
A Distributed Memory Unstru
tured Gauss-Seidel Algorithm forMultigrid SmoothersMark F. Adams �November 19, 2001Abstra
tGauss-Seidel is a popular multigrid smoother as it is provably optimal on stru
tured grids and exhibitssuperior performan
e on unstru
tured grids. Gauss-Seidel is not used to our knowledge on distributedmemory ma
hines as it is not obvious how to parallelize it e�e
tively. We, among others, have found thatKrylov solvers pre
onditioned with Ja
obi, blo
k Ja
obi or overlapped S
hwarz are e�e
tive on unstru
-tured problems. Gauss-Seidel does however have some attra
tive properties, namely: fast
onvergen
e,no global
ommuni
ation (ie, no dot produ
ts) and fewer
ops per iteration as one
an in
orporate aninitial guess naturally. This paper dis
usses an algorithm for parallelizing Gauss-Seidel for distributedmemory
omputers for use as a multigrid smoother and
ompares its performan
e with pre
onditioned
onjugate gradients on unstru
tured linear elasti
ity problems with up to 76 million degrees of freedom.Key words: unstru
tured multigrid, algebrai
 multigrid, parallel graph algorithms, parallel Gauss-Seidel1 Introdu
tionThe availability of large high performan
e
omputers is providing s
ientists and engineers with the oppor-tunity to simulate a variety of
omplex physi
al systems with ever more a

ura
y and thereby exploit theadvantages of
omputer simulations over laboratory experiments. The �nite element method is widely usedfor these simulations. The �nite element method requires that one or several linearized systems of sparseunstru
tured algebrai
 equations (the sti�ness matrix) be solved for stati
 analyses, or at ea
h time stepwhen impli
it time integration is used. These linear system solves are the
omputational bottlene
k (on
e thesimulation has been setup and before the results are interpreted) as the s
ale of problems in
reases. Dire
tsolution methods have been, and are still, popular be
ause they are dependable; however the asymptoti

omplexity of dire
t methods is high in
omparison to optimal iterative methods (ie, multigrid x2).On
e an unstru
tured multigrid method has been implemented the sele
tion of the smoother and itsparameters (eg, number of smoothing steps, size of subdomains, drop toleran
es) be
omes a primary meansof optimizing the solution time. Additionally, a large majority of the time is spent in the smoother. Hen
e,the sele
tion and eÆ
ient implementation of smoothers is of primary interest in optimizing the performan
eof a multigrid solver.Conjugate gradients (CG) pre
onditioned with Ja
obi, blo
k Ja
obi or overlapping S
hwarz has beenfound to be an e�e
tive smoother for problems in 3D linear elasti
ity [10, 4℄. It is well know that for modelproblems Ja
obi smoothers, or more generally additive S
hwarz smoothers, require damping. CG in e�e
tprovides this damping for unstru
tured problems. The advantage of additive smoothers is that they areeasily parallelizeable; CG is also relatively easy to parallelize e�e
tively as all of the work is performed instandard numeri
al primitives (ie, matrix-ve
tor produ
ts, dot produ
ts, et
.) whi
h have presumably beenoptimized for the ma
hine in use and are easily available. In
omplete fa
torizations have been found to bee�e
tive smoothers [11, 6℄. They, however, require the sele
tion of parameters for �ll-in and/or shifting the�Sandia National Laboratories, MS 9417, Livermore CA 94551 (mfadams�
a.sandia.gov). This paper is authored by anemployee(s) of the U.S. Government and is in the publi
 domain. SC2001 November 2001, Denver 1-58113-293-X/01/0011$5.00 1

matrix to maintain positiveness, but in
omplete fa
torizations are also useful smoothers. We do not havea

ess to good in
omplete fa
torization implementations and we do not dis
uss them further.These pre
onditioned CG smoothers, in addition to in
omplete fa
torizations, are the only smoothersused, to our knowledge, on distributed memory ma
hines. Gauss-Seidel is, however, widely used in themultigrid
ommunity be
ause� Better
onvergen
e bounds
an be proven for Gauss-Seidel than for damped Ja
obi on model problems.� Gauss-Seidel works well on unstru
tured problems without the need of pi
king a damping parameter.Gauss-Seidel has several additional attra
tive properties:� Gauss-Seidel has better PRAM
omplexity as no dot produ
ts are required. Future parallel
omputerswill likely have slower networks (relative to pro
essor speed) than today and so Gauss-Seidel maybe
ome more advantageous in the future on large problems.� Krylov methods require that an expli
it residual be
al
ulated if an initial guess is provided (as o

urswith full multigrid and half of the time with V-
y
le multigrid). This
ost
an be signi�
ant as oneusually only performs a few iterations in a smoother and so the residual
ost
an not be amortizedwell.� Gauss-Seidel is stationary (unlike CG), this is an attra
tive property as multigrid theory is not wellestablished for non-stationary smoothers and stationary smoothers are required for GMRES whi
h isa popular Krylov method for unsymmetri
 problems.Gauss-Seidel is thus an attra
tive smoother and is used in serial and shared memory parallel
omputing[18℄. Gauss-Seidel has not, however, been used on distributed memory
omputers as it is not obvious howto parallelize it well. Note, it is natural to try inexa
t Gauss-Seidel (eg, pro
essor subdomain blo
k Ja
obiwith Gauss-Seidel subdomain solver) and these have been found to be adequate for Poisson's problem (ie,1D elasti
ity) but require modi�
ation to the multigrid interpolation [12℄, and thus it is not surprising thatwe have found that inexa
t Gauss-Seidel does not work for 3D elasti
ity (at least with our geometri
 andalgebrai
 multigrid methods). This paper presents a distributed memory unstru
tured true Gauss-Seidelalgorithm that shows promise on 3D unstru
tured elasti
ity problems with up to 76 million degrees offreedom.2 Multigrid introdu
tionThis se
tion provides a brief introdu
tion to multigrid, de�ning terms and providing
omments on the stru
-ture of multigrid relevant to its implementation on high performan
e (ie, parallel)
omputers for unstru
turedgrid problems. Multigrid has been an a
tive area of resear
h for almost 30 years and mu
h literature
anfound on the subje
t [15℄. Multigrid is motivated by the observation that simple (and inexpensive) iterativemethods like Gauss-Seidel, damped Ja
obi and blo
k Ja
obi, are e�e
tive at redu
ing the high frequen
yerror, but are ine�e
tual in redu
ing the low frequen
y
ontent of the error [7℄. These simple solvers are
alled smoothers as they render the error smooth by redu
ing the high frequen
y
ontent of the error (a
tu-ally they redu
e high energy
omponents of the error, leaving the low energy
omponents whi
h are smoothin, for example, Poisson's equation with
onstant material
oeÆ
ients). The ine�e
tiveness of simple it-erative methods
an be ameliorated by proje
ting the solution onto a smaller spa
e, that
an resolve thelow frequen
y
ontent of the solution in exa
tly the same way that the �nite element method proje
ts the
ontinuous solution onto a �nite dimensional subspa
e to
ompute an approximation to the solution. Multi-grid is pra
ti
al be
ause this proje
tion
an be prepared and
omputed reasonably
heaply and has O(n)
omplexity. The
oarse grid
orre
tion (the solution proje
ted onto a
oarser grid) does not eliminate thelow frequen
y error exa
tly, but it \de
ates" the low frequen
y error to high frequen
y error by removingan approximation to the low frequen
y
omponents from the error.Multigrid requires three types of operators: 1) the grid transfer operators (ie, the restri
tion and pro-longation operators, whi
h
an be implemented with a re
tangular matrix R and P = RT respe
tively);2

2) the PDE operator, a sparse matrix, for ea
h
oarse grid (the �ne grid matrix is provided by the �niteelement appli
ation); and 3)
heap (one level) iterative solvers that
an e�e
tively eliminate high frequen
yerror in the problem. The
oarse grid matrix
an be formed in one of two ways, either algebrai
ally to formGalerkin (or variational)
oarse grids (A
oarse RAfineP) or, by
reating a new �nite element problemon ea
h
oarse grid (if an expli
it
oarse grid is available) thereby letting the �nite element implementation
onstru
t the matrix.Figure 1 shows the standard multigrid V-
y
le and uses a smoother x S(A; b), and restri
tion operatorRi+1 that maps residuals from the �ne grid spa
e i to the
oarse grid spa
e i+ 1 (the rows of Ri+1 are thedis
rete representation on the �ne grid of the
oarse grid fun
tion spa
e of grid i+ 1).fun
tion MGV (Ai; ri)if there is a
oarser grid i+ 1xi S(Ai; ri)ri ri �Axiri+1 Ri+1(ri) /* restri
tion of residual to
oarse grid */xi+1 MGV (Ri+1AiRTi+1; ri+1) /* the re
ursive appli
ation of multigrid */xi xi +RTi+1(xi+1) /* prolongation of
oarse grid
orre
tion */ri ri �Aixixi xi + S(Ai; ri)else xi A�1i ri /* dire
t solve of
oarsest grid */return xi Figure 1: Multigrid V-
y
le AlgorithmMany multigrid algorithms have been developed; the full multigrid algorithm is used in our numeri
alexperiments. One full multigrid
y
le applies the V-
y
le to ea
h grid, by �rst restri
ting the residual (b) tothe
oarsest grid and applying a V-
y
le (simply a dire
t solve), interpolating the new solution to the next�ner grid as an initial guess, applying the V-
y
le to this �ner grid, interpolating to the next �ner grid andso on until the �nest grid is rea
hed. Multigrid is often used as a pre
onditioner for a (Krylov) iterativemethod; we use CG pre
onditioned with one full multigrid iteration in our numeri
al experien
e.The reason for using multigrid is to insure that the
onvergen
e rate is independent of the s
ale of theproblem and the
ost of ea
h iteration, in
oating point operations (
ops), asymptotes to a
onstant as thes
ale of the problem in
reases. An additional attra
tive property of multigrid is that the solver has severaldistin
t parts that are essentially independent: the restri
tion/prolongation operators, the smoother, theKrylov method a

elerator (the a
tual solver), multigrid algorithms su
h as V-
y
les, F-
y
les, W-
y
les,and other standard multigrid infrastru
ture (ie, sparse matrix triple produ
ts for algebrai

oarse grids).The smoother
an have an important impa
t on this
ost, espe
ially on
hallenging problems, and is theprimary parameter in optimizing the solve time for a parti
ular problem.3 Parallel Gauss-Seidel algorithmsGauss-Seidel is spe
i�
 type of multipli
ative S
hwarz method [17℄. The algorithms dis
ussed here aregeneral methods for the parallel implementation of multipli
ative S
hwarz methods. That is, these methodsoperate on graphs that are derived from the matrix graph and the S
hwarz subdomains (blo
ks). Given aset of, perhaps overlapping, vertex blo
k or lists (I ,J ,...) a graph is
onstru
ted by
oales
ing the verti
esin ea
h list to one node of the graph. An edge exists between nodes I and J if there is an edge betweenthe �nite element nodes n1 j n1 2 I and n2 j n2 2 J . Our numeri
al experiments use 1) nodal blo
kGauss-Seidel (these graphs are identi
al to the graph of the �nite element mesh) and 2) non-overlappedS
hwarz subdomains. The a
tual equations only
ome into play when the weights of the nodes are
omputedfor load (work) balan
ing (in Equation 1 below) and in the appli
ation of Gauss-Seidel in the kernel of thealgorithm (\fun
tion Gauss-Seidel" in Figure 2). The rest of this paper works ex
lusively with the graph3

that is derived from the subdomains and the matrix graph so that a \node" may be a set of verti
es in the�nite element mesh.3.1 Algorithm IAdams presents methods for
oloring �nite di�eren
e sten
ils so as to parallelize natural and Red/Bla
kGauss-Seidel [1℄ . These methods \pipeline" the
omputations and are thus not useful when only a fewiterations are performed, but preserve the semanti
s of standard node orderings (whi
h we do not).A standard method to parallelize Gauss-Seidel on unstru
tured meshes is to
olor the nodes, pro
ess thenodes of ea
h
olor, send and re
eive updated values, and pro
eeded with the next
olor. Algorithm I, inFigure 2, is a distributed memory algorithm based on nodal
oloring. Given a matrix A, ve
tor x with aninitial guess, ve
tor b right hand side, a graph of lists of equations and a graph
oloring:for all
olors
Send x values needed by other pro
essors to pro
ess
olor
Re
eive x values needed for
olor
 /* loose syn
hronization point */for all nodes (list of equations) n with
olor
Gauss-Seidel(n;A; x; b)fun
tion Gauss-Seidel(L;A; x; b) /* Gauss-Seidel kernel */for all equations i 2 L /* iterate list in reverse on ba
kward pass */t[i℄ b[i℄ /* bu�er ve
tor */for all equations j j j =2 L;A[i; j℄ 6= 0 /* line 4 */t[i℄ t[i℄�A[i; j℄ � x[j℄x[L℄ A[L;L℄�1 � t[L℄Figure 2: Algorithm I, a simple distributed memory Gauss-Seidel algorithmThere are two main problems with Algorithm I:� 3D unstru
tured hexahedral �nite element meshes have about 12 or more
olors (if vertex blo
ks areused). This requires many small messages and \loose" syn
hronization points whi
h are not well suitedfor
ommon parallel ma
hines.� This algorithm is perhaps the optimal algorithm for maximizing
a
he misses and hen
e minimizing
op rates.3.2 A distributed memory unstru
tured Gauss-Seidel algorithmOur algorithm takes advantage of properties of the pro
essor partitions that are
ommon in parallel �niteelement problems. Namely, nodes are partitioned so as to minimize
ommuni
ation (eg, by minimizing edge
uts) and hen
e produ
e highly
onne
ted subdomains with many \interior" nodes. Observe that the workon interior nodes (that by de�nition do not have any edges with nodes on other pro
essors)
an be used to\hide" the
ommuni
ation required for the boundary nodes. A simple idea is to only
olor boundary nodes(ie, lo
al nodes that are not interior nodes), and pro
ess the interior nodes while waiting for results fromother pro
essors. But we
an do better than that.Observe that most of the boundary nodes
ommuni
ate with only one pro
essor, assuming that the pro-
essor subdomains are reasonably large. Nodes that
ommuni
ate with only one pro
essor
an be pro
essedall at on
e (ie, do not have to be restri
ted to the nodal
oloring). This will redu
ed the number of messagessent and, as many
ontiguous nodes are pro
essed at on
e, the order that these nodes are pro
essed in
anbe optimized to minimize
a
he misses and hen
e maximize
op rates.Pro
essors need to be able to de
ide who should go �rst. This
an be done by simply
omparing pro
essorIDs, or by using a pro
essor
oloring. The basi
 algorithm �rst
olors the pro
essors and orders the
olors,this provides an inequality operator for pro
essors. Good
oloring (as opposed to the bad
oloring provide bypro
essor IDs) is used to redu
e the worst
ase parallel
omplexity on
oarse grids where pro
essor domains4

are small. Note, with one node per pro
essor, or nodes randomly partitioned to pro
essors, this algorithmdegenerates to Algorithm I. Next, ea
h pro
essor partitions its nodes into interior and boundary nodes asde�ned above.The boundary nodes are partitioned into nodes that
ommuni
ate only with pro
essors that have higher
olor (
all these \Bot" nodes) and nodes that
ommuni
ate only with pro
essors that have lower
olor (\Top"nodes) and all of the rest (\Mid" nodes). Note, multigrid requires a symmetri
 smoother (to be a symmetri
pre
onditioner for a symmetri
 Krylov method) so a multipli
ative smoother must be able to e�e
tivelypro
ess equations in reverse order as well as in the forward order. To run the algorithm ba
kward the Topnodes are relabeled Bot nodes and visa versa and the node lists are pro
essed in reverse order.Interior nodes are partitioned into two parts: \Int1" and \Int2" so as to satisfyjInt1j+ jTopj = jInt2j+ jBotj (1)where jLj is a measure of the
ost (eg,
ops) in applying Gauss-Seidel to the equations in the list L. \Int1"and \Int2" are further partitioned into two partitions ea
h: \Int1.a", \Int1.b", \Int2.a" and \Int2.b". Thispartitioning is se
ondary (our numeri
al experiments simply put all nodes in the \a" lists). The number ofnon-zeros in the equations are used as an approximate measure of the
ost. Again, to run the algorithmba
kward, Int1 nodes are swit
hed with Int2.Top and Bot nodes are further partitioned into groups that
ommuni
ate with only one pro
essor sothat when an update is re
eived all of the nodes that only depend on that one pro
essor
an be pro
essedimmediately and
are is taken to pro
ess these nodes in reverse order on the ba
kward pass.Figure 3 illustrates these de�nitions with a diagram of the partitions of a 2D, four pro
essor, problemwith the pro
essor
olors represented with integers (ie, 1,2,3,4).
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���

���
���
���
���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Mid nodes

Bot nodes

2) Send to ’lower’

Interior 1 nodes

Interior 2 nodes

Top nodes

1) Send to ’higher’

3) Send ’mid’ (lower)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����������������������

3 4

21Figure 3: Partitioning diagram for 2D mesh with four pro
essorsEa
h Mid node (n) is equipped with two lists of nodes: 1) all of the neighbor nodes that are higherthan n and 2) all of the neighbor nodes that are lower than n and a pointer to a node list (dependents)that is set at the beginning of ea
h iteration to point to the higher node list on a forward pass and thelower node list on a ba
kward pass. Ghost nodes on higher pro
essors are de�ned as higher nodes, ghostnodes on lower pro
essors are de�ned as lower nodes and neighbor \Mid" nodes on the same pro
essor areassigned a random number to determine whi
h list they belong to. Nodes are equipped with a
ag done thatis initialized to false at the beginning of ea
h iteration and set to true in the Gauss-Seidel kernel.
5

With these de�nitions, and the Gauss-Seidel kernel from Figure 2, one Gauss-Seidel iteration is as follows:Send boundary x values to higher pro
essors /* Initial send */Gauss-Seidel(Int1:b; A; x; b)Re
eive x values from lower pro
essors /* Initial re
eive */Gauss-Seidel(Top;A; x; b) /* one pro
essor nodes
an be folded into the previous re
eive */Send boundary x values to lower pro
essorsGauss-Seidel(Int1:a; A; x; b)Re
eive x values from higher pro
essorswhile 9n j n 2Mid; n:done = falseRe
eive boundary x updates and list of ghost nodesdo flag falsefor all n 2Mid; n:done = falseif 8n2 j n2 2 n:dependents; n2:done = trueGauss-Seidel(n;A; x; b) sets done
ags to trueCa
he updated boundary x valuesflag truewhile(flag)Send
a
hed boundary x values and list of
ompleted nodes to neighbor pro
essorsGauss-Seidel(Int2:a; A; x; b) /* one pro
essor nodes are pro
essed after the others */Re
eive boundary x updates for any remaining (undone) ghost nodesGauss-Seidel(Bot;A; x; b)Gauss-Seidel(Int2:b; A; x; b)Figure 4: Distributed memory unstru
tured Gauss-Seidel algorithmNote, 1) the \Initial" send and re
eive phase in Figure 4
an be omitted on the se
ond and subsequentiterations, 2) the list in the �rst line of the \Gauss-Seidel kernel" in Figure 2 must be iterated in reversewhen running the algorithm ba
kward, 3) the middle se
tion of this algorithm (the \while" loop that startson the 8th line) is essentially Algorithm I, and 4) low pro
essors without \Mid" nodes (eg, pro
essor 1 inFigure 5)
an postpone the re
eive on the 7th line of Figure 4 until the data is needed on the se
ond to lastline (the pro
essing of \Bot" nodes).Figure 5 shows a s
hemati
 time line for this algorithm for the model problem in Figure 3 with the \Intx"node list evenly divided into the \Intx.a" and \Intx.b" node lists.
����
����
����
����

����
����
����
��������
����
����
����

����
����
����
����

Mid nodes

Bot nodes

Interior 1 nodes

Interior 2 nodes

Top nodes

���
���
���

���
���
���

���
���
���

���
���
���

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

�����
�����
�����
�����

����
����
����
����

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

������
������
������
������

������
������
������
������
������
������
������

������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

������
������
������
������

Time

1

2

3

4 Figure 5: Time line of model 2D problem on a forward pass
6

Figures 6 and 7 show Vampir outputs of a 2,085,599 degrees of freedom (dof) problem run on 52 CrayT3E and 28 IBM PowerPC pro
essors [13℄. The
olors on Figures 6 and 7 are similar to those in Figure 3:\Top" work is green, \Bot" work is magenta, the \Int1" work is turquoise, the \Int2" work is blue, \Mid"work is dark purple, and the time waiting in blo
king MPI
alls is in red. Note, all interior nodes are put inthe \a" lists, so that, for instan
e, ea
h pro
essors work ends with the \Bot" node work (magenta) instead ofthe \Int2.b" node work (blue) depi
ted in Figure 5. These �gures indi
ate that we have de
ent algorithmi
eÆ
ien
y as we do not see too mu
h red areas where pro
essors are waiting for messages. This is promising,but these �gures only indi
ate that the algorithm
an work (the numeri
al results in x5 will quantify this),and are not intended as eviden
e that the algorithm is e�e
tive. Note, the use of Vampir was invaluable indebugging this algorithm (as well as the
ode), for instan
e, the form of Equation 1 was re�ned by �ndingperforman
e bottlene
ks that arise from less optimal versions of this equation (eg, jInt1j = jInt2j).
Process 0 2 2 2 3 5 129
Process 1 129 3 5 6 129
Process 2 129 2 2 2 3 4 4 5 6 129
Process 3 2 2 3 4 4 5 6 129
Process 4 129 2 2 2 2 3 79 4 5 6 129
Process 5 129 2 2 2 2 2 2 2 3 4 5 6 129
Process 6 2 3 4 79 5 6 129
Process 7 129 2 2 22 2 2 2 3 4 4 5 6 129
Process 8 129 2 2 3 4 4 79 79 5 6 129
Process 9 129 3 5 6 129
Process 10 129 2 2 2 2 2 2 2 3 5 129
Process 11 129 2 2 2 2 2 3 4 4 79 5 6 129
Process 12 129 2 2 2 2 2 2 2 2 3 5 129
Process 13 129 2 2 2 2 2 2 3 4 5 6 129
Process 14 129 2 3 4 79 79 5 6 129
Process 15 129 2 2 2 3 4 479 5 6 129
Process 16 129 3 5 79 6 129
Process 17 129 2 3 4 79 5 6 129
Process 18 129 2 2 2 2 2 2 2 2 3 4 5 6 129
Process 19 129 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 5 6 129
Process 20 129 3 5 79 6 129
Process 21 129 2 3 4 79 5 6 129
Process 22 129 2 2 2 22 3 79 4 5 6 129
Process 23 129 2 2 2 2 2 2 2 2 2 3 5 129
Process 24 129 2 2 2 3 4 4 79 5 6 129
Process 25 129 2 2 2 3 4 79 5 6 129
Process 26 129 2 3 4 79 79 5 6 129
Process 27 129 2 2 2 2 2 2 3 4 4 79 5 6 129
Process 28 129 3 5 79 6
Process 29 129 2 3 79 4 79 5 6 129
Process 30 129 2 2 2 2 3 4 5 6 129
Process 31 129 2 2 2 2 2 2 2 2 2 2 2 3 5 129
Process 32 129 2 3 4 79 5 6 129
Process 33 129 2 2 3 4 5 6 129
Process 34 129 2 2 2 2 3 4 5 6 129
Process 35 129 2 2 2 2 2 2 3 4 4 5 6 129
Process 36 129 2 2 3 4 4 79 79 5 6 129
Process 37 129 2 2 2 2 3 4 79 79 5 6 129
Process 38 129 2 2 2 2 3 5 129
Process 39 129 2 2 2 2 3 4 5 6 129
Process 40 129 3 5 79 79 6 129
Process 41 129 2 2 2 2 2 3 4 5 6 129
Process 42 129 2 2 2 3 4 5 6 129
Process 43 129 2 2 2 2 2 2 2 2 2 3 5 129
Process 44 129 2 2 3 4 79 5 6 129
Process 45 129 2 2 2 2 2 3 5 129
Process 46 129 2 2 2 2 3 79 4 5 6 129
Process 47 129 2 2 2 2 2 2 2 2 3 5 129
Process 48 129 2 2 2 2 2 3 5 129
Process 49 129 2 2 3 4 79 5 6 129
Process 50 129 2 2 3 79 4 79 5 6 129
Process 51 129 2 2 2 2 2 2 2 3 5 129

MPI
VT_API
G-S_Int_1b_(send_to_H)
G-S_Inf_(recv)
G-S_Int_1_(send_to_L)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

5:11.855:11.85:11.755:11.75:11.655:11.6

parfeap.t3e.bpv: Global Timeline

VT_API
G-S_Int_1b_(send_to_H)
G-S_Inf_(recv)
MPI
G-S_Int_1_(send_to_L)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

5

10

15

20

25

30

35

40

45

50

5:11.855:11.85:11.755:11.75:11.655:11.6

cc3_gs.t3e.bpv: Parallelism ViewFigure 6: Time line and parallelism for 2M dof problem with 52 Cray T3E pro
essors
7

Process 0 129 2 2 22 2 2 2 2 3 5 129

Process 1 129 22 108 2 3 4 5 6 129

Process 2 129 2 3 45 6 129

Process 3 129 3 5 6 129

Process 4 129 2 2 2 2 2 3 5 6 129

Process 5 129 2 2 2 2 2 3 5 129

Process 6 129 2 2 2 2 3 4 4 5 6

Process 7 129 3 5 79 79 6 129

Process 8 129 2 22 2 2 3 4 5 6 129

Process 9 129 2 2 3 4 79 79 5 6 129

Process 10 129 2 2 2 2 2 2 3 4 5 6 129

Process 11 3 5 6 129

Process 12 129 2 2 2 22 22 2 2 2 3 4 5 6 129

Process 13 129 2 2 2 2 3 4 79 79 5 6 129

Process 14 129 2 2 3 4 5 6 129

Process 15 129 3 5 79 79 6 129

Process 16 129 22 2 2 2 2 3 79 4 5 6 129

Process 17 129 2 2 2 3 79 4 5 6 129

Process 18 129 3 5 6 129

Process 19 129 108 2 22 3 4 79 79 79 79 5 6

Process 20 129 2 2 2 2 2 2 2 2 2 3 5 129

Process 21 129 2 2 2 2 3 79 4 5 6 129

Process 22 129 108 2 3 79 5 6 129

Process 23 129 3 5 6 129

Process 24 129 2 2 2 2 2 2 2 3 45 6 129

Process 25 129 2 2 2 3 79 4 5 6 129

Process 26 129 2 3 4 79 5 6 129

Process 27 129 3 5 79 6 129

MPI
VT_API
G-S_Int_1b_(send_to_H)
G-S_Inf_(recv)
G-S_Int_1_(send_to_L)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

16:14.716:14.616:14.516:14.416:14.316:14.216:14.116:14.0

vt_trace.bpv: Global Timeline (16:13.891 - 16:14.76 = 0.87 s)

VT_API
G-S_Int_1b_(send_to_H)
MPI
G-S_Int_1_(send_to_L)
G-S_Inf_(recv)
G-S_IS_(send)
G-S_Int_2
G-S_Sup
G-S_Int_2b_+_end

2
4
6

8
10
12

14
16
18
20

22
24
26

28
16:14.716:14.616:14.516:14.416:14.316:14.216:14.116:14.0

cc3_gs.ibm.bpv: Parallelism ViewFigure 7: Time line and parallelism for 2M dof problem with 28 IBM PowerPC pro
essors
8

3.3 Algorithm
hara
teristi
sOur algorithm utilizes properties of optimal partitioning of 3D �nite element problems and is e�e
tivebe
ause:� The partitioning that we
an expe
t in pra
ti
e (ie, from ParMetis) are adequate and we use ParMetisto partition the
oarse grids as well as the �nest.� Equation 1
an be satis�ed well with respe
t to
ops and reasonably well with respe
t to time to pro
essthese
ops (although we have observed some signi�
ant variations of
op rates on large problems onsome ma
hines).� Our pro
essor partitions are large enough, and our S
hwarz subdomains are small enough, on the �nergrids so that only a small per
entage of the nodes are pro
essed in the (Algorithm I like) \while" loopin Figure 4.� The dependen
y paths for these \Mid" nodes are short (eg, maximum of 3 with ideal partitions, andonly for the \
orner" nodes of pro
essor partitions, as opposed to 12 or more with Algorithm I) ifthe pro
essor subdomains are large enough. Additionally these pro
essor subdomains do not have tobe very large (eg, about 30 non-overlapped S
hwarz subdomains, see Adams for an argument for thisproperty for the parallel maximal independent set problem [2℄).To further
hara
terize the properties of this algorithm we
laim that our parallel Gauss-Seidel algorithmis perfe
tly parallel (ie, has 100% parallel eÆ
ien
y) for 3D problems under the following assumptions (with
omments as to how pra
ti
al the assumption is):1. Perfe
t pro
essor load balan
ing (this is reasonable).2. Enough interior nodes to satisfy Equation 1 (easy if the pro
essor domains are large enough, harderwith S
hwarz domains). This requires at least as mu
h work on the interior nodes as on the boundarynodes and any ex
ess
an be used to hide
ommuni
ation as des
ribed in assumption 5 below.3. Optimal
op rates (there
an be signi�
ant variations in
op rates from pro
essor to pro
essor and theserial
op rates are not optimal as dis
ussed in our numeri
al results).4. Zero per
ent work done on \Mid" nodes (more true as the pro
essor subdomain size in
reases).5. Instant
ommuni
ation (obviously not true, but the large messages
an be overlapped with
omputa-tion). This assumption is only needed for messages between \Mid" nodes (eg, the one message betweenpro
essor 2 and 3 in Figure 5).These assumptions indi
ate the potential sour
es of ineÆ
ien
y. We
an not prove these
laims (in fa
twe know that they are not true) and must rely on numeri
al experiments to demonstrate the (degree of)e�e
tiveness of this algorithm.

9

4 Parallel ar
hite
tureA highly s
alable implementation of the algorithms and of a �nite element appli
ation are used to test themethods. The parallel �nite element system Athena (Figure 8) is a parallel �nite element program builton a serial �nite element
ode (FEAP [9℄) and a parallel graph partitioner (ParMetis [14℄) and our solverPrometheus (Prometheus is freely available in a publi
ly domain library [16℄). Prometheus
an be furtherde
omposed into three parts:� General unstru
tured multigrid support built on PETS
 [5℄ (Epimetheus in Figure 8)� Non-nested geometri
 multigrid method (Prometheus in Figure 8)� Aggregation multigrid methods (Atlas in Figure 8)Athena reads a large \
at" �nite element mesh input �le in parallel, uses ParMetis to partition the �niteelement graph, and then
onstru
ts a
omplete �nite element problem on ea
h pro
essor. These pro
essorsub-problems are
onstru
ted so that ea
h pro
essor
an
ompute all rows of the sti�ness matrix and entriesof the residual ve
tor, asso
iated with verti
es that have been partitioned to the pro
essor. This negatesthe need for
ommuni
ation in the �nite element operator evaluation at the expense of a small amount ofredundant work. Thus, these tests use general unstru
tured software so that, even if the problems are notvery
omplex, the solver is not taking advantage of any of their underlying stru
ture.Expli
it message passing (MPI) is used for performan
e and portability and all parts of the algorithmhave been parallelized for s
alability. Clusters of symmetri
 multi-pro
essors (SMPs) are targeted as thisseems to be the ar
hite
ture of
hoi
e for future large ma
hines. Clusters of SMPs are a

ommodated by �rstpartitioning the problem onto the SMPs and then the lo
al problem is partitioned onto ea
h pro
essor asdepi
ted in Figure 8. This approa
h impli
itly takes advantage of any in
rease in
ommuni
ation performan
ewithin ea
h SMP, though the numeri
al kernels (in PETS
) are \
at" MPI
odes. Prometheus assumes thatthe provided �ne grid is partitioned well but repartitions the (internally
onstru
ted)
oarse grids withParMetis to maintain load balan
e.The parallel appli
ation of multigrid adds a log(n) term to the parallel
omplexity as some pro
essorsmust remain idle on the
oarsest grids on very large problems. Given the number of degrees of freedomper pro
essor and the number pro
essors in our numeri
al experiments the log(n) term is not signi�
ant asmost of the
ops are performed on grids that are \a
tive" on all pro
essors. But as problems get largerthis will be
ome more important. The number of pro
essors is redu
ed on the
oarsest grids when there arefew equations per pro
essor parti
ularly on ma
hines with poor
ommuni
ation infrastru
ture. The reasonsfor this are two fold: 1) it is diÆ
ult to implement the parallel
onstru
tion of the
oarse grid spa
es tohave the exa
t serial semanti
s in the regions between pro
essors and 2) most ma
hines are not modeleda

urately with the PRAM
omplexity model (ie, the
oarsest grids on large problems
an a
tually run fasterif fewer pro
essors are used as the laten
ies in the dot produ
ts
an dominate). Our solver implementationthus, redu
es the number of a
tive pro
essors on the
oarsest grids to try to keep a minimum of about 200equations per pro
essor.

10

Library

METIS
METIS

(memory resident) (memory resident)
FEAP fileFEAP file

FEAP input file

FEAP FEAP FEAP FEAP

ParMetis

ParMetisAthena Athena

Athena

materials file

file file file file

Partition to SMPs

Partition within each SMP

(p) (p) (p) (p)

(s)

solution script

Prometheus
Geometric MG (R)

Atlas
Algebraic MG (R)

Mat. Products (RAR’)
FE/AMG solver interface

Epimetheus

PETSc

FEAP

Figure 8: Code Ar
hite
ture11

5 Numeri
al resultsTo evaluate the performan
e of parallel Gauss-Seidel one must �rst look at the serial performan
e. Onedisadvantage of Gauss-Seidel is that it is not easy to use standard numeri
al kernel
odes (eg, PETS
'smatrix ve
tor produ
t), thus requiring that the Gauss-Seidel kernels be hand
oded. The work in the Gauss-Seidel kernel is similar to the work of a matrix-ve
tor produ
t and thus we would hope to be able to a
hievesimilar performan
e. There are two primary di�eren
es, however, between the Gauss-Seidel kernel in ouralgorithm and a matrix-ve
tor produ
t:� The Gauss-Seidel kernel must work on a subset of the rows in the matrix, in several stages, andthe order of the operations must be done
arefully to maintain the \multipli
ative" semanti
s. Forinstan
e, PETS
 sends messages, then
omputes with the diagonal pro
essor blo
k of the matrix, thenre
eives messages and then
omputes with the o�-diagonal pro
essor blo
k to optimize performan
e.The Gauss-Seidel kernel does not have this freedom.� The Gauss-Seidel kernel must skip the diagonal blo
k of the equations in ea
h \node", thus requiringa test in the inner loop (line 4 in \fun
tion Gauss-Seidel" in Figure 2). This test is a simple \if" test inthe nodal blo
k
ase but is more
omplex in the more general
ase (ie, S
hwarz blo
ks). This additional
omplexity is re
e
ted in the \blo
k Gauss-Seidel"
op rates in Table 1.Table 1 shows the per pro
essor M
op rates (using one or two pro
essors), on the �ne grid of the 79,679 dofproblem des
ribed in x11 for: 1) theoreti
al peak, 2) PETS
's matrix-ve
tor produ
t, 3) blo
k Gauss-Seidel(about 42 verti
es, 126 equations, per blo
k) and 4) nodal blo
k Gauss-Seidel.Ma
hine Peak Mat-Ve
 blo
k Gauss-Seidel nodal G-S (% of Mat-Ve
)Cray T3E 950 88 27 46 (52 %)IBM SP PowerPC 634 36 21 31 (82 %)IBM SP Power3 1500 151 46 115 (76 %)Intel (Sandia Red) 200 41 22 34 (83 %)Compa
 (DEC alpha) 880 58 24 36 (62 %)Sun Enterprise 10K 666 30 16 25 (83 %)Table 1: Ma
hine performan
e (M
ops/se
)The serial ineÆ
ien
ies shown in Table 1 are
aused by several fa
tors su
h as there is extra bookkeepingrequired to implement the algorithm (espe
ially for blo
k Gauss-Seidel as des
ribe above), there are auxiliarydata stru
tures required that may
ause
a
he
on
i
ts with the primary data and this algorithm di
tates anode ordering that is not the same as the native matrix. That is, this algorithm pre
ludes running straightthrough the matrix, or verti
ally partitioning the matrix, as
an be done in a matrix ve
tor produ
t. ThisineÆ
ien
y
ould be redu
ed by making a separate
opy of the matrix - without the diagonal blo
k - in theorder of the (forward pass of the) algorithm to get better
op rates, this would require more storage and wehave not tested this approa
h.5.1 Shell problemThis problem is a \wing" with fully
lamped boundary
ondition at the base and a uniform load down onthe under side of the wing. The wing is meshed with four node quadrilateral shell elements, with thi
knessof 12000 times the length of the wing, has 2,248,470 degrees of freedom and four internal sti�ener plates. Thislinearized sti�ness matrix has a
ondition number of about 1:0 �109. Figure 9 shows the deformed mesh withthe �rst prin
iple stress of a 49,980 dof version of the problem.Conjugate gradients (CG) is used as the solver, pre
onditioned with one iteration of full multigrid.Three smoothers are tested: One pre and post smoothing step with 2248 S
hwarz subdomains of 1) CGpre
onditioned with blo
k Ja
obi (additive S
hwarz), 2) blo
k Gauss-Seidel (multipli
ative S
hwarz) and3) one pre and post smoothing steps of nodal Gauss-Seidel. The S
hwarz subdomains are
onstru
tedwith METIS with about 1000 equations per blo
k. The
hoi
e of number of smoothing step was made by12

 2.60E+02

 5.17E+02

 7.75E+02

 1.03E+03

 1.29E+03

 1.55E+03

 3.16E+00

 1.80E+03

 PRIN. STRESS 1

Current View
Min = 3.16E+00
X = 5.00E+01
Y = 2.98E+00
Z =-6.23E+00
Max = 1.80E+03
X = 0.00E+00
Y = 0.00E+00
Z = 2.00E+00

 Time = 0.00E+00Figure 9: Wing deformed shapesele
ting the number, for ea
h smoother, that performed best. Smoothed aggregation algebrai
 multigridis used [18, 3℄, with a relative residual toleran
e of 10�6. Figure 10 (left) shows the residual history ofthis problem in units of the time for one matrix-ve
tor produ
t on the �ne grid. Figure 10 (right) showsthe the time for the 1) \mesh setup" (eg,
oarse grid
onstru
tion), 2) the \matrix setup" (eg, subdomainfa
torizations and
oarse grid operator
onstru
tion) and 3) the \solve" time (ie, time in the CG solver), on32 PowerPC pro
essors.

0 2000 4000 6000 8000 10000 12000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (MatVec on fine grid)

R
el

at
iv

e
re

si
du

al

Relative residual history (wing)

CG/block Jacobi
block Gauss−Seidel
nodal Gauss−Seidel

1 2 3
0

100

200

300

400

500

600

700

800

900

CG/block Jacobi, block Gauss−Seidel, nodal Gauss−Seidel

T
im

e
(s

)

Total solve times (wing)

Mesh setup
Matrix setup
Solve for "x"

Figure 10: Residual history vs. solve times (left), and sum of mesh setup, matrix setup and solve times(right), on 32 PowerPC pro
essorsThis data shows that all three smoothers provide remarkably similar performan
e.13

5.2 S
alability studiesThis test problem is a series of thin
on
entri
 spheres en
losed in a \soft" material (with symmetri
 boundary
onditions so that only one o
tant need be modeled). The sphere is
omposed of seventeen alternating layersof hard and soft materials; Table 2 shows a summary of the
onstitution of the two material types.Material Elasti
 modulus Poisson ratiosoft 10�4 0:49hard 1 0:3Table 2: MaterialsThe loading and boundary
onditions are an imposed uniform displa
ement (down), on the top surfa
e.The mesh is parameterized for these s
alability studies. Ea
h su

essive problem has one more layer ofelements through ea
h of the seventeen shell layers, with a similar re�nement in the other two dire
tions,and in the outer soft domain. The problems range in size from 80K to 76M degrees of freedom. Figure 11shows the smallest version of the problem with 79,679 dof.
-3.90E+00

-7.91E-01

 2.32E+00

 5.43E+00

 8.54E+00

 1.16E+01

-7.01E+00

 1.48E+01

 PRIN. STRESS 1

Current View
Min = -6.86E+00
X = 2.96E-01
Y = 0.00E+00
Z = 7.45E+00
Max = 1.48E+01
X = 4.11E-16
Y = 6.71E+00
Z = 2.99E+00

 Time = 2.02E+00Figure 11: 79,679 dof
on
entri
 spheres problemConjugate gradients (CG) is used as the solver, pre
onditioned with one iteration of full multigrid. Onepre and post smoothing step is used for 1) CG pre
onditioned with blo
k Ja
obi (additive S
hwarz), 2)blo
k Gauss-Seidel (multipli
ative S
hwarz) and 3) nodal blo
k Gauss-Seidel. The blo
ks for blo
k Ja
obiand blo
k Gauss-Seidel are
onstru
ted with METIS with about 125 equations per blo
k. The
hoi
e of onesmoothing step was made by sele
ting the number, for ea
h smoother, that performed best on the 640K dofversion of this problem. Two unstru
tured multigrid methods will be used for these studies:� Non-nested geometri
 multigrid [4℄.� Smoothed aggregation algebrai
 multigrid [18, 3℄.All solves use a relative residual toleran
e of 10�6.5.2.1 IBM SPThe number of pro
essors used is sele
ted to keep about 80K dof per pro
essor, from one to 960 pro
essorson an IBM PowerPC
luster. Due to signi�
ant variation in the
op rate on this ma
hine from one run tothe next, espe
ially on larger problems, the best results are shown from several runs of ea
h problem - ex
eptfor the 960 pro
essor
ase where, due to la
k of a

ess to the ma
hine, we were limited in the number ofexperiments that we
ould perform and at press time were not able to run one test. Updated versions of thispaper will be available on my web page [16℄. Figure 12 shows the iteration
ounts (left), M
op rate (right),and Figure 13 shows the solve times for the three smoothers and the two multigrid methods.14

10
0

10
1

10
2

0

10

20

30

40

50

60

Processors − IBM Blue Pacific

Ite
ra

tio
ns

Iterations (rtol=10−6), 80K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi
Sm. agg. MG − Gauss−Seidel
Sm. agg. MG − block G−S
Sm. agg. MG − CG/block Jacobi

10
0

10
1

10
2

0

5

10

15

20

25

30

35

Processors − IBM Blue Pacific

M
flo

ps
/s

ec
 p

er
 p

ro
ce

ss
or

Mflop/sec/proc. (rtol=10−6), 80K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi
Sm. agg. MG − Gauss−Seidel
Sm. agg. MG − block G−S
Sm. agg. MG − CG/block Jacobi

Figure 12: Iteration
ounts and
op rates on an IBM PowerPC
luster

10
0

10
1

10
2

0

100

200

300

400

500

600

700

800

900

1000

Processors − IBM Blue Pacific

S
ol

ve
 T

im
e

(s
ec

)

Solve Time (rtol=10−6), 80K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi
Sm. agg. MG − Gauss−Seidel
Sm. agg. MG − block G−S
Sm. agg. MG − CG/block Jacobi

Figure 13: Total solve times on an IBM PowerPC
lusterThe
onvergen
e rate (ie, the inverse of the number of iterations, Figure 12, left) is best for the blo
kGauss-Seidel as is expe
ted as Gauss-Seidel has better
onvergen
e properties than damped Ja
obi on modelproblems, and the
onvergen
e rate is about the same for the nodal Gauss-Seidel and the CG/blo
k Ja
obi.We have as high as 31% parallel eÆ
ien
y for the
op rates (ie, 10 M
ops per pro
essor on 960 pro
essorsvs. 32 M
ops on one pro
essor for smoothed aggregation multigrid with nodal Gauss-Seidel smoothing).The ultimate parallel eÆ
ien
y (solve time on one pro
essor divided by solve time on the largest run) is ashigh as about 44%, for geometri
 multigrid with nodal Gauss-Seidel smoothing from one to 960 pro
essors.There is signi�
ant deterioration in the
op rate for smoothed aggregation with the two blo
k smoothers,on the larger problems. We believe that this is due to
a
he e�e
ts; smoothed aggregation uses more memorythan geometri
 multigrid be
ause the interpolation operators are quite large (about one third the size of thesti�ness matrix). This
ombined with the extra memory needed for the blo
k smoothers in
reases pressureon the
a
he (the IBM has about 1Gb of usable memory per four pro
essor node and our total program is15

using all available memory as reported by the \jr"
ommand at LLNL and is paging. We do not believe thatthere is paging within the solve, but there may be some at the beginning of the solve). This deterioration in
op rates is probably exa
erbated by a tenden
y for performan
e on this ma
hine to degrade after a rebootas the problem is most pronoun
ed on the larger problems. This performan
e degradation is due to memorymanagement issues (as observed by us and others a

ording to the LLNL support sta�); we were not ablea

ess a freshly rebooted ma
hine at press time.5.2.2 ASCI RedThe number of pro
essors used is sele
ted to keep about 40K dof per pro
essor (less than the IBM for la
kof memory), from two to 1920 pro
essors on the ASCI Red ma
hine at Sandia National Laboratory. Figure14 shows the iteration
ounts (left), M
op rate (right), and Figure 15 shows the solve times for the threesmoothers.

10
1

10
2

10
3

0

10

20

30

40

50

Processors − ASCI Red

Ite
ra

tio
ns

Iterations (rtol=10−6), 40K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

Processors − ASCI Red

M
flo

ps
/s

ec
 p

er
 p

ro
ce

ss
or

Mflop/sec/proc. (rtol=10−6), 40K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block Jacobi

Figure 14: Iteration
ounts and
op rates on ASCI RedFrom this data we noti
e that
onvergen
e rate (ie, the inverse of the number of iterations) is about thesame for the nodal Gauss-Seidel and the CG/blo
k Ja
obi and best for the blo
k Gauss-Seidel as in the IBMresults, as expe
ted. We have about 33% parallel eÆ
ien
y for the
op rates on the Gauss-Seidel smoothers(eg, 9 M
ops per pro
essor on 1920 pro
essors vs. 27 M
ops per pro
essor on two pro
essors). The ultimateparallel eÆ
ien
y (solve time on one pro
essor divided by solve time on the largest run) is about 70% forgeometri
 multigrid with Gauss-Seidel smoothing.6 Con
lusionWe have shown that Gauss-Seidel
an be e�e
tively implemented and used as a multigrid smoother ondistributed memory
omputers and
an provide a viable alternative to pre
onditioned
onjugate gradientsfor unstru
tured �nite element problems, provided that there are enough equations on ea
h pro
essor. Anatural optimization, that we have not investigated, is to use Gauss-Seidel on the �nest grids, where itperforms best in terms of
op rates, and pre
onditioned
onjugate gradients on the
oarsest grids withperhaps an in
rease in smoothing steps or larger S
hwarz subdomains to balan
e the superior
onvergen
eproperties of Gauss-Seidel. The stationary
hara
ter of Gauss-Seidel is also very valuable for non-symmetri
problems. We have thus added a valuable resour
e to the available tools for multigrid solvers on distributedmemory ma
hines. 16

10
1

10
2

10
3

0

20

40

60

80

100

120

140

160

180

200

Processors − ASCI Red

S
ol

ve
 T

im
e

(s
ec

)

Solve Time (rtol=10−6), 40K per processor

Geometric MG − Gauss−Seidel
Geometric MG − block G−S
Geometric MG − CG/block JacobiFigure 15: Total solve times on ASCI RedFuture work is to improving the serial performan
e of the Gauss-Seidel kernel. Some potential areas toinvestigate are:� Further minimize the data stru
tures used during the Gauss-Seidel solve.� Improved node orderings (within node partitions) to optimize
a
he performan
e [8℄.Additionally, the stati
 partitioning, that uses Equation 1, to balan
e the work on ea
h side of the Midnode work
ould be repla
e with a dynami
 partitioning that measures wait time, in the Mid se
tion of thealgorithm in Figure 4, and moves nodes between the Int1:a and Int2:a partitions to minimize these waittimes and thus a

ommodate nonuniform
ommuni
ation
osts and other forms of load imbalan
e.A
knowledgments. I would like to thank the reviewers for their many helpful suggestions. I wouldlike to thank the many people that have
ontributed libraries to this work: R.L. Taylor for providing FEAP,the PETS
 team for providing PETS
, George Karypis for providing ParMetis/METIS. I would also liketo thank Livermore National Laboratory for providing a

ess to its
omputing systems and to the sta� ofLivermore Computing for their support servi
es. Lawren
e Berkeley National Laboratory for the use of theirCray T3E, and their helpful support sta� - this resear
h used resour
es of the National Energy Resear
hS
ienti�
 Computing Center, whi
h is supported by the OÆ
e of Energy Resear
h of the U.S. Department ofEnergy under Contra
t No. DE-AC03-76SF00098. Sandia is a multiprogram laboratory operated by SandiaCorporation, a Lo
kheed Martin Company, for the United States Department of Energy under
ontra
tDE-AC04-94AL85000.Referen
es[1℄ Loy
e M. Adams and Harry F. Jordan. Is SOR
olor-blind? SIAM J. S
i. Statist. Comput., 7(2):490{506, 1986.[2℄ M. F. Adams. A parallel maximal independent set algorithm. In Pro
eedings 5th
opper mountain
onferen
e on iterative methods, 1998.[3℄ M. F. Adams. Evaluation of three unstru
tured multigrid methods on 3D �nite element problems insolid me
hani
s. Te
hni
al Report UCB//CSD-00-1103, University of California, Berkeley, 2000.17

[4℄ M. F. Adams. Parallel multigrid solvers for 3D unstru
tured �nite element problems in large deformationelasti
ity and plasti
ity. International Journal for Numeri
al Methods in Engineering, 48(8):1241{1262,2000.[5℄ S. Balay, W. D. Gropp, L. C. M
Innes, and B. F. Smith. PETS
 2.0 users manual. Te
hni
al report,Argonne National Laboratory, 1996.[6℄ V. E. Bulgakov and G. Kuhn. High-performan
e multilevel iterative aggregation solver for large �nite-element stru
tural analysis problems. International Journal for Numeri
al Methods in Engineering,38:3529{3544, 1995.[7℄ J. Demmel. Applied Numeri
al Linear Algebra. SIAM, 1997.[8℄ C. C. Douglas, J. Hu, M. Iskandarani, M. Kowars
hik, U. R�ude, and C. Weiss. Maximizing
a
hememory usage for multigrid algorithms. In Multiphase Flows and Transport in Porous Media: State ofthe Art, pages 124{137. Springer, Berlin, 2000.[9℄ FEAP. www.
e.berkeley.edu/�rlt.[10℄ Y. T. Feng, D Peri
, and D. R. J. Owen. A non-nested multi-grid method for solving linear and nonlinearsolid me
hani
s problems. Compute. Meth. Me
h. Engng., 144:307{325, 1997.[11℄ J. Fish, V. Belsky, and S. Gomma. Unstru
tured multigrid method for shells. International Journal forNumeri
al Methods in Engineering, 39:1181{1197, 1996.[12℄ V.E. Henson and U.M. Yang. BoomerAMG: A parallel algebrai
 multigrid solver and pre
onditioner.Te
hni
al Report UCRL-JC-139098, Lawren
e Livermore National Laboratory, 2000. To appear inApplied Numeri
al Mathemati
s.[13℄ http://www.pallas.de/pages/vampir.htm. Vampir 2.5 - visualization and analysis of mpi programs.[14℄ G. Karypis and V. Kumar. Parallel multilevel k-way partitioning s
heme for irregular graphs.ACM/IEEE Pro
eedings of SC96: High Performan
e Networking and Computing, 1996.[15℄ MGNet. www.mgnet.org.[16℄ Prometheus. www.
s.berkeley.edu/�madams.[17℄ B. Smith, P. Bjorstad, and W. Gropp. Domain De
omposition. Cambridge University Press, 1996.[18℄ P. Vanek, J. Mandel, and M. Brezina. Algebrai
 multigrid by smoothed aggregation for se
ond andfourth order ellipti
 problems. In 7th Copper Mountain Conferen
e on Multigrid Methods, 1995.

18

