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Abstract

Multigrid is a popular solution method for the system of linear algebraic equations that arise from PDEs discretized
with the finite element method. The application of multigrid to unstructured grid problems, however, is not well de-
veloped. We discuss a method, that uses many of the same techniques as the finite element method itself, to apply
standard multigrid algorithms to unstructured finite element problems. We use maximal independent sets (MISs) as a
mechanism to automatically coarsen unstructured grids; the inherent flexibility in the selection of an MIS allows for
the use of heuristics to improve their effectiveness for a multigrid solver. We present parallel algorithms, based on ge-
ometric heuristics, to optimize the quality of MISs and the meshes constructed from them, for use in multigrid solvers
for 3D unstructured problems. We conduct scalability studies that demonstrate the effectiveness of our methods on a
problem in large deformation elasticity and plasticity of up to 40 million degrees of freedom on 960 processor IBM
PowerPC 4-way SMP cluster with about 60% parallel efficiency.
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1 Introduction

This work is motivated by the success of the finite element method in effectively simulating complex physical systems
in science and engineering, coupled with the wide spread availability of ever more powerful parallel computers, which
has lead to the need for efficient equation solvers for implicit finite element applications. Finite element matrices are
often poorly conditioned - this fact has made the use of direct solvers popular as their solve time is unaffected by the
condition number of the matrix. However, direct methods possess sub-optimal time and space complexity, as the scale
of the problems increase, when compared to iterative methods. Thus, as larger and faster computers become more
widely available, the use of iterative methods is becoming increasingly attractive.

Multigrid is one of a family of optimal multilevel domain decomposition methods [23], and is known to be an effec-
tive method to solve finite element matrices [12, 15, 25, 5, 8, 18]. The general application of multigrid to unstructured
meshes, which are the hallmark of the finite element method, has not been well developed and is currently an active
area of research. In particular, the development of scalable algorithms for unstructured finite element problems that
can be easily integrated with existing finite element codes (ie, requiring only data that is easily available in most finite
element applications), is an open problem. This paper discusses one promising approach to the development of scal-
able and modular linear equation solvers for unstructured finite element problems; a more detailed presentation can be
found in [1].

This paper proceeds as follows: Section x2 briefly introduces multigrid; section x3 introduces our basic algorithm;
and section x4 describes our parallel methods to optimize the algorithm for finite element problems. Parallel finite
element and multigridalgorithmic issues are discussed in section x5 and performance measures are discussed in sectionx6; numerical results on 3D problems in large deformation elasticity and plasticity, with incompressible materials and
large jumps in material coefficients, are presented in section x7 with almost 40 million degrees of freedom on 240 4-way
SMP IBM PowerPC nodes (with about 60% parallel efficiency). We conclude in section x8 with potential directions
for future work.�Department of Computer Science, University of California Berkeley, Berkeley CA 94720 (madams@cs.berkeley.edu). This work is supported
by DOE grant No. W-7405-ENG-48yDepartment of Computer Science, University of California Berkeley, Berkeley CA 94720
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2 Multigrid

Multigrid is known to be the asymptoticly optimal solution method for the discrete Poisson equation in serial. The
FFT is competitive with multigrid in parallel [7], however, unlike the FFT multigrid has been applied to unstructured
second order finite element problems in elasticity [20, 6] and plasticity [12, 15, 18], as well as fourth order finite element
problems [11, 25].

Simple (and inexpensive) iterative methods like Gauss-Seidel, Jacobi, and block Jacobi [7] are effective at reduc-
ing the high frequency error, but are ineffectual in reducing the low frequency error. These simple solvers are called
smoothers as they “smooth” the error (actually they reduce high energy components, leaving the low energy compo-
nents, which are “smooth” in, for example, Poisson’s equation with constant coefficients). The ineffectiveness of simple
iterative methods can be ameliorated by projecting the solution onto a smaller (coarse) space, that can resolve the low
frequency content of the solution, in exactly the same manner as the finite element method projects the continuous so-
lution onto a finite dimensional subspace to compute an approximate solution. This coarse grid correction is then added
to the current solution. Thus, the goal of a multigrid method is to construct, and compose, a series of function spaces
in which iterative solvers and small direct solves can work together to economically reduce the entire spectrum of the
error.

Figure 1 shows the multigrid V-cycle, using a smoother S(A; b), restriction operator Ri+1 that maps residuals from
the fine grid i to the next coarse grid i+ 1, and prolongation operator RTi+1 to map corrections from coarse grid i + 1
to fine grid i.
function MGV (Ai; ri)

if there is a coarser gridxi  S(Ai; ri) // pre-smoothri  ri � Axi // compute residualri+1  Ri+1(ri) // restrict residual to coarse gridxi+1  MGV (Ri+1AiRTi+1; ri+1) // compute coarse grid correctionxi  xi + RTi+1(xi+1) // prolongate coarse grid correctionri  ri � Aixi // compute residualxi  xi + S(Ai; ri) // post-smooth
else xi  A�1i ri // solve coarsest problem directly
return xi

Figure 1: Multigrid V-cycle Algorithm

Multigrid algorithms compute an approximate coarse grid correction, and then smooth the remaining error; the V-
cycle adds a pre-smoothing step to symmetrize the operator. Many multigrid algorithms have been developed. Figure
1 shows one iteration of “multiplicative” multigrid; we use the “full” multigrid algorithm (FMG) [4], in our numerical
experiments. One full multigrid cycle applies the V-cycle to each grid, starting with the coarsest grid, then adds the
result to the current solution, projects the new solution to the next finer grid, computes the residual, applies the V-cycle
to this finer grid, and so on until the finest grid is reached.

3 Our method

Given a smoother, the only operators required by multigrid (Figure 1) are the restriction operators, the rows of which
define the coarse grid spaces. These coarse grid spaces can be constructed algebraically [25] or geometrically - we
employ a geometric approach. Traditionally geometric approaches have required that the user provide the coarse grids
[12, 15, 18]; requiring coarse meshes may be an onerous responsibility for the solver to place on the user, and thus we
wish to do this automatically within the solver. We build on a 2D serial algorithm first proposed by Guillard [13] and
independently by Chan and Smith [6]. The purpose of this algorithm is to automatically construct a coarse grid from a
finer grid for use in standard multigrid algorithms. A high level view of the algorithm, at each level, is as follows:� The vertex set at the current level (the “fine” mesh) is evenly coarsened, using a maximal independent set (MIS)

algorithm (x4.1) to produce a much smaller subset of vertices.
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� The new vertex set is automatically remeshed with tetrahedra.� Standard linear finite element shape functions for tetrahedra are used to produce the restriction operator (R). The
transpose of the restriction operator is used as the prolongation operator.� The restriction operator is then used to construct the (Galerkin) coarse grid operator from the fine grid operator:Acoarse  RAfineRT .

This method is applied recursively to produce a series of coarse grids, and their attendant operators, from a “fine” (ap-
plication provided) grid.

The coarse grid operators can be formed in one of two ways - either algebraically to form a Galerkin coarse grid
(Acoarse  RAfineRT ), or by creating a new finite element problem on each coarse grid and letting the finite ele-
ment implementation construct the matrices. The algebraic method has the advantage that it places less demand on
users by not requiring that they construct the coarse grid operators, thus allowing for modular software design. The
algebraic approach also has the advantage that strain localizations, in nonlinear material problems, influence the coarse
grid operators, thereby potentially providing better operators.

An additional reason for constructing the coarse grid operators algebraically is that mesh generators, be they auto-
matic or semi-automatic, are not accustomed to approximating the domain automatically (ie, not strictly maintaining
the topology of the domain) which is often required for efficiency - especially on the coarsest grids of large problems
with complex geometry. Thus, standard mesh generators may not be optimal on the coarsest grids of large complex
problems as they may not be able to reduce the complexity of the problems (as they are constrained to fully represent-
ing the geometry of the problem) to the degree that the coarse grid can be solved efficiently with a direct solver. Because
of the difficulty in generating the coarse grids, the quality of the coarse grids - as a finite element mesh - may be poor
especially on the coarsest grids (as can be seen from our coarse grids, x7) which can lead to robustness problems if the
finite element application is required to operate on these coarse grids.

We have opted for the algebraic approach - this requires that we construct only the restriction matrices; all of the op-
erators that multigrid requires can be transparently constructed from these restriction operators. Our work thus centers
on the construction of good quality restriction operators.

4 Automatic coarse grid creation with unstructured meshes

The goal of the coarse grid function spaces is to approximate the low frequency part of the spectrum of the current grid
well. Each successive grid’s function space should (with a drastically reduced vertex set) approximate, as best as it
can, the lowest frequencies (or eigenfunctions) of the previous grid. Our algorithms, introduced above and described
below, can be viewed as attempting to approximate the geometry of the problem, to a uniform degree, on each coarse
grid so as to approximate the eigenvectors efficiently in a general purpose (non-operator specific) way.

4.1 Maximal independent set algorithms

An independent set is a set of vertices I � V in a graph G = (V;E), in which no two members of I are adjacent (ie,8v; w 2 I; (v; w) =2 E); a maximal independent set (MIS) is an independent set for which no proper superset is also
an independent set. Maximal independent sets are a popular device in selecting the “points” for unstructured multigrid
methods. The simple greedy MIS algorithm [17, 14], is show in Figure 2, in which we provide vertices with a state
variable which is initialized to the “undone” state.

forall v 2 V
if v:state = undone thenv:state selected

forall v1 2 v:adjac // v:adjac is a list of vertices adjacent of v in Gv1:state deletedI  fv 2 V j v:state = selectedg
Figure 2: Greedy MIS algorithm for the serial construction of an MIS

3



4.2 Parallel maximal independent set algorithms

We use a partition based parallel MIS algorithm which requires that vertices v be given an data member v:proc, the
unique processor number that each vertex is assigned to, and a list of adjacent vertices v:adjac [2]. The order in which
each processor traverses the local vertex list can be governed by our heuristics although the global application of a
heuristic requires an alteration to the MIS algorithm. We add an immutable data member to each vertex v: v:rank.
In the parallel MIS algorithm, processor p can select a vertex v only if all v1 2 v:adjac are deleted (ie, v1:state =deleted) or v:rank > v1:rank or (v:rank = v1:rank and v:proc � v1:proc):
This test is added to the test in the second line of Figure 2, and results in a correct global implementation of any heuristic
that is based on vertex ranking. To complete the parallel algorithm we simply embed the modified greedy algorithm
in Figure 2 in an outer loop and send appropriate data to other processors on distributed memory machines (see [2] for
details). We use “topological classification” to compute vertex ranks in our algorithm as described below.

4.3 Topological classification of vertices in finite element meshes

Our methods are motivated by the intuition that the coarse grids of multigrid methods should represent the geometry
of the domains well in order to approximate the lower eigenvectors well, and hence be effective in multigrid solvers.
We define a domain as a contiguous region of the finite element problem with a particular material property. We rank
vertices with classifications derived from geometric features.

The first type of classification of vertices is to find the exterior vertices - if continuum elements are used then this
classification is trivial. For non-continuum elements like plates, shells and beams, heuristics such as minimum degree
could be used to find an approximation to the “exterior” vertices, or a combination of mesh partitioners and convex hull
algorithms could be used. For the rest of this section we assume that continuum elements are used and so a boundary
of the domain represented by a list of facets can be defined and easily constructed. The exterior vertices give us our
first vertex classification from the last section: interior vertices are vertices that are not exterior vertices. We further
classify exterior vertices, but first we need a method to automatically identify faces in our finite element problems, from
which we can construct features, and then define vertex classifications.

4.4 A simple face identification algorithm

We want to identify faces, or “flat” regions, of the boundaries in the mesh; features can then be naturally constructed
from these faces. Assume that a list of facets facet list has been created from all of the element facets that are on a
boundary of the problem (these include boundaries between material types). Assume that each facet f 2 facet list
has calculated its unit normal vector f:norm, and that each facet f has a list of facets f:adjac that are adjacent to it.
With these data structures, and a list with AddTail and RemoveHead functions with the obvious meaning, we can
calculate a face ID for each facet with the algorithm shown in Figure 3. All facets with the same face ID define one
face.

This algorithm simply repeats a breadth first search of trees rooted at an arbitrary “undone” facet, which is termi-
nated by the requirement that a minimum angle (arccos TOL) be maintained by all facets in the tree with the root and
with its neighbors. This is a simple algorithm to partition the boundaries of the mesh into faces (or manifolds that are
somewhat “flat”). These faces are used in two ways:

1. Topological categories for vertices, used in the heuristics of section x4.2, can be inferred from these faces:� A vertex attached to exactly one face is a surface vertex.� A vertex attached to exactly two faces is an edge vertex.� A vertex attached to more than two faces is a corner vertex.

2. Feature sets of vertices can be constructed from these faces, eg, an edge is the set of all vertices that touch the
same two, and only two, faces. These feature sets are used to modify the graph that is used in the MIS algorithm
so as to insure that vertices of the same feature class, though not in the same feature, do not interact with each
other in the MIS algorithm; section x4.6 discusses the reasons for this criteria.
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forall (f 2 facet list)f:face ID  0Current ID  0
forall f 2 facet list

if f:face ID = 0list ffgroot norm f:normCurrent ID  Current ID + 1
while list 6= ;f  list:RemoveHeadf:face ID  Current ID

forall f1 2 f:adjac
if f1:face ID = 0 – TOL is a user tolerance�1 < TOL � 1

if root normT � f1:norm > TOL and f:normT � f1:norm > TOLlist:AddTail(f1)
Figure 3: Face identification algorithm

Item 1) gives us the classifications that we have discussed above, item 2) is discussed in the x4.6. We can now assign
vertex ranks (v:rank in x4.2) as rank = 0 for interior vertices, rank = 1 for surface vertices, rank = 2 for edge
vertices, and rank = 3 for corner vertices.

4.5 Parallel face identification algorithm

To parallelize this algorithm (Figure 3), each processor p constructs a listEp of all elements that touch any vertex that it
is responsible for (given by a vertex partitioning onto processors); vertices in elements of Ep that are not in processorp’s vertex set are called “ghost” vertices. A list of facets Fp on processor p is generated from Ep; Fp is pruned by
eliminating facets with all ghost vertices. Also, Current ID (in Figure 3) is really a tuple hp; Current IDi so that
each face ID that a processor creates is unique.

Each processor p waits to receive “seed” facets from all processors that are responsible for ghost vertices on facets
in Fp and that have a higher processor number; these seed facets are used in the local algorithm (Figure 3). A processor
with the highest processor number (or with no higher neighbor) starts the process by simply running the algorithm in
Figure 3 and then sending its ghost facets f , along with the f:face ID and the “root” normal (root norm in Figure
3), to all processors (with a lower processor number) that own a vertex on the facet - these become the seed facets for
the lower processors. Seed facets f that are given a new f:face ID in the course of the algorithm generate an edge
in a face ID graph Gfid between the old and the new f:face ID. A global reduction is performed at the end of the
algorithm so that all processors have a copy of Gfid (note, this is not a scalable construct but the constants are very
small). All facets f are then given the largest face ID that f:face ID can reach in Gfid.

This algorithm does not preserve the semantics of the serial algorithm (ie, the resulting faces are not guaranteed to
be faces that the serial algorithm could have produced) but the results are close enough for the current development
of our solver since we do not see deterioration in convergence rates with the use of multiple processors. Future work
may include tightening up the semantics of the parallel algorithm as well as investigating more sophisticated serial
algorithms.

4.6 Modified graphs for maximal independent sets

We now have all of the pieces that we need to describe the core of our method. First we classify vertices, to generate
vertex ranks, and ensure that a vertex of lower rank does not suppress a vertex of higher rank. Second we want to
maintain the integrity of the “faces” in the original problem as best we can. The motivation for this second criterion
can be seen in the 2D example in Figure 4. If the finite element mesh has a thin region then the MIS as described inx4.1 can easily fail to maintain a cover of the vertices in the fine mesh. This comes from the ability of the vertices on
one face to decimate the vertices on an opposing face as shown in Figure 4. This phenomenon could be mitigated by
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Deleted Vertex

Fine Grid

Coarse Grid

Selected Vertex

Figure 4: Poor MIS for multigrid of a “thin” body

randomizing the order that the vertices are added to the MIS, but thin regions tend to lower the convergence rate of
iterative solvers, and so we want to pay special attention to them.

The problem (in Figure 4) is that vertices are allowed to suppress vertices in the same feature class (eg, edges) - but
in a different feature. This problem does not occur on logically square domains because when the grid is coarse enough
for elements to “punch through” the domain the coarsening stops. On general domains, however, one must continue
coarsening, even when one dimension of some parts of the problem has coarsened “all the way through”, because the
problem may still be too large to solve cheaply with a direct solver.

Our simple modification (once we have identified faces) is to delete edges connecting nodes that do not share a
face; this prevents a corner vertex from deleting an edge vertex with which it does not share a face and surface vertices
from deleting surface vertices on different surfaces. Also, we do not allow corners to be deleted at all; this can be
problematic on meshes that have many initial “corners” (as defined by our algorithm); we mitigate this problem by
reclassifying vertices on the coarser grids. We generally reclassify the third and subsequent grids (ie, we let the second
grid vertices retain the type of the fine grid vertex from which it was derived). Note, this heuristic is problem dependent
and should be a user defined parameter.

Figure 5 shows the problem in Figure 4 and the modified graph with edges removed as described above.

Surface vertices

Corner vertices

Figure 5: Original and modified graph

Figure 6 shows a possible MIS and coarse grid for this problem.
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Coarse Grid

Fine Grid

Figure 6: MIS and coarse mesh

4.7 Vertex ordering in MIS

An additional degree of freedom in the MIS algorithm is the order of the vertices within each category. Thus far we
have implicitly ordered the vertices by topological category (or rank) - the ordering within each category can also be
specified. Two simple heuristics can be used to order the vertices: a “natural” order and a random order. Meshes may be
initiallyordered in a block regular order (ie, an assemblage of logically regular blocks), or ordered in a cache optimizing
order like Cuthill-McKee [24]; both of these ordering types are what we call natural orders. The MISs produced from
natural orderings tend to be rather dense, random ordering on the other hand tend to be more sparse. That is, the MISs
with natural orderings tend to be larger than those produced with random orders. For a uniform 3D hexahedral mesh,
the asymptotics of the ratio of the MIS size to the vertex set size is bounded by 1=23 and 1=33, as the largest MIS picks
every second vertex and the smallest MIS selects every third vertex, in each dimension. Natural and random orderings
are simple heuristics to approach these bounds.

Small MISs are preferable as there is less work in the solver on the coarser mesh, and fewer levels are required
before the coarsest grid is small enough to solve directly, but care must be taken not to degrade the convergence rate
of the solver. In particular, as the boundaries are important to the coarse grid representation it may be advisable to use
natural ordering for the exterior vertices and a random ordering for the interior vertices.

4.8 Meshing of the vertex set on the coarse grid

The vertex set for the coarse grid remains to be meshed - this is necessary in order to construct the finite element coarse
grid space of our method. We use a standard Delaunay meshing algorithm to give us these meshes [10]. This is done
by placing a bounding box around the coarse grid vertices (on each processor) then meshing this to produce a mesh
that covers all fine grid vertices. The tetrahedra attached to the bounding box vertices are removed and the fine grid
vertices within these deleted tetrahedra are added to a list of “lost” vertices (lost list).

We continue to remove tetrahedra that connect vertices that were not “near” each other on the fine mesh and that
do not have any fine grid vertices that lie “uniquely” within the tetrahedron. Define a vertex v to lie uniquely in a
tetrahedron if there is no tetrahedron that can provide the fine grid vertex with interpolates that are all above -� (for
some small number �). Finally, for each vertex v in lost list, we find a nearby element to use for the interpolants for v.
Figure 7 shows an example of our methods applied to a problem in 3D elasticity. The fine (input) mesh is shown with
three coarse grids used in the solution.
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Figure 7: Fine (input) grid and coarse grids for problem in 3D elasticity

5 Parallel architecture

We have developed a highly scalable implementation of our algorithms and a parallel finite element application for solid
mechanics problems to effectively test our solver. Our parallel finite element system is composed of two basic parts:
Athena, a parallel finite element program built on a serial finite element code (FEAP [9]) and a parallel mesh partitioner
(ParMetis [16]), and our solver Prometheus. Prometheus can be further decomposed into two parts: Epimetheus, gen-
eral unstructured multigrid support (built on PETSc [3]); and our particular multigrid algorithm Prometheus (whose
sole responsibility is to construct the restriction operators between each grid). Prometheus and Epimetheus are not
implemented separately and constitute the publicly available library [19].

Athena reads a large “flat” finite element mesh input file in parallel (ie, each processor seeks and reads only the part
of the input file that it, and it alone, is responsible for), uses ParMetis to partition the finite element graph, and then
constructs a complete finite element problem on each processor. These processor sub-domains are constructed so that
each processor can compute all rows of the stiffness matrix, and entries of the residual vector, associated with vertices
that have been partitioned to the processor. This negates the need for communication in the finite element element
evaluation at the expense of some redundant work.

We use explicit message passing (MPI) for performance and portability, parallelize all parts of the algorithm for
scalability. All components of multigrid can scale reasonably well (except for the coarsest grids, whose size remains
constant as the problem size increases and is thus not a hindrance to scalability).

We target clusters of symmetric multi-processors (SMPs), which we call CLUMPs, as this seems to be the architec-
ture of choice for the next generation of large machines. We accommodate CLUMPs by first partitioning the problem
onto the SMPs and then the local problem is partitioned on to each processor. This approach implicitly takes advantage
of any increase in communication performance within each SMP, though the numerical kernels (in PETSc) are “flat”
MPI codes. Figure 8 shows the a diagram of the overall system architecture.
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6 Performance measures

The section defines the methods, goals, and terminology of our numerical experiments. The goal of our numerical
experiments is to measure the degree of scalability of our algorithms and implementations. We use efficiency as the
primary metric in the analysis of our experimental data. Perfect efficiency is defined as 1:0 and of course the higher
the efficiency the better. Time efficiencies are of the form: “optimal” / “measured” (ie, T (c;1)T (c�P;P ) where T (n; P ) is the
time to solve a problem with n equations on P processors) and flop rate efficiencies are of the form: “measured” /
“optimal”. Orthogonal sources of (in)efficiencies (eg, iteration counts and flop rates) can be multiplied together to give
the total efficiency, which is often the most easily measured term - other efficiencies can be back calculated from the
total efficiency with a model of the computation.

Efficiencies are useful as 1) they provide a uniform metric for measuring the many sources of slowdown in a code,
2) they provide a bound on the benefit that can be gained by optimizinga particular aspect of a code, 3) they help identify
scalability bottlenecks in the application. We decompose efficiency into uniprocessor efficiency and parallel efficiency
- the total efficiency being the product of the two. Uniprocessor efficiency is defined below; parallel efficiency e is
defined as the time to solve a problem of size n1 on one processor divided by the time to solve a refined discretization
of the problem, with nP = P � n1 equations on P processors.

The remainder of this section discusses the decomposition of efficiency, can be used as a reference for the numerical
results sections that follow, and can be skipped in the first reading. In general efficiency, or sources of inefficiency, can
be decompose into the following components:� uniprocessor efficiency or uniprocessor efficiency eu: the fraction of some “peak” megaflop rate (Mflop/sec)eu = f(1)=secf(1)PEAK=sec of the uniprocessor implementation, where f(1)=sec is the uniprocessor flop rate. Peak can

be defined as:

– Theoretical peak (ie, clock rate times flop issues per cycle).

– Dense matrix matrix-multiply - the fastest megaflop rate that any numerical code is likely to be able to
sustain.

– Sparse matrix-vector multiply (withA inAx = b) - the source of most of the flops in most iterative methods
- the fastest megaflop rate that any iterative solver is likely to be able to sustain in the solve phase.� Parallel efficiency is the product of the four efficiencies described below:

– work efficiency ew: the fraction of flops in the parallel implementation that are not redundant, ie, the num-
ber of flops to solve the problem on one processor divided by the number of flops to solve the same problem
with P processors. Thus, ew = fP (1)f(P ) where fP (1) is the number of flops used to solve the nP unknown
problem on one processor and f(P ) is the number of flops used to solve the nP unknown problem with P
processors.

– scale efficiency es: this is the scalability of the algorithm with respect to non-redundant flops per unknown
(ie, the non-redundant flops per unknown to solve the problem as the problem size increases). For iterative
solvers, it is convenient to further decompose scale efficiency.� iteration scale efficiency eIs: the efficiency in the number of iterations required; eIs = Iterations(1)Iterations(P ) ,

where Iterations(P ) is the number of iterations for the problem of size nP on P processors.� flop scale efficiency eFs : the efficiency in the non-redundant flops per unknown (or processor) per it-
eration. We define the flops per iteration of thenP unknown problem by fI (P ) and the non-redundant

flops as f̂ (P ), and eFs = P �fI (1)f̂I (P ) . Recall, f(P ) is the toatl flops and so f̂ (P ) = ew � f(P ). Work ef-

ficiency ew is similar to es in that it relates to flop efficiency, though distinct from es as: ew is related
only to the number of processors used P ; scale efficiency es is related only to the size of the problem.

– load balance l: the ratio of the average to the maximum amount of work (flops) that a processor does in
an operation, el = faveragefmaximum . This is easily measured (and defined) as we do not use any non-uniform
algorithmic constructs (ie, all processors are doing the same operation on the same mathematical object all
of the time). Our load balance can be seen graphically in Figure 11.
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– communication efficiency ec: the highest percentage of time that a processor is not waiting, processing,
packing data, or any other form of work associated with interprocess communication. Communication ef-
ficiency ec can be measured with flop rate efficiency, ec = f(P )=secP �f(1)=sec , as in Figure 11 (right), if there is no
load imbalance induced blocking.

Our solver has perfect work efficiency ew, though we have some redundant work in the construction of the fine grid
matrixA0 in Athena (x5) as can be seen in Figure 12 (right) - we do not discuss work efficiency further and can assume
that f̂(P ) = f(P ). Our load balance is very good (see Figure 11) and we do not discuss load balance further.

We focus on communication efficiency ec and scale efficiency es; communication efficiency ec can be represented
with the flop rate efficiency. Scale efficiency es = eIs �eFs (flops per unknown) is the product of the number of iterations
required to converge and the number of flops per unknown per iteration. Thus, the efficiency e(P ) onP processors (andnP unknowns as defined above) can be effectively represented ase(P ) � Iterations(1)Iterations(P ) � P � f(1)f(P ) � f(P )=secP � f(1)=sec = eIs � eFs � ec
with the number of iterations Iterations(P ), flops iteration f(P ), and flop rate f(P )=sec. Iterations(P ) is tabulated
in Table 2, P �f(1)=secf(P )=sec is shown if Figure 11 (left), and f(P )=secP �f(1)=sec shown if Figure 11 (right).

This paper focuses on parallel efficiency but a few words about uniprocessor efficiency eu are warranted. Unipro-
cessor efficiency can be measured against the theoretical peak megaflop rate of the processors; this is simple to define
though it is more effective for measuring the performance of the processor in question rather than the algorithm and
implementation. The megaflop rate of dense matrix-matrix multiply is more useful than peak speed as this invariably
bounds the performance of numerical applications. Sparse matrix-vector multiply, with the fine grid matrix, is most
useful as it is the source of most of the flops in most scalable solvers. We report data for the first and third uniprocessor
efficiency (ie, theoretical peak and fine grid sparse matrix-vector multiply) in the following sections.

Good scalability can be defined as good parallel efficiency (e � 1:0 or e � C � 0 for some constantC independent
of the number of processors) for the time to compute the solution x̂ that reduces the 2-norm of the residual by a fixed
constant rtol (ie,kAx̂�bkkbk � rtol ). We could alternatively define scalability by solving the linear system to the finite
element discretization error; this is more attractive as it insures that perfect parallel efficiency is bounded from above
by 1:0 and reflects the rational use of a solver. Discretization error is not used as the convergence tolerance because it
is difficult to define (compute). Note, the PRAM complexities of all iterative solver algorithms are, to our knowledge,
bounded by O (log(n)), thus optimal parallel efficiency will include a log(n) term.

An additional note, there are three main phases in the solution of a linear system: setup for the mesh (non-zero
structure of the fine grid), setup for each matrix (more than one for nonlinear problems), and the solve for x with a
provided right hand side (RHS) b. For direct solvers these three phases correspond to symbolic factorization, numerical
factorization, and the front solve and back substitution. The first phase is amortized in nonlinear and transient problems
and is thus not as important as the latter stages, unless the application solves just one linear system of equations for
each mesh configuration. The second phase, setup for each matrix, includes the coarse grid operator construction and
smoother setup in our solver, and is important for fully nonlinear problems as it is required for each RHS and thus its
cost is not amortized by multiple solves. The final stage, the time in the actual multigrid iterations, is the most important
as this is always done in the solve of a system of linear equations. We focus on the solve phase (the last phase), though
we have fully scalable implementations of all three phases and we report times for all stages (Figure 10).
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7 Numerical results

We use a model problem in solid mechanics to conduct scalability studies of our solver. Our problem is a sphere em-
bedded in a cube; the sphere is constructed of seventeen alternating “hard” and “soft” layers and the cube is a “soft”
material. Think of a spherical steel-belted radial inside a rubber cube. Symmetry can be used to model only one octant.
The loading and boundary conditions are an imposed uniform displacement (crushing), on the top surface and symmet-
ric boundary conditions on the three cut faces. The hard material is a J2 plasticity material with a mixed formulation
and kinematic hardening [22]. The soft material is a large deformation (Neo-Hookean) hyperelastic material with a
mixed formulation [26]. Table 1 shows a summary of the constitution of our two material types.

Material Elastic mod. (E) Poisson ratio deformation type yield stress hardening mod.
soft 10�4 0:49 large 1 NA
hard 1 0:3 large 0:001 E 0:002

Table 1: Nonlinear materials

The hexahedral discretization is parameterized so that we can perform scalability experiments. Figure 9 shows the
smallest (base) version of the problem with 80 K (K=1000) degrees of freedom. Each successive problem has one more
layer of elements through each of the seventeen shell layers, with an appropriate (ie, similar) refinement in the other
two directions and in the outer soft domain - resulting in problems of size: 80 K, 621 K, 2,086 K, 4,924 K, 9,595 K,
16,554 K, 26,257 K, and 39,161 K degrees of freedom. We run this problem with about 40 K degrees of freedom per
processor, on 2 to 960 processors.

                              

Figure 9: 79,679 dof concentric spheres problem and final configuration

These experiments are performed on an IBM PowerPC cluster with 240 4-way SMP nodes at Lawrence Livermore
National Laboratory. Each node has four 332 MHz PowerPC 604e processors, with 1.5 Gbytes of memory, and a the-
oretical peak Mflop rate of 664 Mflop/sec per processor.

Single processor (PETSc) sparse matrix-vector products (on the fine grid of our problems) run at 36 Mflop/sec, and
the multigrid solves run at 34 Mflop/sec; two processor (the base case for these experiments) matrix-vector products
run at 66 Mflop/sec, and the multigrid solves run at 63 Mflop/sec; the 960 processor case runs at 26.5 Gflop/sec in the
matrix-vector products and 19.3 Gflop/sec in the solves. Thus, we have 59% (= 19;300960�34) parallel efficiency in the solve
in these experiments. We have also run these experiments (up to the 24 million degrees of freedom problem) on a 640
processor Cray T3E with 57% parallel efficiency as well, and about twice the total Mflop rate as the corresponding IBM
experiment.
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7.1 Scalability study of one linear solve

We look at data from the first linear solve in these problems (with a convergence tolerance of 10�4, the first linear solve
tolerance in our nonlinear solver in section x7.2) in detail. Figure 10 (left) shows the times for the major subcomponents
of the solver, and Figure 10 (right) shows the times for the setup of the finite element problem (Athena), unmeasured
code (mostly in the FEAP setup phase ), the coarse grid construction (Prometheus), the fine grid creation (FEAP), the
matrix setup phase (Epimetheus and PETSc), and the actual solve time in multigrid (PETSc).

Note, the times for the “matrix setup” are taken from a separate (two solve) run, and the second setup time is used.
We report the time for the second application of the “matrix setup” because there is small amount of overhead on the
first call to the matrix triple product routine that is not measured separately. Thus, time for the second call to these
“matrix setup” routines is more indicative of the asymptotic cost, per matrix, of the “matrix setup”. The difference
between the first and all subsequent calls to the “matrix setup” routines is about 15%.

It is important to note that this (linear solve) experiment measures one mesh setup, one matrix setup, and one solve
(for each right hand side). Linear transient analysis would require multiple solves that would amortize the cost the setup
phases, and nonlinear analysis (x7.2) would require multiple matrix setups and solves which would amortize the mesh
setup phase (restrictionoperator construction). The unmeasured code (“FEAP setup + misc.” in Figure 10) is mostly the
time that FEAP reads the input file, plus miscellaneous items (eg, MPI/PETSc initialization and finalization, diagnostic
work at the end of the run, the difference between the “matrix setup” that we use and the actual time as discussed above,
etc.).
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Figure 10: 40,000 dof per processor solve times (left) and total times (right) for one linear solve

All phases of the computation are scaling reasonably well. The FEAP interface is not optimal in the current imple-
mentation as we actually write a file to disk and FEAP (immediately) reads this file - this could be done in memory by
having FEAP read from a memory stream instead of a file stream (we have implemented this optimization in the recur-
sive application of Athena, see section x5). Also, Athena is running slowly and erratically, as can be seen in the times of
Figure 10 (right). We believe that this is due to bottlenecks in the communication system as we see speedups of about
six with the use of twice as many processors. Additionally, we have not concentrated our code optimization efforts to-
wards the initial setup phase of our parallel finite element application for lack of software development resources and as
these costs are amortized in transient problems as can be seen in section x7.2. Thus, we use highly scalable algorithms
for the set up phase (as it is scaling well) but have not fully optimized them to reduce the constants in the run time.
Note, Athena is not in the library release of Prometheus.

We see super-linear efficiency in the solve times (eg, the solve times are decreasing as the problem size increases) in
Figures 10, for two reasons. First, we have super-linear convergence rates (ie, eIs > 1:0), as shown in Table 2. Second,
the vertices added in each successive scale problem have a higher percentage of interior vertices than the base problem,
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leading to higher rates of vertex reduction in the coarse grids. This is because as the number of unknowns n increases
the “surface area” increases by O(n 23 ) whereas the interior increases by O(n). Thus, the ratio of interior vertices to
surface vertices increases as the scale of discretization decreases (n increases). Our coarse grid heuristics in section x4
articulate the surfaces well (boundary and material interfaces), resulting in a higher ratio of surface vertices promoted
to the coarse grid. Thus, the rate of vertex reduction is higher on the larger problems as they have proportionally more
interior vertices, leading to less work per fine grid vertex (ie, eFs > 1:0), as can be seen in Figure 11 (left).

Equations 79,679 622,815 2,085,599 4,924,223 9,594,879 16,553,759 26,257,055 39,160,959
Processors 2 15 50 120 240 400 640 960

MG preconditioned 29 27 22 20 20 20 20 21
PCG Iterations in1st linear solve

Total PCG iterations 3108 4121 3117 3355 3060 3008 2978 3215
in nonlinear solve

Total Newton 62 63 62 65 68 69 68 70
iterations

Ave. PCG iterations 50 65 50 52 45 44 44 46
per linear solve
Total Mflop/sec 63 421 1194 2901 5112 8524 13218 19253
in MG iterations

Table 2: Number of iterations for first linear solve and total nonlinear solve

Figure 11 (left) shows the scaled efficiency of the number of flops per iteration per unknown in the solver eFs , as
well as the scaled efficiency of the time for each iteration. The efficiency of the time per iteration, the lower line in
Figure 11 (left), shows the combined effect of the super-linear flop efficiency eFs and the parallel (in)efficiency of the
flop rate (flop/sec/processor) ec. Communication efficiency ec is shown in Figure 11 (right). The total “solve for x”
efficiency e (ie, the solve efficiency without the matrix setup or the grid setup phases) is shown in Figure 12 and is
approximately e = eIs � eFs � ec.
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Figure 11: Flop/iteration/proc. (flop scale efficiency eFs ); flop rate (communication efficiency ec)

Figure 11 (right), the scaled efficiency of the maximum and average processor flop rate in the solve phase, shows
that we have 62% parallel efficiency in the flop rate (from the two processor case). We do not have a one processor
version of this problem but, using the flop rate of 34 Mflop/sec in the solve from a similar 40 K degree of freedom
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problem on one processor, we have 59% parallel efficiency in the solve phase. Figure 11 also shows two views of two
sources of inefficiency: communication ec and load imbalance l as discussed in section x6.

Note, Figure 11 (left) is scaled by a factor 2P � N(P )N(2) to account for the non-constant number of unknowns per
processor (N (P )=P ); this factor is shown in Figure 12 (left) and the efficiencies of all of the major steps the linear
solve in Figure 12 (right).
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Figure 12: efficiency e for all major components of one linear solve with about 40,000 dof per processor

7.2 Nonlinear scalability study

We use a full Newton nonlinear solution method; convergence is declared when the energy norm of the correction is10�20 times that of the first correction. This means that in Newton iteration m convergence is declared when��xTm � (b� Axm)�� < 10�20 � ��xT0 � (b� Ax0)��
. The linear solver, within each Newton iteration, is preconditioned conjugate gradient (PCG), preconditioned with one
“full” multigrid cycle. We use one pre-smoothing and one post-smoothing step within multigrid, preconditioned with
block Jacobi with 6 blocks for every 1,000 unknowns (these block Jacobi sub-domains are constructed with METIS).

The slightly modified version of FEAP (FEAPp [9]) calls our linear solver in each Newton iteration, with the
current residual rm = b � Axm, thus the linear solve is for the increment �x � A�1rm. We use a dynamic conver-
gence tolerance (rtol) for the linear solve in each Newton iteration of rtol1 = 10�4 in the first iteration and rtolm =min(10�3; krmkkrm�1k � 10�1) on all subsequent iterations (m > 1). This heuristic is intended to minimize the number of
total iterations required in the Newton solve by only solving each set of linear equations to the degree that it “deserves”.
That is, if the true (nonlinear) residual is not converging quickly then solving the linear system to an accuracy far in
excess of the reduction in the residual is not likely to be economical.

The full nonlinear problem is run with ten “time” steps with a particular displacement increment in each step that
results in a total vertical displacement of 3.6 inches down (the octant is 12.5 inches on a side and the top “soft” section is
5 inches thick at the central vertical axis). Figure 13 (left) shows the percentage of the integration points, in the “hard”
shells, whose stress state have reached the yield surface [22]; this gives an indication of the damage to the system
and results in material constitution that is very similar to that of highly incompressible materials. Over 24% of the
integration points, in the hard shells, are in the yield state at the final configuration.

Figure 13 (right), and Table 2, show the number of multigrid iterations in each linear solve of each of the ten Newton
solves, stacked on top of each other and color coded for each Newton iteration. From this data we can see that the total
number of iterations is staying about constant as the scale of the problem increases. This data suggests that the nonlinear
problem is gettingharder to solve as the discretization is refined, because the number of iterations in the first linear solve
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of the first step decreases as the problem size increases, as is shown in Table 2. That is, we are seeing a slight growth
in the number of Newton iterations required, and the average number of iterations in the linear solver is not decreasing
as dramatically as in the first linear solve. Table 2 shows the detailed iteration count data from these experiments.

8 Conclusion

We have developed a promising method for solving the linear set of equations arising from implicit finite element ap-
plications. Our approach, a 3D parallel extension to a serial 2D algorithm, is to our knowledge unique in that it is a fully
automatic (ie, the user need only provide the fine grid, which is easily available in most finite element codes) standard
geometric multigrid method for unstructured finite element problems. We have solved 40 million degree of freedom
problems on an IBM PowerPC cluster with 240 4-way SMP nodes with about 60% parallel efficiency. Prometheus is
the only fully parallelized scalable public domain solver that we are aware of and can be obtained from the Prometheus
home page [19].

We have also developed a highly parallel finite element implementation, built on an existing state-of-the-art se-
rial research finite element implementation. The implementation of our system (Athena/Prometheus) required about
30,000 lines of our own C++ code, plus several large packages: PETSc (160,000 lines of C), FEAP (105,000 lines of
FORTRAN), METIS/ParMetis (20,000 lines of C), and geometric predicates (4,000 lines of C) [21].

Future work will include the continuing hardening of the algorithms and implementation with the application of
Prometheus to a wider variety of problems, as well as expanding the domain of applications which we support (eg,
higher order elements, non-continuum elements). As we also plan to explore alternative (effective) unstructured multi-
grid algorithms such as smoothed aggregation [25], to evaluate (and make publicly available) competitive algorithms.
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