5 .
®|| < oo|o
t t ¢
\ O C I

* Explicitly split local submatrices to t (#threads) pieces along
the rows.

Computation and communication time of
discovering vertex-disjoint augmenting paths (a phase)

height * (x\/; ﬁ(%’f%)

S |3

SpMSpV

Invert

height * ap p >

NS

n: number of vertices, m: number of edges
height: maximum height of the BFS forest

a : latency (0.25 ps to 3.7 us MPI latency on Edison)
B : inverse bandwidth (~*8GB/sec MPI bandwidth on Edison)

p : number of processors

Special treatments for long augmenting paths

o
[y
R
N

ONOXONO
P1,P2

ONONONG
P1, P2

O

Level synchronous:
BFS Style

One path per process
Using one-sided communication
via MPI Remote Memory Access (RMA)

Results: experimental Setup

Q Platform: Edison (NERSC)

— 2.4 GHz Intel vy Bridge processor, 24 cores (2 sockets) and 64
GB RAM per node

— Cray Aries network using a Dragonfly topology (0.25 us to 3.7 us
MPI latency, ~8GB/sec MPI bandwidth)

— Programming environment: C++ and Cray MPI, Combinatorial
BLAS library (Buluc and Gilbert, 2011)

Q Input graphs
— Real matrices from Florida sparse matrix collection and
randomly generated matrices.
— Matrix- bipartite graph conversion

* rows: vertices in one part, columns: vertices in another part,
nonzeros: edges.

Impact of initialization on MCM

nlpkkt200 road_usa
32 16
B Maximum Matching
224 {1 BMaximal Matching | 712
2 g
L j —
“E’ 16 E 8
= =
| l Nl 1024
| | | | | | | | On 1024 cores
Dynamic Karp- Greedy No Init Dynamic Karp- Greedy No Init .
Mindegree Sipser Mindegree = Sipser Of E d I S O n
6 GL7d19) wikipedia
£ E*
=) =
ol mm N o i B

Dynamic Karp- Greedy No Init Dynamic Karp- Greedy No Init

Mindegree Sipser Mindegree Sipser

Q Karp-Sipser obtains the highest cardinality for many practical
problems, but it runs the slowest on high concurrency

Q We found that dynamic mindegree + MCM often runs the fastest
on high concurrency.

MCM strong scaling (real matrices)

1 node
(24 cores of Edison)
—O— ljournal
296 e 2 o 2 —A— cage15
—*—road_usa
128} - ~F nlpkkt200
—+— hugetrace
delaunay_n24
BA [NI NS —— HV15R
B ol ! N
°©
£
|_
12x-18x
speedups
... 4
26 32 64 128 256 512 1024 2048
Number of Cores
>
~80x increase of cores To appear: Azad and Bulug,

IPDPS 2016

MCM strong scaling (G500 RMAT matrices)

Scale-30 RMAT: 2 billion vertices, 32 billion edges
Scaling continues beyond 10K core on Large matrices

64

32

16

Time (sec)

4} —O—Scale-30| TR e TRRERRRREE ERRRRRRRE -
—— Scale-29| : : :

of| 7 Scale-28
—{— Scale-27
—— Scale 26

164 128 256 512 1024 2048 4096 8192 16384
Number of Cores

MCM: Breakdown of runtime

V1=1.91M,
V2 =1.96M,

GL7d19 #edges=37M

Maximal |
Bl SpmvV
Select

B Invert

Prune |
Bl Augment

48 108 192 432 972 2,014
Number of Cores

ldeas for weighted matching

Q Similar graph-matrix transformation applies to
weighted matching algorithmes.

Q Auction algorithm ideas [Ongoing work]

— Bidders bid for most profitable objects: SpMSpV with
(select2nd, max) semiring

— An object selects the best bidder from which it received
bid: Inverted index

— Dual updates can be done using vector operations

Summary

Q Summary of contributions

— Methods: distributed memory matching algorithms based
on matrix algebra

— Performance: scales up to 10K cores on large graphs.
— Easy to implement an algorithm using matrix-algebraic
primitives.
— Source code publicly available at:
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/

Q Future work

— Distributed weighted matching using matrix algebra

Relevant references

Q

g

a

A. Azad and A. Bulug, to appear IPDPS 2016, Distributed-Memory
Algorithms for Maximum Cardinality Matching in Bipartite Graphs.

A. Azad and A. Bulug, CLUSTER 2015, Distributed-memory

algorithms for maximal cardinality matching using matrix algebra.

Langguth et al., Parallel Computing 2011, Parallel algorithms for
bipartite matching problems on distributed memory computers.

M. Patwary, R. Bisseling, F. Manne, HPPA 2010, Parallel greedy

graph matching using an edge partitioning approach.

M. Sathe, O. Schenk, H. Burkhart, Parallel Computing 2012, An
auction-based weighted matching implementation on massively
parallel architectures.

Thanks for your attention

Supporting slides

Maximal matching algorithms
using matrix and vector operations

Q Used to initialize MCM
Q Example: dynamic mindegree algorithm

Matrix

— Greedy and Karp-Sipser are similar (Azad and Buluc, 2015)

SpMSpV Inverted Index SpMSpV
Addition = min (degree) Addition = plus
neighbor with mindegree Match Update degree

d2 (v)) d=3 d=2 (v)) d=3 @ (y)d=2
d2d2 d2d2 @"@
d= 3 (v3)d=2 4=3(*) @ d=2 d= z (v3)d=2

Maximal matching strong Scaling
Randomly generated RMAT graphs

(a) Greedy (b) Karp-Sipser (c) Dynamic Mindegree
of IR ——RMAT-26] 16k o i] —o— RMAT-26)) i) —0— RMAT—26
—A— RMAT—28 —A— RMAT—28 —A— RMAT—28
16 .. RMAT_30 8 | RMAT—3O n RMAT—30

Time (sec)

756 512 1024 2048 4096 8192 16384 20256 512 1024 2048 409 8192 16384 2> 256 512 1024 2048 409 8192 16384
Number of Processors Number of Processors Number of Processors

For 16x increase of cores: 1,024 — 16,384

- - Larger
RMAT-26 128 million 2 billion 3x no 6X

graphs
RMAT-28 512 million 8 billion 7X 3x 10x Higher
RMAT-30 2 billion 32 billion 12x 8x 15x Vv speedups

Strong Scaling
Why does dynamic mindegree scale better?

For 16x increase of cores: 1,024 — 16,384

RMAT-26 128 million 2 billion 3x Ox 6x
RMAT-28 512 million 8 billion 7X 3x 10x
RMAT-30 2 billion 32 billion 12x 8x 15x
(b) Karp—Sipser (c) Dynamic Mindegree
- 20% 40%
Q —%— % of maximal matching —%— % of maximal matching
c ¥ ' —O— % of total runtime —O— % of total runtime
= 150/1[11 30%
©
g
é 10%F| il 2 - 20%
(@] | K
Q
e 5%} 10%
=)
X
0 o

lteration lteration

Graph-based vs. Matrix-based

parallel algorithms

Q For graph-based algorithms, matching quality decreases with
increased concurrency

Approximation Ratio

100%—

98%

96%

94%

92%

90%

16 64 256 1024 4096
Number of Cores or Threads

Multithreaded
—— Karp-Sipser
(Intel)

Multthreaded

{ —~V— Kamp—-Sipser

(Cray XMT)
Distributed

1 = Karp-Sipser

(Edison)

Distributed
—O— Greedy
(Edison)

8192

