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Abstract

Multigrid isapopular solution method for the system of linear algebraic equationsthat arise from PDEsdiscretized
with the finite element method. The application of multigrid to unstructured grid problems, however, is not well de-
veloped. We discuss a method, that uses many of the same techniques as the finite element method itself, to apply
standard multigrid algorithms to unstructured finite element problems. We use maximal independent sets (M1Ss) asa
mechanism to automatically coarsen unstructured grids; the inherent flexibility in the selection of an MIS allows for
the use of heuristicsto improve their effectivenessfor amultigrid solver. We present parallel algorithms, based on ge-
ometric heuristics, to optimize the quality of M1Ss and the meshes constructed from them, for usein multigrid solvers
for 3D unstructured problems. We conduct scalability studies that demonstrate the effectiveness of our methods on a
problem in large deformation elasticity and plasticity of up to 40 million degrees of freedom on 960 processor IBM
PowerPC 4-way SMP cluster with about 60% parallel efficiency.
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1 Introduction

Thiswork ismotivated by the success of the finite el ement method in effectively simulating complex physical systems
in science and engineering, coupled with the wide spread availability of ever more powerful paralel computers, which
has lead to the need for efficient equation solvers for implicit finite element applications. Finite element matrices are
often poorly conditioned - thisfact has made the use of direct solvers popular as their solvetime is unaffected by the
condition number of the matrix. However, direct methods possess sub-optimal time and space complexity, asthe scale
of the problems increase, when compared to iterative methods. Thus, as larger and faster computers become more
widely available, the use of iterative methodsis becoming increasingly attractive.

Multigridisoneof afamily of optima multilevel domai n decomposition methods[23], and isknown to be an effec-
tive method to solve finite element matrices[12, 15, 25, 5, 8, 18]. The general application of multigridto unstructured
meshes, which are the hallmark of the finite element method, has not been well developed and is currently an active
area of research. In particular, the development of scalable algorithms for unstructured finite element problems that
can be easily integrated with existing finite element codes (ie, requiring only datathat is easily available in most finite
element applications), is an open problem. This paper discusses one promising approach to the devel opment of scal-
able and modular linear equation solversfor unstructured finite element problems; a more detailed presentation can be
foundin[1].

This paper proceeds as follows: Section §2 briefly introduces multigrid; section §3 introduces our basic algorithm;
and section §4 describes our paralel methods to optimize the algorithm for finite element problems. Paralld finite
element and multigrid algorithmicissues are discussed in section §5 and performance measures are discussed in section
§6; numerical resultson 3D problemsin large deformation elasticity and plasticity, with incompressible materials and
largejumpsinmateria coefficients, are presented in section §7 with almost 40 million degrees of freedom on 240 4-way
SMP IBM PowerPC nodes (with about 60% paralld efficiency). We conclude in section §8 with potential directions
for futurework.
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by DOE grant No. W-7405-ENG-48
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2 Multigrid

Multigrid is known to be the asymptoticly optimal solution method for the discrete Poisson eguation in serial. The
FFT is competitivewith multigridin paralld [7], however, unlike the FFT multigrid has been applied to unstructured
second order finiteelement problemsin e asticity [20, 6] and plasticity [12, 15, 18], aswell asfourth order finite el ement
problems[11, 25].

Simple (and inexpensive) iterative methods like Gauss-Seidel, Jacaobi, and block Jacobi [7] are effective at reduc-
ing the high frequency error, but are ineffectual in reducing the low frequency error. These simple solvers are called
smoothers as they “smooth” the error (actually they reduce high energy components, leaving the low energy compo-
nents, whichare*smooth” in, for example, Poisson’ sequationwith constant coefficients). Theineffectivenessof smple
iterative methods can be ameliorated by projecting the solution onto a smaller (coarse) space, that can resolve the low
frequency content of the solution, in exactly the same manner as the finite el ement method projects the continuous so-
[ution onto afinite dimensiona subspace to compute an approximate solution. Thiscoarse grid correctionisthen added
to the current solution. Thus, the goa of a multigrid method is to construct, and compose, a series of function spaces
in which iterative solvers and small direct solves can work together to economically reduce the entire spectrum of the
error.

Figure 1 showsthe multigrid V-cycle, using asmoother S( A, b), restriction operator R, that maps residualsfrom
thefine grid ¢ to the next coarse grid ¢ + 1, and prol ongation operator RZT+1 to map corrections from coarse grid ¢ + 1
tofinegrid .

function MGV (A;, ;)
if thereisa coarser grid

x; — S(A;, ) /I pre-smooth
r; 1 — Ax; /I compute residua
Pig1 — Riy1(ri) /I restrict residual to coarse grid
Tig1 — MGV(RHlAiRZTH, Pit1) /I compute coarse grid correction
T T + RZ»T+1($2'+1) /I prolongate coarse grid correction
ry — 1 — A /I compute residual
zp — x + S(Ai, 1) /I post-smooth
dse
zi — A7l /I solve coarsest problem directly
return x;

Figure 1: Multigrid V-cycle Algorithm

Multigrid algorithms compute an approximate coarse grid correction, and then smooth the remaining error; the V-
cycle adds a pre-smoothing step to symmetrize the operator. Many multigrid algorithms have been devel oped. Figure
1 shows oneiteration of “multiplicative’ multigrid; we use the “full” multigrid algorithm (FMG) [4], in our numerical
experiments. One full multigrid cycle applies the V-cycle to each grid, starting with the coarsest grid, then adds the
result to the current solution, projectsthe new solution to the next finer grid, computesthe residua, appliesthe V-cycle
to thisfiner grid, and so on until the finest grid is reached.

3 Our method

Given asmoother, the only operators required by multigrid (Figure 1) are the restriction operators, the rows of which
define the coarse grid spaces. These coarse grid spaces can be constructed algebraically [25] or geometrically - we
employ ageometric approach. Traditionally geometric approaches have required that the user providethe coarse grids
[12, 15, 18]; requiring coarse meshes may be an onerous responsibility for the solver to place on the user, and thuswe
wish to do this automatically within the solver. We build on a 2D seria agorithm first proposed by Guillard [13] and
independently by Chan and Smith [6]. The purpose of thisalgorithmisto automatically construct a coarse grid from a
finer grid for use in standard multigrid algorithms. A high level view of the algorithm, at each level, isas follows:

e Thevertex set at the current level (the“fing’ mesh) isevenly coarsened, using a maximal independent set (MIS)
algorithm (§4.1) to produce a much smaller subset of vertices.



e Thenew vertex set isautomatically remeshed with tetrahedra.

o Standard linesar finiteelement shape functionsfor tetrahedraare used to produce therestriction operator (R). The
transpose of the restriction operator is used as the prolongation operator.

o Therestriction operator isthen used to construct the (Galerkin) coarse grid operator from the fine grid operator:
Acoarse — RAfineRT-

This method isapplied recursively to produce a series of coarse grids, and their attendant operators, from a“fine” (ap-
plication provided) grid.

The coarse grid operators can be formed in one of two ways - either agebraicaly to form a Galerkin coarse grid
(Acoarse RANMRT), or by creating a new finite element problem on each coarse grid and letting the finite ele-
ment implementation construct the matrices. The algebraic method has the advantage that it places less demand on
users by not requiring that they construct the coarse grid operators, thus allowing for modular software design. The
algebraic approach a so has the advantage that strainlocalizations, in nonlinear material problems, influence the coarse
grid operators, thereby potentially providing better operators.

An additional reason for constructing the coarse grid operators algebraically isthat mesh generators, be they auto-
matic or semi-automatic, are not accustomed to approximating the domain automatically (ie, not strictly maintaining
the topology of the domain) which is often required for efficiency - especially on the coarsest grids of large problems
with complex geometry. Thus, standard mesh generators may not be optimal on the coarsest grids of large complex
problems as they may not be abl e to reduce the complexity of the problems (as they are constrained to fully represent-
ing the geometry of the problem) to thedegree that the coarse grid can be sol ved efficiently with adirect solver. Because
of the difficulty in generating the coarse grids, the quality of the coarse grids - as a finite element mesh - may be poor
especially on the coarsest grids (as can be seen from our coarse grids, §7) which can lead to robustness problemsif the
finite element applicationis required to operate on these coarse grids.

We have opted for the al gebrai c approach - thisrequiresthat we construct only therestriction matrices; al of the op-
eratorsthat multigrid requires can be transparently constructed from these restriction operators. Our work thus centers
on the construction of good quality restriction operators.

4 Automatic coarsegrid creation with unstructured meshes

The goal of the coarse grid function spaces isto approximatethe low frequency part of the spectrum of the current grid
well. Each successive grid’s function space should (with a drastically reduced vertex set) approximate, as best as it
can, the lowest frequencies (or eigenfunctions) of the previous grid. Our algorithms, introduced above and described
below, can be viewed as attempting to approximate the geometry of the problem, to a uniform degree, on each coarse
grid so asto approximate the eigenvectors efficiently in a genera purpose (non-operator specific) way.

4.1 Maximal independent set algorithms

An independent set isa set of vertices 7 C V inagraph G = (V, E), in which no two members of 7 are adjacent (ie,
Yo,w € I, (v,w) ¢ E); amaximal independent set (MIS) is an independent set for which no proper superset is also
an independent set. Maximal independent sets are a popular device in selecting the* points’ for unstructured multigrid
methods. The simple greedy MIS algorithm [17, 14], is show in Figure 2, in which we provide vertices with a state
variablewhichisinitialized to the “undone” state.

forallv € V
if v.state = undone then
v.state + selected
forall vl € v.adjac /I v.adjac isalist of vertices adjacent of v in G
vl.state + deleted
I« {v eV |uvstate = selected}

Figure 2: Greedy MIS agorithm for the serial construction of an MIS



4.2 Paralld maximal independent set algorithms

We use a partition based parallel M1S algorithm which requires that vertices v be given an data member v.proe, the
unique processor number that each vertex isassigned to, and alist of adjacent vertices v.adjac [2]. The order in which
each processor traverses the local vertex list can be governed by our heuristics although the global application of a
heuristic requires an ateration to the MIS agorithm. We add an immutable data member to each vertex v: v.rank.
In the paralel MIS algorithm, processor p can select avertex v only if dl vl € v.adjac are deleted (ie, vl.state =
deleted) or

v.rank > vl.rank or (v.rank = vl.rank and v.proc > vl.proc).

Thistest isadded to thetest inthe second line of Figure 2, and resultsin acorrect global implementation of any heuristic
that is based on vertex ranking. To complete the paralld agorithm we simply embed the modified greedy algorithm
in Figure 2 in an outer loop and send appropriate datato other processors on distributed memory machines (see[2] for
details). We use “topological classification” to compute vertex ranksin our algorithm as described bel ow.

4.3 Topological classification of verticesin finite element meshes

Our methods are motivated by the intuition that the coarse grids of multigrid methods should represent the geometry
of the domainswell in order to approximate the lower eigenvectors well, and hence be effective in multigrid solvers.
We define a domain as a contiguous region of the finite element problem with a particular material property. We rank
vertices with classifications derived from geometric features.

The first type of classification of verticesisto find the exterior vertices - if continuum elements are used then this
classification istrivia. For non-continuum elements like plates, shells and beams, heuristics such as minimum degree
could beused to find an approximation to the“ exterior” vertices, or acombination of mesh partitionersand convex hull
algorithms could be used. For the rest of this section we assume that continuum elements are used and so a boundary
of the domain represented by alist of facets can be defined and easily constructed. The exterior vertices give us our
first vertex classification from the last section: interior vertices are vertices that are not exterior vertices. We further
classify exterior vertices, but first we need amethod to automatically identify facesin our finite el ement problems, from
which we can construct features, and then define vertex classifications.

4.4 A smplefaceidentification algorithm

We want to identify faces, or “flat” regions, of the boundaries in the mesh; features can then be naturally constructed
from these faces. Assume that alist of facets facet_list has been created from al of the element facets that are on a
boundary of the problem (these include boundaries between material types). Assume that each facet f € facet_list
has calculated its unit normal vector f.norm, and that each facet f hasalist of facets f.adjac that are adjacent to it.
With these data structures, and a list with AddT'ail and Remove H ead functions with the obvious meaning, we can
caculatea face_I D for each facet with the algorithm shown in Figure 3. All facets with thesame face_I D define one
face.

This algorithm simply repeats a breadth first search of trees rooted at an arbitrary “undone”’ facet, which is termi-
nated by the requirement that a minimum angle (arccos TOL) be maintained by all facets in the tree with the root and
with its neighbors. Thisisasimple algorithm to partition the boundaries of the mesh into faces (or manifolds that are
somewhat “flat”). These faces are used in two ways:

1. Topological categories for vertices, used in the heuristics of section §4.2, can be inferred from these faces:

o A vertex attached to exactly one face is a surface vertex.
o A vertex attached to exactly two faces is an edge vertex.
o A vertex attached to more than two faces isa corner vertex.
2. Feature sets of vertices can be constructed from these faces, eg, an edge is the set of all vertices that touch the
same two, and only two, faces. These feature sets are used to modify the graph that isused inthe MIS agorithm

so as to insure that vertices of the same feature class, though not in the same feature, do not interact with each
other in the MIS agorithm; section §4.6 discusses the reasons for thiscriteria.



forall (f € facet_list)
f.-face_ID + 0
Current_ID + 0
forall f € facet_list
if f.face_ID =0
list — {f}
root_norm  f.norm
Current_ID < Current_ID + 1
whilelist #
f + list. RemoveHead
f-face_ID + Current_ID
forall f1 € f.adjac
if fl1.face.ID =0 —TOL isausertolerance—1 < TOL <1
if root_norm® - fl.norm > TOL and f.norm” - fl.norm > TOL
list. AddTail(f1)

Figure 3: Face identification algorithm

Item 1) gives us the classifications that we have discussed above, item 2) is discussed in the §4.6. We can now assign
vertex ranks (v.rank in §4.2) as rank = 0 for interior vertices, rank = 1 for surface vertices, rank = 2 for edge
vertices, and rank = 3 for corner vertices.

45 Paralle faceidentification algorithm

To parallelize thisalgorithm (Figure 3), each processor p constructsalist £, of al elementsthat touch any vertex that it
isresponsiblefor (given by avertex partitioning onto processors); vertices in elements of £, that are not in processor
p's vertex set are called “ghost” vertices. A list of facets £}, on processor p is generated from £,; £, is pruned by
eliminating facets with all ghost vertices. Also, Current_ID (inFigure3) isredly atuple (p, Current_I D) so that
each face_I D that a processor createsis unique.

Each processor p waitsto receive “seed” facetsfrom al processorsthat are responsiblefor ghost vertices on facets
in £, and that have ahigher processor number; these seed facets are used in thelocal agorithm (Figure 3). A processor
with the highest processor number (or with no higher neighbor) starts the process by simply running the algorithmin
Figure 3 and then sending its ghost facets f, along with the f. face_I D and the “root” normal (root_norm in Figure
3), to all processors (with alower processor number) that own avertex on the facet - these become the seed facets for
the lower processors. Seed facets f that are given anew f.face_I D in the course of the algorithm generate an edge
ina face_1D graph G ;;4 between the old and the new f. face_I D. A globd reduction is performed &t the end of the
agorithm so that all processors have a copy of Gy;4 (note, thisis not a scalable construct but the constants are very
small). All facets f are then giventhe largest face_I D that f.face_ID canreachin Gy ;q.

Thisagorithm does not preserve the semantics of the seria algorithm (ie, the resulting faces are not guaranteed to
be faces that the serial algorithm could have produced) but the results are close enough for the current development
of our solver since we do not see deterioration in convergence rates with the use of multiple processors. Future work
may include tightening up the semantics of the parallel agorithm as well as investigating more sophisticated serial
algorithms.

4.6 Modified graphsfor maximal independent sets

We now have all of the pieces that we need to describe the core of our method. First we classify vertices, to generate
vertex ranks, and ensure that a vertex of lower rank does not suppress a vertex of higher rank. Second we want to
maintain the integrity of the “faces’ in the origina problem as best we can. The motivation for this second criterion
can be seen in the 2D example in Figure 4. If the finite element mesh has a thin region then the MIS as described in
§4.1 can easily fail to maintain a cover of the vertices in the fine mesh. This comes from the ability of the vertices on
one face to decimate the vertices on an opposing face as shown in Figure 4. This phenomenon could be mitigated by
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Figure 4: Poor MIS for multigrid of a“thin” body

randomizing the order that the vertices are added to the MIS, but thin regions tend to lower the convergence rate of
iterative solvers, and so we want to pay specid attention to them.

The problem (in Figure 4) isthat vertices are allowed to suppress verticesin the same feature class (eg, edges) - but
inadifferent feature. This problem doesnot occur on logically square domains because when the grid is coarse enough
for elements to “punch through” the domain the coarsening stops. On general domains, however, one must continue
coarsening, even when one dimension of some parts of the problem has coarsened “all the way through”, because the
problem may still be too large to solve cheaply with adirect solver.

Our simple modification (once we have identified faces) is to delete edges connecting nodes that do not share a
face; thispreventsa corner vertex from del eting an edge vertex with which it does not share aface and surface vertices
from deleting surface vertices on different surfaces. Also, we do not alow corners to be deleted at all; this can be
problematic on meshes that have many initia “corners’ (as defined by our agorithm); we mitigate this problem by
reclassifying vertices on the coarser grids. We generaly reclassify the third and subsequent grids (ie, welet the second
grid verticesretain thetype of thefinegrid vertex from which it was derived). Note, thisheuristicis problem dependent
and should be a user defined parameter.

Figure 5 shows the problem in Figure 4 and the modified graph with edges removed as described above.

® Surface vertices

® Corner vertices

Figure5: Original and modified graph

Figure 6 shows a possible MIS and coarse grid for this problem.
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Figure 6: MIS and coarse mesh

4.7 Vertex orderingin MIS

An additiona degree of freedom in the MIS agorithmis the order of the vertices within each category. Thus far we
have implicitly ordered the vertices by topologica category (or rank) - the ordering within each category can aso be
specified. Two simpleheuristicscan beused to order thevertices: a“natural” order and arandom order. Meshes may be
initially ordered in ablock regular order (ie, an assemblage of logically regular blocks), or ordered in acache optimizing
order like Cuthill-McKee[24]; both of these ordering types are what we call natural orders. The MISs produced from
natural orderingstend to be rather dense, random ordering on the other hand tend to be more sparse. That is, the MISs
with natural orderings tend to be larger than those produced with random orders. For a uniform 3D hexahedral mesh,
the asymptoticsof the ratio of the MIS size to the vertex set sizeisbounded by 1/23 and 1/33, asthelargest MIS picks
every second vertex and the smallest MIS selects every third vertex, in each dimension. Natural and random orderings
are simple heuristics to approach these bounds.

Small MISs are preferable as there is less work in the solver on the coarser mesh, and fewer levels are required
before the coarsest grid is small enough to solve directly, but care must be taken not to degrade the convergence rate
of the solver. In particular, as the boundaries are important to the coarse grid representation it may be advisableto use
natural ordering for the exterior vertices and a random ordering for the interior vertices.

4.8 Meshing of thevertex set on thecoarsegrid

Thevertex set for the coarse grid remains to be meshed - thisis necessary in order to construct the finite element coarse
grid space of our method. We use a standard Delaunay meshing a gorithm to give us these meshes [10]. Thisisdone
by placing a bounding box around the coarse grid vertices (on each processor) then meshing thisto produce a mesh
that covers dl fine grid vertices. The tetrahedra attached to the bounding box vertices are removed and the fine grid
vertices within these del eted tetrahedra are added to alist of “lost” vertices (lost list).

We continue to remove tetrahedra that connect vertices that were not “near” each other on the fine mesh and that
do not have any fine grid vertices that lie “uniquely” within the tetrahedron. Define a vertex v to lie uniquely in a
tetrahedron if there is no tetrahedron that can provide the fine grid vertex with interpolatesthat are all above -¢ (for
some small number ¢). Finally, for each vertex v inlost _list, wefind anearby element to usefor theinterpolantsfor v.
Figure 7 shows an example of our methods applied to aproblem in 3D elagticity. The fine (input) mesh is shown with
three coarse grids used in the solution.
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5 Parallel architecture

We have devel oped ahighly scal ableimplementation of our algorithmsand aparall € finite element applicationfor solid
mechanics problemsto effectively test our solver. Our paralld finite element system is composed of two basic parts:
Athena, aparall€ finite element program built on aserial finite element code (FEAP[9]) and aparallel mesh partitioner
(ParMetis[16]), and our solver Prometheus. Prometheus can be further decomposed into two parts: Epimetheus, gen-
eral unstructured multigrid support (built on PETSc [3]); and our particular multigrid a gorithm Prometheus (whose
sole responsibility is to construct the restriction operators between each grid). Prometheus and Epimetheus are not
implemented separately and constitute the publicly available library [19].

Athenareadsalarge“flat” finiteelement mesh input filein parallel (ie, each processor seeks and reads only the part
of the input file that it, and it alone, is responsible for), uses ParMetis to partition the finite element graph, and then
congtructs a compl ete finite element problem on each processor. These processor sub-domains are constructed so that
each processor can compute all rows of the stiffness matrix, and entries of theresidual vector, associated with vertices
that have been partitioned to the processor. This negates the need for communication in the finite element el ement
evaluation at the expense of some redundant work.

We use explicit message passing (MPI) for performance and portability, parallelize al parts of the agorithm for
scalability. All components of multigrid can scale reasonably well (except for the coarsest grids, whose size remains
constant as the problem size increases and is thus not a hindrance to scal ability).

Wetarget clusters of symmetric multi-processors (SMPs), which we call CLUMPs, asthis seemsto be thearchitec-
ture of choice for the next generation of large machines. We accommodate CLUMPs by first partitioning the problem
onto the SMPs and then thelocal problem is partitioned on to each processor. Thisapproach implicitly takes advantage
of any increase in communication performance within each SMP, though the numerical kernels (in PETSc) are “flat”
MPI codes. Figure 8 shows the adiagram of the overall system architecture.
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6 Performancemeasures

The section defines the methods, goals, and terminology of our numerical experiments. The goa of our numerical
experiments is to measure the degree of scalability of our agorithms and implementations. We use efficiency as the
primary metric in the analysis of our experimental data. Perfect efficiency is defined as 1.0 and of course the higher
the efficiency the better. Time efficiencies are of the form: “optimal” / “measured” (ie, %}g—% where T'(n, P) isthe
time to solve a problem with n equations on P processors) and flop rate efficiencies are of the form: “measured” /
“optimal”. Orthogonal sources of (in)efficiencies (eg, iteration countsand flop rates) can be multiplied together to give
the total efficiency, which is often the most easily measured term - other efficiencies can be back calculated from the
total efficiency with amode of the computation.

Efficiencies are useful as 1) they provide a uniform metric for measuring the many sources of sowdownin a code,
2) they provideabound onthe benefit that can be gai ned by optimizing aparticul ar aspect of acode, 3) they help identify
scalability bottlenecksin the application. We decompose efficiency into uniprocessor efficiency and paralléel efficiency
- the total efficiency being the product of the two. Uniprocessor efficiency is defined below; parallel efficiency e is
defined as the time to solve a problem of size n; on one processor divided by the time to solve arefined discretization
of the problem, withnp = P - ny equationson P processors.

The remainder of thissection discusses the decomposition of efficiency, can be used as areference for the numerical
results sectionsthat follow, and can be skipped in thefirst reading. I1n general efficiency, or sources of inefficiency, can
be decompose into the following components:

e uniprocessor efficiency or uniprocessor efficiency e, : the fraction of some “peak” megaflop rate (Mflop/sec)
ey = L/ of the uniprocessor implementation, where f(1)/sec isthe uniprocessor flop rate. Peak can

f(l)pEAK/sec

be defined as:

— Theoretical peak (ie, clock rate times flop issues per cycle).

— Dense matrix matrix-multiply - the fastest megaflop rate that any numerical code is likely to be able to
sustain.

— Sparse matrix-vector multiply (with A in Az = b) - thesource of most of theflopsin most iterative methods
- the fastest megaflop rate that any iterative solver islikely to be able to sustain in the solve phase.

o Pardld efficiency isthe product of the four efficiencies described below:

— work efficiency ¢,,: thefraction of flopsin the parallel implementation that are not redundant, ie, the num-
ber of flopsto solvethe problem on one processor divided by the number of flopsto solve the same problem
with P processors. Thus, e,, = J%})l where fp(1) isthe number of flops used to solve the np unknown
problem on one processor and f( P) isthe number of flops used to solvethe np unknown problem with P
processors.

— scaleéfficiency e,: thisisthe scalability of the algorithm with respect to non-redundant flops per unknown
(ie, the non-redundant flops per unknown to solvethe problem as the problem size increases). For iterative
solvers, it is convenient to further decompose scal e efficiency.

* iteration scale efficiency ¢!: the efficiency in the number of iterationsrequired; e/ = %m

where Iterations(P) isthe number of iterationsfor the problem of sizenp on P processors.
* flop scale efficiency ef": the efficiency in the non-redundant flops per unknown (or processor) per it-
eration. We definetheflops per iteration of then » unknown problem by 7 ( P) and the non-redundant

flopsas f(P), and ef' = Pf{(f]g) Recall, f(P) isthetoatl flopsand so f(P) = e,, - f(P). Work ef-
ficiency e,, issimilar to e, inthat it relates to flop efficiency, though distinct frome; as: ¢, isrelated

only to the number of processorsused P; scale efficiency e, isrelated only to the size of the problem.

— load balance!: the ratio of the average to the maximum amount of work (flops) that a processor does in

an operation, ¢; = % Thisis easily measured (and defined) as we do not use any non-uniform
algorithmic constructs (ie, all processors are doing the same operation on the same mathematical object all
of thetime). Our load balance can be seen graphically in Figure 11.
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— communication efficiency e..: the highest percentage of time that a processor is not waiting, processing,
packing data, or any other form of work associated with interprocess communication. Communication ef-
ficiency e. can be measured with flop rate efficiency, e. = %, asinFigure11 (right), if thereisno
load imbal ance induced blocking.

Our solver has perfect work efficiency e,,, though we have some redundant work in the construction of the fine grid
matrix Aq in Athena(§5) as can be seenin Figure 12 (right) - we do not discuss work efficiency further and can assume
that f(P) = f(P). Our load balanceis very good (see Figure 11) and we do not discuss load balance further.

We focus on communication efficiency e. and scale efficiency e, ; communication efficiency e. can be represented
withtheflop rate efficiency. Scaleefficiency e, = ¢! - ¢! (flopsper unknown) isthe product of the number of iterations
required to converge and the number of flops per unknown per iteration. Thus, theefficiency e(P) on P processors (and
np unknowns as defined above) can be effectively represented as

Tterations(1) P (1)  f(P)/sec ;I F

(P~ Iterations(P)  f(P) P f(1)/sec TR

s " Cc

with thenumber of iterations Iterations(P), flopsiteration f( P), andfloprate f(P)/sec. Tterations(P) istabulated
inTable 2, %?/— is shown if Figure 11 (I&ft), and % shown if Figure 11 (right).

This paper focuses on parallel efficiency but a few words about uniprocessor efficiency e,, are warranted. Unipro-
cessor efficiency can be measured against the theoretical peak megaflop rate of the processors; thisis simpleto define
though it is more effective for measuring the performance of the processor in question rather than the algorithm and
implementation. The megaflop rate of dense matrix-matrix multiply is more useful than peak speed as thisinvariably
bounds the performance of numerical applications. Sparse matrix-vector multiply, with the fine grid matrix, is most
useful asit isthe source of most of theflopsin most scalable solvers. We report datafor the first and third uni processor
efficiency (ie, theoretical peak and fine grid sparse matrix-vector multiply) in the following sections.

Good scal ability can bedefined as good parallel efficiency (e > 1.0 ore > C > 0 for some constant C' independent
of the number of processors) for the time to compute the solution # that reduces the 2-norm of the residual by a fixed
congtant rtol (ie, ”Afb_b” < rtol ). We could aternatively define scalability by solving the linear system to the finite
element discretization error; thisismore attractive asit insures that perfect parald efficiency is bounded from above
by 1.0 and reflects the rational use of a solver. Discretization error is not used as the convergence tolerance because it
isdifficult to define (compute). Note, the PRAM complexities of al iterative solver algorithms are, to our knowledge,
bounded by O (log(n)), thusoptimal parallel efficiency will includealog(n) term.

An additional note, there are three main phases in the solution of a linear system: setup for the mesh (non-zero
structure of the fine grid), setup for each matrix (more than one for nonlinear problems), and the solve for « with a
provided right hand side (RHS) . For direct solversthese three phases correspond to symbolic factorization, numerical
factorization, and thefront solve and back substitution. The first phase isamortized in nonlinear and transient problems
and is thus not as important as the latter stages, unless the application solves just one linear system of equations for
each mesh configuration. The second phase, setup for each matrix, includes the coarse grid operator construction and
smoother setup in our solver, and is important for fully nonlinear problems asit is required for each RHS and thusiits
cost isnot amortized by multiplesolves. Thefinal stage, thetimeinthe actual multigriditerations, isthemost important
asthisisaways donein the solve of asystem of linear equations. We focus on the solve phase (thelast phase), though
we have fully scalable implementations of all three phases and we report times for all stages (Figure 10).
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7 Numerical results

We use amodd problem in solid mechanics to conduct scalability studies of our solver. Our problem is a sphere em-
bedded in a cube; the sphere is constructed of seventeen alternating “hard” and “soft” layers and the cube is a * soft”
material. Think of aspherical steel-belted radial inside arubber cube. Symmetry can be used to model only one octant.
Theloading and boundary conditionsare an imposed uniform displacement (crushing), on thetop surface and symmet-
ric boundary conditions on the three cut faces. The hard materia isa J, plasticity material with a mixed formulation
and kinematic hardening [22]. The soft materia is a large deformation (Neo-Hookean) hyperelastic material with a
mixed formulation [26]. Table 1 shows a summary of the constitution of our two material types.

Material || Elastic mod. (E) | Poissonratio | deformationtype | yield stress | hardening mod.
soft 10~ 0.49 large 00 NA
hard 1 0.3 large 0.001E 0.002

Table 1: Nonlinear materials

The hexahedral discretization is parameterized so that we can perform scal ability experiments. Figure 9 showsthe
smallest (base) version of the problem with 80 K (K=1000) degrees of freedom. Each successive problem has one more
layer of elements through each of the seventeen shell layers, with an appropriate (ie, similar) refinement in the other
two directions and in the outer soft domain - resulting in problems of size: 80 K, 621 K, 2,086 K, 4,924 K, 9,595 K,
16,554 K, 26,257 K, and 39,161 K degrees of freedom. We run this problem with about 40 K degrees of freedom per
processor, on 2 to 960 processors.

Figure 9: 79,679 dof concentric spheres problem and fina configuration

These experiments are performed on an IBM PowerPC cluster with 240 4-way SMP nodes at Lawrence Livermore
National Laboratory. Each node has four 332 MHz PowerPC 604e processors, with 1.5 Gbytes of memory, and athe-
oretical peak Mflop rate of 664 Mflop/sec per processor.

Single processor (PETSc) sparse matrix-vector products (on thefine grid of our problems) run at 36 Mflop/sec, and
the multigrid solves run at 34 Mflop/sec; two processor (the base case for these experiments) matrix-vector products
run at 66 Mflop/sec, and the multigrid solves run at 63 Mflop/sec; the 960 processor case runs at 26.5 Gflop/sec in the
matrix-vector products and 19.3 Gflop/sec in the solves. Thus, we have 59% (= £2:229) parallel efficiency inthe solve
in these experiments. We have al so run these experiments (up to the 24 million degrees of freedom problem) on a 640
processor Cray T3E with 57% parallel efficiency aswell, and about twicethetotal Mflop rate asthe corresponding IBM
experiment.
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7.1 Scalability study of onelinear solve

We look at datafrom thefirst linear solvein these problems (with aconvergence tolerance of 104, thefirst linear solve
tolerancein our nonlinear solver in section §7.2) in detail. Figure 10 (left) showsthetimesfor themajor subcomponents
of the solver, and Figure 10 (right) shows the times for the setup of thefinite element problem (Athena), unmeasured
code (mostly in the FEAP setup phase ), the coarse grid construction (Prometheus), the fine grid creation (FEAP), the
matrix setup phase (Epimetheus and PETSc), and the actual solvetimein multigrid (PETSc).

Note, the timesfor the “matrix setup” are taken from a separate (two solve) run, and the second setup timeis used.
We report the time for the second application of the “matrix setup” because thereis small amount of overhead on the
first call to the matrix triple product routine that is not measured separately. Thus, time for the second call to these
“matrix setup” routinesis more indicative of the asymptotic cost, per matrix, of the “matrix setup”. The difference
between thefirst and all subsequent callsto the “matrix setup” routinesis about 15%.

It isimportant to note that this (linear solve) experiment measures one mesh setup, one matrix setup, and one solve
(for eech right hand side). Linear transient analysiswould regquire multiplesol vesthat woul d amortize the cost the setup
phases, and nonlinear analysis (§7.2) would require multiple matrix setups and solves which would amortize the mesh
setup phase (restriction operator construction). The unmeasured code (“FEAP setup + misc.” in Figure10) ismostly the
timethat FEAP readstheinput file, plus miscellaneousitems (eg, MPI/PET Scinitialization and finalization, diagnostic
work at the end of therun, thedifference between the" matrix setup” that we use and the actual timeas discussed above,
etc.).

Solve Times (~40K dof per PE) IBM PowerPC s "end to end" Times (~40K dof per PE) IBM PowerPC
T T T T T T T T 10 T T T T T T I T T
_s— Total Ax=b solve | —&— Total end—to—end time
120r ' __ Solve for "x" (PETSc) I + Partitioning (Athena)
Matrix setup (Epimetheus,PETSc) : | =+ - Mesh setup (Prometheus)
. Iterations,tol=107* 4 o FEAP setup + misc. (FEAP)
1004 ' 7 10¢ -o- Solve for "x" (PETSc) E
: Fine grid creation (FEAP)
80 Matrix setup (Epimetheus,PETSc)
D Q o : :
2 2
£ 60 g
= =
40+ 1
1* ber of iterati
20 L * . . % number of iterations . A
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Figure 10: 40,000 dof per processor solve times (left) and total times (right) for onelinear solve

All phases of the computation are scaling reasonably well. The FEAP interfaceisnot optimal in the current imple-
mentation as we actually writeafileto disk and FEAP (immediately) reads thisfile - this could be donein memory by
having FEAP read from amemory stream instead of afile stream (we have implemented this optimizationin the recur-
sive application of Athena, see section §5). Also, Athenaisrunningslowly and erratically, as can be seen in thetimes of
Figure 10 (right). We believe that thisis due to bottlenecks in the communication system as we see speedups of about
six with the use of twice as many processors. Additionally, we have not concentrated our code optimization effortsto-
wardstheinitial setup phase of our paralld finiteelement application for lack of software devel opment resourcesand as
these costs are amortized in transient problems as can be seen in section §7.2. Thus, we use highly scalable algorithms
for the set up phase (asit is scaling well) but have not fully optimized them to reduce the constantsin the run time.
Note, Athenaisnot in thelibrary rel ease of Prometheus.

We see super-linear efficiency inthe solvetimes (eg, the solvetimesare decreasing as the problem size increases) in
Figures 10, for two reasons. First, we have super-linear convergencerates (ie, e > 1.0), as shownin Table 2. Second,
the vertices added in each successive scal e problem have a higher percentage of interior vertices than the base problem,
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leading to higher rates of vertex reduction in the coarse grids. Thisis because as the number of unknowns » increases
the “surface area” increases by O(n ) whereas the interior increases by O(n). Thus, the ratio of interior vertices to
surface vertices increases as the scale of discretization decreases (n increases). Our coarse grid heuristicsin section §4
articulate the surfaces well (boundary and material interfaces), resulting in a higher ratio of surface vertices promoted
to the coarse grid. Thus, the rate of vertex reduction is higher on thelarger problems as they have proportionally more

interior vertices, leading to lesswork per fine grid vertex (ie, e’ > 1.0), as can be seen in Figure 11 (l€ft).

Equations 79,679 | 622,815 | 2,085,599 | 4,924,223 | 9,594,879 | 16,553,759 | 26,257,055 | 39,160,959
Processors 2 15 50 120 240 400 640 960
MG preconditioned 29 27 22 20 20 20 20 21
PCG lterationsin
1%* linear solve
Total PCG iterations || 3108 4121 3117 3355 3060 3008 2978 3215
in nonlinear solve
Total Newton 62 63 62 65 68 69 68 70
iterations
Ave. PCG iterations 50 65 50 52 45 44 44 46
per linear solve
Total Mflop/sec 63 421 1194 2901 5112 8524 13218 19253
in MG iterations

Table 2: Number of iterationsfor first linear solve and total nonlinear solve

Figure 11 (left) shows the scaled efficiency of the number of flops per iteration per unknown in the solver ¢!’ as

well as the scaled efficiency of the time for each iteration. The efficiency of the time per iteration, the lower linein
Figure 11 (l&ft), shows the combined effect of the super-linear flop efficiency " and the paralld (in)efficiency of the
flop rate (flop/sec/processor) e.. Communication efficiency e. is shown in Figure 11 (right). The total “solve for x”

efficiency e (ie, the solve efficiency without the matrix setup or the grid setup phases) is shown in Figure 12 and is

approximately e = e
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Figure 11: Flop/iteration/proc. (flop scale efficiency eX"); flop rate (communication efficiency e..)

Figure 11 (right), the scaled efficiency of the maximum and average processor flop rate in the solve phase, shows

that we have 62% parallel efficiency in the flop rate (from the two processor case). We do not have a one processor
version of this problem but, using the flop rate of 34 Mflop/sec in the solve from a similar 40 K degree of freedom
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problem on one processor, we have 59% parallel efficiency in the solve phase. Figure 11 also showstwo views of two

sources of inefficiency: communication e. and load imbalance [ as discussed in section §6.
Note, Figure 11 (left) is scaled by a factor % * JJVV((I;)) to account for the non-constant number of unknowns per
processor (N (P)/ P); this factor is shown in Figure 12 (Ieft) and the efficiencies of all of the major steps the linear

solvein Figure 12 (right).

Prometheus and Solve Efficiency (~40K dof per PE) IBM PowerPC
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Figure 12: efficiency e for all magjor components of one linear solve with about 40,000 dof per processor

7.2 Nonlinear scalability study

We use afull Newton nonlinear solution method; convergence is declared when the energy norm of the correction is
10~2% timesthat of thefirst correction. This means that in Newton iteration m convergence is declared when

|k - (b= Azp)| < 10777 | - (b — Axo)|

. Thelinear solver, within each Newton iteration, is preconditioned conjugate gradient (PCG), preconditioned with one
“full” multigrid cycle. We use one pre-smoothing and one post-smoothing step within multigrid, preconditioned with
block Jacobi with 6 blocks for every 1,000 unknowns (these block Jacobi sub-domains are constructed with METIS).

The dlightly modified version of ['EAP (FFEAP, [9]) calsour linear solver in each Newton iteration, with the
current residual r,,, = b — Az,,, thusthe linear solveisfor theincrement Az ~ A~'r,,. We use adynamic conver-
gence tolerance (rtol) for the linear solve in each Newton iteration of rtol; = 10~* in thefirst iteration and rtol,,, =
min(1073, f);—rj'ﬂ—l -10~1) on al subsequent iterations (m > 1). This heuristic isintended to minimize the number of
total iterationsrequired in the Newton solve by only solving each set of linear equationsto the degreethat it “ deserves’.
That is, if the true (nonlinear) residua is not converging quickly then solving the linear system to an accuracy far in
excess of thereduction in theresidua is not likely to be economical.

The full nonlinear problem is run with ten “time” steps with a particular displacement increment in each step that
resultsinatotal vertical displacement of 3.6 inchesdown (the octantis12.5 incheson asideand thetop “ soft” sectionis
5inchesthick at the central vertical axis). Figure 13 (left) showsthe percentage of the integration points, in the “ hard”
shells, whose stress state have reached the yield surface [22]; this gives an indication of the damage to the system
and results in material constitution that is very similar to that of highly incompressible materials. Over 24% of the
integration points, in the hard shells, areinthe yield state at the final configuration.

Figure13 (right), and Table 2, show the number of multigriditerationsin each linear solveof each of theten Newton
solves, stacked on top of each other and color coded for each Newton iteration. From thisdatawe can see that the total
number of iterationsis staying about constant asthe scal e of theproblemincreases. Thisdatasuggeststhat thenonlinear
problemisgetting harder to solveasthediscretizationisrefined, because thenumber of iterationsin thefirst linear solve
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Percentage of "hard" shell integration points in plastic state

Solver iterations in 10 Newton nonlinear solves
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Figure 13: Percent of integration pointsin “hard” material that are in plastic state in each “time”’ step; Number of
iterationsfor all solvesin nonlinear problem (see Table 2)

of thefirst step decreases as the problem size increases, asisshown in Table 2. That is, we are seeing a dight growth
in the number of Newton iterationsrequired, and the average number of iterationsin the linear solver isnot decreasing
asdramatically asinthefirst linear solve. Table 2 shows the detailed iteration count data from these experiments.

8 Conclusion

We have devel oped a promising method for solving the linear set of equations arising from implicit finite el ement ap-
plications. Our approach, a3D parald extensionto aseria 2D agorithm, isto our knowledgeuniqueinthatitisafully
automatic (ie, the user need only providethe fine grid, which iseasily availablein most finite element codes) standard
geometric multigrid method for unstructured finite element problems. We have solved 40 million degree of freedom
problems on an IBM PowerPC cluster with 240 4-way SMP nodes with about 60% parallel efficiency. Prometheusis
theonly fully parallelized scal able public domain solver that we are aware of and can be obtained from the Prometheus
home page[19].

We have also developed a highly paralel finite element implementation, built on an existing state-of-the-art se-
rial research finite element implementation. The implementation of our system (Athena/Prometheus) required about
30,000 lines of our own C++ code, plus severa large packages: PETSc (160,000 lines of C), FEAP (105,000 lines of
FORTRAN), METIS/ParMetis (20,000 lines of C), and geometric predicates (4,000 lines of C) [21].

Future work will include the continuing hardening of the algorithms and implementation with the application of
Prometheus to a wider variety of problems, as well as expanding the domain of applications which we support (eg,
higher order e ements, non-continuum elements). Aswe also planto explore alternative (effective) unstructured multi-
grid agorithms such as smoothed aggregation [25], to eval uate (and make publicly available) competitive algorithms.
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