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A matching in a graph

Matching: A subset of independent edges, i.e., at most one edge
in the matching is incident on each vertex.

Maximal cardinality matching: A matching where if another edge
is added it is not a matching anymore.

Maximum cardinality matching (MCM) has the maximum possible
cardinality
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Application of matching in scientific computing

Bipartite Cardinality Matching Bipartite Weighted Matching
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Scope of this talk

a Problem: Cardinality matching in a bipartite graph
— Maximum cardinality matching (MCM)
— Maximal cardinality matching (used to initialize MCM)

Q Algorithm: Distributed-memory parallel algorithms

Q Approach: Matrix-algebraic formulations of graph primitives.
Inspired by Graph BLAS (http://graphblas.org/).

— More discussion on Friday (MS68): The GraphBLAS Effort: Kernels,
API, and Parallel Implementations by Aydin Buluc.

Q Covers two recent papers:
— Maximal matching: Azad and Bulug, IEEE CLUSTER 2015
— Maximum matching: Azad and Bulug, IPDPS 2016



MCM algorithm based on augmenting-path searches

A Augmenting path: A path that alternates between matched
and unmatched edges with unmatched end points.

Augment matching
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Q Algorithm: Search for augmenting paths and flip edges across
the paths to increase cardinality of the matching.

— Algorithmic options: single source or multi-source, breadth-first search
(BFS) or depth-first search (DFS)



Algorithmic landscape of cardinality matching

Duff, Kaya and Ucar (ACM TOMS 2011), Azad, Bulug, Pothen (TPDS 2016)
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The need for distributed-memory algorithms

A When a graph does not fit in the memory of a node

Q The graph is already distributed
— Example: static pivoting in SuperLU_DIST (Li and Demmel, 2003)

— The graph is gathered on a single node and MC64 is used to
compute the matching, which is unscalable and expensive
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Distributed-memory cardinality matching

Q Prior work: Push-relabel by Langguth et al. (2011) and
Karp-Sipser on general graph by Patwary et al. (2010).

— does not scale beyond 64 processors

Q Challenge
— long paths passing through multiple processors
— lots of fine-grained asynchronous communication

Q Here we use graph-matrix duality and design matching
algorithms using scalable matrix and vector operations.
— A handful of standard operations
— Offers bulk-synchronous parallelism
— Jumping among algorithms is easier



Two required primitives
1. Sparse matrix-sparse vector multiply (SpMSpV)
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Two required primitives
2. Inverted index in a sparse vector
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Multi-source BFS (MS-BFS) algorithm
using matrix and vector operations

Not explored to maintain
vertex-disjoint trees

Roots of BFS trees
Sparse matrix-sparse vector

multiply (SpMSpV)

Inverted index using
matching vector
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MS-BFS algorithm
using matrix and vector operations

Invert

Augment matching



Distributed memory parallelization (SpMSpV)
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Shared-memory parallelization (SpMSpV)
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Computation and communication time of
discovering vertex-disjoint augmenting paths (a phase)
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n: number of vertices, m: number of edges
height: maximum height of the BFS forest

a : latency (0.25 ps to 3.7 us MPI latency on Edison)
B : inverse bandwidth (~*8GB/sec MPI bandwidth on Edison)

p : number of processors



Special treatments for long augmenting paths
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Results: experimental Setup

Q Platform: Edison (NERSC)

— 2.4 GHz Intel vy Bridge processor, 24 cores (2 sockets) and 64
GB RAM per node

— Cray Aries network using a Dragonfly topology (0.25 us to 3.7 us
MPI latency, ~8GB/sec MPI bandwidth)

— Programming environment: C++ and Cray MPI, Combinatorial
BLAS library (Buluc and Gilbert, 2011)

Q Input graphs
— Real matrices from Florida sparse matrix collection and
randomly generated matrices.
— Matrix- bipartite graph conversion

* rows: vertices in one part, columns: vertices in another part,
nonzeros: edges.



Impact of initialization on MCM
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Q Karp-Sipser obtains the highest cardinality for many practical
problems, but it runs the slowest on high concurrency

Q We found that dynamic mindegree + MCM often runs the fastest
on high concurrency.



MCM strong scaling (real matrices)
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MCM strong scaling (G500 RMAT matrices)

Scale-30 RMAT: 2 billion vertices, 32 billion edges
Scaling continues beyond 10K core on Large matrices
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MCM: Breakdown of runtime
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ldeas for weighted matching

Q Similar graph-matrix transformation applies to
weighted matching algorithmes.

Q Auction algorithm ideas [Ongoing work]

— Bidders bid for most profitable objects: SpMSpV with
(select2nd, max) semiring

— An object selects the best bidder from which it received
bid: Inverted index

— Dual updates can be done using vector operations



Summary

Q Summary of contributions

— Methods: distributed memory matching algorithms based
on matrix algebra

— Performance: scales up to 10K cores on large graphs.
— Easy to implement an algorithm using matrix-algebraic
primitives.
— Source code publicly available at:
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/

Q Future work

— Distributed weighted matching using matrix algebra



Relevant references

Q

g

a

A. Azad and A. Bulug, to appear IPDPS 2016, Distributed-Memory
Algorithms for Maximum Cardinality Matching in Bipartite Graphs.

A. Azad and A. Bulug, CLUSTER 2015, Distributed-memory

algorithms for maximal cardinality matching using matrix algebra.

Langguth et al., Parallel Computing 2011, Parallel algorithms for
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Thanks for your attention



Supporting slides



Maximal matching algorithms
using matrix and vector operations

Q Used to initialize MCM
Q Example: dynamic mindegree algorithm

Matrix

— Greedy and Karp-Sipser are similar (Azad and Buluc, 2015)

SpMSpV Inverted Index SpMSpV
Addition = min (degree) Addition = plus
neighbor with mindegree Match Update degree
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Maximal matching strong Scaling
Randomly generated RMAT graphs
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Strong Scaling
Why does dynamic mindegree scale better?

For 16x increase of cores: 1,024 — 16,384
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Graph-based vs. Matrix-based

parallel algorithms

Q For graph-based algorithms, matching quality decreases with
increased concurrency
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