

Distributed-Memory Algorithms for Cardinality Matching using Matrix Algebra

Ariful Azad, Lawrence Berkeley National Laboratory Joint work with Aydın Buluç (LBNL)

Support: DOE Office of Science

A matching in a graph

- Matching: A subset of independent edges, i.e., at most one edge in the matching is incident on each vertex.
- Maximal cardinality matching: A matching where if another edge is added it is not a matching anymore.
- Maximum cardinality matching (MCM) has the maximum possible cardinality

Maximal Cardinality Matching Cardinality = 2

Application of matching in scientific computing

Scope of this talk

- Problem: Cardinality matching in a bipartite graph
 - Maximum cardinality matching (MCM)
 - Maximal cardinality matching (used to initialize MCM)
- □ Algorithm: Distributed-memory parallel algorithms
- □ Approach: Matrix-algebraic formulations of graph primitives. Inspired by Graph BLAS (http://graphblas.org/).
 - More discussion on Friday (MS68): The GraphBLAS Effort: Kernels,
 API, and Parallel Implementations by Aydin Buluc.
- □ Covers two recent papers:
 - Maximal matching: Azad and Buluç, IEEE CLUSTER 2015
 - Maximum matching: Azad and Buluç, IPDPS 2016

MCM algorithm based on augmenting-path searches

□ Augmenting path: A path that alternates between matched and unmatched edges with unmatched end points.

- □ Algorithm: Search for augmenting paths and flip edges across the paths to increase cardinality of the matching.
 - Algorithmic options: single source or multi-source, breadth-first search (BFS) or depth-first search (DFS)

Algorithmic landscape of cardinality matching

Duff, Kaya and Ucar (ACM TOMS 2011), Azad, Buluç, Pothen (TPDS 2016)

	Class	Search strategy	Serial Complexity
Maximum cardinality matching	Single-source augmenting path search	DFS or BFS	O(nm)
	Multi-source augmenting path search	DFS w lookahead (Pothen-Fan)	O(nm)
		BFS (MS-BFS)	O(nm)
		DFS & BFS (Hopcroft-Karp)	O(√nm)
	Push relabel	Label guided FIFO search	O(nm)
Maximal	Greedy		
cardinality matching	Karp-Sipser Dynamic mindegree	Local	O(m)

Hopcroft-Karp: best asymptotic complexity

MS-BFS: exposes more parallelism

Initializes MCM

Our focus

The need for distributed-memory algorithms

- When a graph does not fit in the memory of a node
- □ The graph is already distributed
 - Example: static pivoting in SuperLU_DIST (Li and Demmel, 2003)
 - The graph is gathered on a single node and MC64 is used to compute the matching, which is unscalable and expensive

Time to gather a graph and scatter the matching on 2048 cores of NERSC/Edison (Cray XC30)

Distributed algorithms are cheaper and scalable

Distributed-memory cardinality matching

- □ Prior work: Push-relabel by Langguth *et al.* (2011) and Karp-Sipser on general graph by Patwary *et al.* (2010).
 - does not scale beyond 64 processors
- □ Challenge
 - long paths passing through multiple processors
 - lots of fine-grained asynchronous communication
- □ Here we use graph-matrix duality and design matching algorithms using scalable matrix and vector operations.
 - A handful of standard operations
 - Offers bulk-synchronous parallelism
 - Jumping among algorithms is easier

Two required primitives

1. Sparse matrix-sparse vector multiply (SpMSpV)

Semiring Option: (multiply,add)

A matching

Graph Operation
Traverse
unvisited neighbors

Matrix Operation SpMSpV

Two required primitives

2. Inverted index in a sparse vector

Graph Operation

- 1. Keep unique child
- 2. Swap matched and unmatched edges

Vector Operation
Inverted index in a sparse vector

Index: child

Value: parent

Index: parent Value: child

Multi-source BFS (MS-BFS) algorithm using matrix and vector operations

Step-1: Discover vertex-disjoint augmenting paths

(a) A maximal matching in a Bipartite Graph

Not explored to maintain vertex-disjoint trees

Roots of BFS trees

Sparse matrix-sparse vector multiply (SpMSpV)

Inverted index using matching vector

Sparse matrix-sparse vector multiply (SpMSpV)

(b) Alternating BFS Forest

MS-BFS algorithm using matrix and vector operations

Step-2: Augment matching by flipping matched and unmatched edges along the augmenting paths

Augment matching

Distributed memory parallelization (SpMSpV)

ALGORITHM:

- Gather vertices in processor column [communication]
- Local multiplication [computation]
- 3. Find owners of the current frontier's adjacency and exchange adjacencies in *processor row* [communication]

Shared-memory parallelization (SpMSpV)

• Explicitly split local submatrices to t (#threads) pieces along the rows.

Computation and communication time of discovering vertex-disjoint augmenting paths (a phase)

Operation	Per processor Computation (lower bound)	Per processor Comm (latency)	Per processor Comm (bandwidth)
SpMSpV	$\frac{m}{p}$	height * $\alpha\sqrt{p}$	$\beta \left(\frac{m}{p} + \frac{n}{\sqrt{p}} \right)$
Invert	$\frac{n}{p}$	$height*\alpha p$	$\beta \frac{n}{p}$

n: number of vertices, m: number of edges height: maximum height of the BFS forest

 α : latency (0.25 µs to 3.7 µs MPI latency on Edison)

 β : inverse bandwidth (~8GB/sec MPI bandwidth on Edison)

p : number of processors

Special treatments for long augmenting paths

Level synchronous: BFS Style

One path per process
Using one-sided communication
via MPI Remote Memory Access (RMA)

Results: experimental Setup

□ Platform: Edison (NERSC)

- 2.4 GHz Intel Ivy Bridge processor, 24 cores (2 sockets) and 64
 GB RAM per node
- Cray Aries network using a Dragonfly topology (0.25 μs to 3.7 μs
 MPI latency, ~8GB/sec MPI bandwidth)
- Programming environment: C++ and Cray MPI, Combinatorial BLAS library (Buluc and Gilbert, 2011)

□ Input graphs

- Real matrices from Florida sparse matrix collection and randomly generated matrices.
- Matrix- bipartite graph conversion
 - rows: vertices in one part, columns: vertices in another part, nonzeros: edges.

Impact of initialization on MCM

On 1024 cores of Edison

- ☐ Karp-Sipser obtains the highest cardinality for many practical problems, but it runs the slowest on high concurrency
- We found that dynamic mindegree + MCM often runs the fastest on high concurrency.

MCM strong scaling (real matrices)

~80x increase of cores

To appear: Azad and Buluç, IPDPS 2016

MCM strong scaling (G500 RMAT matrices)

Scale-30 RMAT: 2 billion vertices, 32 billion edges Scaling continues beyond 10K core on Large matrices

MCM: Breakdown of runtime

Ideas for weighted matching

☐ Similar graph-matrix transformation applies to weighted matching algorithms.

- □ Auction algorithm ideas [Ongoing work]
 - Bidders bid for most profitable objects: SpMSpV with (select2nd, max) semiring
 - An object selects the best bidder from which it received bid: Inverted index
 - Dual updates can be done using vector operations

Summary

- Summary of contributions
 - Methods: distributed memory matching algorithms based on matrix algebra
 - Performance: scales up to 10K cores on large graphs.
 - Easy to implement an algorithm using matrix-algebraic primitives.
 - Source code publicly available at:
 http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/
- ☐ Future work
 - Distributed weighted matching using matrix algebra

Relevant references

- □ A. Azad and A. Buluç, to appear IPDPS 2016, Distributed-Memory Algorithms for Maximum Cardinality Matching in Bipartite Graphs.
- □ A. Azad and A. Buluç, CLUSTER 2015, Distributed-memory algorithms for maximal cardinality matching using matrix algebra.
- □ Langguth *et al.*, Parallel Computing 2011, Parallel algorithms for bipartite matching problems on distributed memory computers.
- ☐ M. Patwary, R. Bisseling, F. Manne, HPPA 2010, Parallel greedy graph matching using an edge partitioning approach.
- M. Sathe, O. Schenk, H. Burkhart, Parallel Computing 2012, An auction-based weighted matching implementation on massively parallel architectures.

Thanks for your attention

Supporting slides

Maximal matching algorithms using matrix and vector operations

- Used to initialize MCM
- □ Example: dynamic mindegree algorithm
 - Greedy and Karp-Sipser are similar (Azad and Buluc, 2015)

Matrix Op

SpMSpV

Addition = min (degree)

Inverted Index

SpMSpV **Addition = plus**

Graph Op neighbor with mindegree

Match

Update degree

Maximal matching strong Scaling Randomly generated RMAT graphs

For 16x increase of cores: 1,024 – 16,384

Graph	#vertices	#edges	Greedy	Karp- Sipser	Dynamic Mindegree
RMAT-26	128 million	2 billion	3x	no	6 x
RMAT-28	512 million	8 billion	7x	3x	10 x
RMAT-30	2 billion	32 billion	12x	8x	15x

Strong Scaling Why does dynamic mindegree scale better?

For 16x increase of cores: 1,024 – 16,384

Graph	#vertices	#edges	Greedy	Karp- Sipser	Dynamic Mindegree
RMAT-26	128 million	2 billion	3x	0x	6 x
RMAT-28	512 million	8 billion	7x	3x	10 x
RMAT-30	2 billion	32 billion	12x	8x	15x

Graph-based vs. Matrix-based parallel algorithms

□ For graph-based algorithms, matching quality decreases with increased concurrency

