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1AbstractMultigrid Equation Solvers for Large Scale Nonlinear Finite Element SimulationsbyMark Francis AdamsDoctor of Philosophy in Engineering - Civil EngineeringUniversity of California, BerkeleyProfessor Robert L. Taylor, Co-chairProfessor James W. Demmel, Co-chairThe �nite element method has grown, in the past 40 years, to be a popular methodfor the simulation of physical systems in science and engineering. The �nite element methodis used in a wide array of industries. In fact just about any enterprise that makes a physicalproduct can, and probably does, use �nite element technology. The success of the �niteelement method is due in large part to its ability to allow the use of accurate formulation ofpartial di�erential equations (PDEs), on arbitrarily general physical domains with complexboundary conditions. Additionally, the rapid growth in the computational power availablein todays computers - for an ever more a�ordable price - has made �nite element technologymore accessible to a wider variety of industries and academic disciplines.As computational resources allow people to produce ever more accurate simulationof their systems - allowing for the more e�cient design and safety testing of everything fromautomobiles to nuclear weapons to arti�cial knee joints - all aspects of the �nite elementsimulation process are stressed. The largest bottleneck in the growth in the scale of �niteelement applications is the linear equation solver used in implicit time integration schemes.This is due to the fact that the direct solution methods - popular in the �nite elementcommunity as they are e�cient, easy to use, and relatively una�ected by the underlyingPDE and discretization - do not scale well with increasing problem size.The scale of problems that are now becoming feasible demand that iterative meth-ods be used. The performance issues of iterative methods is very di�erent from those ofdirect methods, as their performance is highly sensitive to the underlying PDE and dis-



2cretization; the construction of robust iterative methods for �nite element matrices is ahard problem which is currently a very active area of research. We discuss the iterativemethods commonly used today, and show that they can all be characterized as methodsthat solve problems e�ciently by projecting the solution to a series of subspaces. The goalof iterative method design, and indeed of �nite element method design, is to select a seriesof subspaces that solves problems \optimally"; solvers try to minimize solution costs and�nite element formulations try to optimize accuracy of the solution. The subspaces used inmultigrid methods are highly e�ective in minimizing solution costs - particularly on largeproblems. Multigrid is known to be the most e�ective solution method for some discretizedPDEs, however its e�ective use on unstructured �nite element meshes is an open problem,and constitutes the theme of this study.The main contribution of this dissertation is the algorithmic development andexperimental analysis of robust and scalable techniques for the solution of the sparse, ill-conditioned matrices that arise from �nite element simulation in 3D continuum mechanics.We show that our multigrid formulations are e�ective in the linear solution of systems withlarge jumps in material coe�cients, for problems with realistic mesh con�guration and ge-ometries (including poorly proportioned elements), and for problems with poor \geometric"conditioning as is commonplace in structural engineering. We show that the these meth-ods can be used e�ectively within nonlinear simulations via Newton's method. We solveproblems with more than sixteen million degrees of freedom and parallel solver e�ciencyof about 60% on 512 processors of a Cray T3E. We also show that our methods can beadapted and extended to the inde�nite matrices that arise in the simulation of problemswith constraints, namely contact problems, formulated with Lagrange multiplier.Professor Robert L. TaylorDissertation Committee Co-chairProfessor James W. DemmelDissertation Committee Co-chair
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1Chapter 1Dissertation summary1.1 IntroductionThe �nite element method has proven to be a popular spatial discretization tech-nique in the simulation of complex physical systems in many areas of science and engi-neering. The �nite element method commonly provides for the spatial discretization of thedomain for a partial di�erential equation (PDE); time discretizations or time integrators arealso required. Time integrators fall into two main categories: implicit and explicit. Explicitschemes are preferable for problems in which the interval in the time discretization is shortrelative to the spatial discretization. Implicit methods are more compute intensive thanexplicit methods, however they have superior stability properties and are thus preferablewhen the time step required to capture the behavior of the system is large relative thespatial discretization. Implicit methods are expensive because they require that a sparseoperator be linearized and its inverse (a dense operator) applied to a vector, rather thanonly the sparse operator itself - this is much more di�cult to compute. The cost of applyingthe inverse of a �nite element operator will dominate the total cost of the �nite elementmethod when an implicit time integrator is in use on large scale problems - the e�ectivesolution of this problem is the subject of this dissertation.1.2 The �nite element methodThe �nite element method �nds the \optimal" solution of a partial di�erentialequation in a user provided function space - that is it calculates a solution in the span of a



2provided set of functions whose error is orthogonal to this subspace in some inner product.This is often calculated with an orthogonal projection and is the basis of classical methodssuch as Galerkin and Rayleigh-Ritz methods. The key aspect of the �nite element method,that has lead to its success, is the use of piecewise continuous (low order) polynomials �rstintroduced by Courant in the 1940s [25] and independently by the engineering communityin the 1950s [4]. Piecewise continuous polynomials are e�ective because they may be auto-matically constructed by \meshing" a complex domain into simple elements or polyhedra,and have compact support. Finite element basis functions can then be constructed, fromthis mesh, on the elements.The �nite element method is in part successful because it allows for a very hardproblem to be e�ectively decomposed into separate and well de�ned disciplines. Broadlyspeaking these disciplines are� Mesh generation� Element formulation� Non-linear and transient solution algorithms� Linear equation solvers� Visualization and post processingThis dissertation focuses on the e�ective construction of linear equation solvers for �niteelement method matrices in the high performance computational environments of today.1.3 MotivationThe dominant costs of conducting a �nite element analysis, once the software hasbeen developed, is the construction of the model or mesh and the solution of a sparse setof algebraic equations. The solution of this system of equations is generally the dominantcost in an analysis as a single problem often requires the solution of hundreds or thousandsof equation sets if dynamic (or transient) analysis is called for. Nonlinear formulationsare generally solved with a series of linearized solutions, for instance by a Newton solutionscheme, at each time step. Additionally, �nite element analyses are usually used in designprocesses or parametric analyses, thus requiring that many �nite element simulations berun with a single mesh or model.



3When implicit time discretization methods are in use, the cost of the sparse linearsystem solve will dominate the cost of the �nite element simulation. Furthermore the linearequation solver is one of the hardest parts of a �nite element solution to implement e�cientlyas the problem size, and number of parallel processors increases - therefore scalable linearequation solver technology is of considerable importance to the continued growth in the useof the �nite element method.Direct solution methods based on Gaussian elimination are very popular as theyare robust and e�ective for moderate sized problems. Accurate �nite element simulationsoften require that a �ne discretization be used, thus necessitating the solution of largesystems of equations. Also, in some cases, it may simply be more economical to use large,fast, and ever cheaper computers to solve a large problem where in the past highly skilledengineers have had to painstakingly assemble smaller analyses and combine their resultswith intuition to assess the safety of a structure.The di�culty with direct methods is that for typical �nite element problems op-timal direct solvers have a time complexity of about n2 in 3D, where n is the number ofdegrees of freedom in the system. Direct methods are more applicable to 2D models as thenumber of degrees of freedom only increases quadratically with the scale of discretization,as opposed to cubicly for 3D models. Additionally the time complexity for 2D problems isabout n3=2 as 2D problems tend to have much less \�ll" introduced during the factorization.The rather small constants in the complexity of direct methods have allowed themto be superior to iterative methods for the size models that were a�ordable in the past. Butthe poor asymptotics of direct methods is now requiring that iterative methods be used asiterative methods have the potential of O(n) time and space complexity.Domain decomposition methods represent a framework for describing and analyz-ing optimal iterative methods for solving the sparse matrices from unstructured discretiza-tions of PDEs [78]. Multilevel domain decomposition methods are theoretically optimalpreconditioners. Of the family of multilevel domain decomposition methods, multigrid isthe most powerful on structured meshes. Multigrid is also ideally suited for �nite elementproblems on unstructured grids, as it uses many of the same mathematical techniques (e.g.,orthogonal projections) as well as many of the same tools in its implementation (e.g., meshgenerators). In fact, as we show, the core of multigrid is the recursive application of a vari-ationally induced approximation of the \current" problem (grid) - this is also a descriptionof the �nite element method. Thus multigrid is, in a sense, the application of the �nite



4element method to itself.Many of the domains of interest to �nite element method practitioners are inher-ently ill-conditioned problems with large ranges in scale of discretization, complex struc-tures often requiring the use of less than ideally proportioned elements, sharp jumps inmaterial properties or changes in physics. These di�culties are exacerbated by the use ofstate-of-the-art �nite element formulations - e.g., mixed methods for nearly incompressibleproblems, plasticity formulation to simulate yielding of structural materials, large (�nite)deformation elements, and the use of Lagrange multipliers in applying constraints. Many ofthese formulations result in a loss of positive de�niteness in the equations and/or results inequations that are very poorly conditioned. These �nite element formulations often severelydegrade the performance of iterative methods, thus the serial performance as well as scala-bility of the solver is of utmost importance. This dissertation presents an e�ective methodsfor solving the sparse ill-conditioned systems of equations that arise from large scale (i.e.,106 � 108 vertices), state of the art �nite element simulations.1.4 GoalsThe exponential growth in the processing power of computers in the last twentyyears is enabling scientists and engineers to conduct ever more accurate simulations oftheir systems. Along with the \pull" of the opportunity to conduct large scale simulations,applications are \pushing" for fast, accurate simulations to design e�cient products and tobring them to market quickly because of increasing global competition in manufacturing.Also, testing products in the laboratory is at best a limited method of product testing and inthe case of the U.S. government is no longer a politically viable means of insuring the safetyof the nation's stockpile of nuclear weapons [6]. Thus, the time and expense of laboratorytesting is proving to be increasingly less attractive than computational simulations. As theequation solver is the dominant cost in some large �nite element simulations, scalable androbust equations solvers are of critical importance.The primary requirements for the \next generation" of �nite element method equa-tion solvers are:1. Complete scalability. Any method must be completely scalable and completelyparallel. This means that the number of iterations required to reduce the error bya constant fraction must be independent of the mesh size; or that the number of



5iterations grows polylogarithmically (i.e., polynomial in log (n)) while the cost of eachiteration is polylogarithmic in time. The algorithm must also be feasible to implemente�ciently, i.e. it must be easily parallelized. All solvers in this class are multilevelsolvers.2. Robustness. In this context, robustness means that the method is e�ective on theproblems that will be common in industrial practice - i.e., unstructured meshes witha wide range of scales of discretization, with multiple material properties, with widelyvarying material coe�cients, and accurate material constitutions for all classes ofindustrial applications. We are concerned with solvers for 3D solid mechanics problemsonly, although the method that we discuss is applicable to problems in 
uid mechanicsand other areas of physics as well.3. Easy of use. We would like to have a \black box" solver so as to simplify its use withexisting �nite element codes. This criterion is secondary, in that requiring more datafrom the user is certainly more palatable than not being able to solve the problem.Thus, we desire to have a minimal interface with the �nite element implementation,and require only what is easily available in common �nite element codes.Multigrid is the best known method to date that satis�es the �rst criterion. Multi-grid is an optimal solver of Poisson's equation [27] (discretized with �nite element or �nitedi�erence methods) at least sequentially; the 3D FFT is competitive in parallel althoughto our knowledge it is not applicable to problems as general as those that we consider.The parallel time complexity of full multigrid is O(log(n)2); although realizing the theoret-ical complexity on real machines is a challenge, multigrid can scale very well on the largecomputers of today (chapters 9,10) and in the foreseeable future (x8.3).The robustness of multigrid is necessary for our purposes as large �nite elementsimulations can require a wide variety of �nite element formulations, in a variety of appli-cations - many of which produce operators that are very demanding of iterative methods.The multigrid algorithm that we work with [44, 23] o�ers the well-known advantages ofmultigrid while maintaining a minimal - though not minimum - solver interface. The goalof having a \black box" solver is theoretically achievable with algebraic multigrid methods- although the only e�ective algebraic methods that we are aware of require geometric in-formation [83, 19], as does ours. Our method builds on previous work [44, 23] and is an



6automated method for constructing the coarse grids for standard multigrid algorithms andforms the coarse grid operators algebraically. This combined geometric/algebraic approachyields a method that has a similar interface with the �nite element implementation as ef-fective algebraic methods; but our approach allows for a more extensive use of geometricinformation that is quite e�ective on many classes of problems.1.5 Dissertation outlineWe have organized this dissertation so that it can be read in a multilevel fashion;that is, one can read this chapter, the conclusion, and the preamble to each chapter to geta uniform introduction to our work. One can read the introduction in each chapter, inaddition, to get a more detailed view of our work. The dissertation is organized as follows:� Chapter 1 continues with a list of notations and concepts that we use in our work.� Chapter 2 introduces pertinent background in iterative equation solvers for �niteelement matrices.{ Finite element formulations are, in general, not necessary to understand thecharacteristics of the equation solver, although multigrid is in fact very muchrelated to the �nite element method - multigrid can be seen as \the recursiveapplication of the �nite element method". Thus a rudimentary introduction tothe �nite element method proves to be invaluable in understanding the behaviorand construction of multigrid methods.{ Basic iterative methods are introduced as we use some of them as \accelera-tors", and they lead to domain decomposition methods, one variety of which ismultigrid.{ One level domain decomposition methods are introduced as we use them withinour solver, and they serve to introduce many of the basic concepts of projectionswhich we use extensively.� Chapter 3 discusses multi-level domain decomposition methods in general and multi-grid in particular.



7{ We introduce the basic issues of multi-level domain decomposition methods inthe vein of describing what has come before multigrid, and the alternatives tomultigrid.{ We do not discuss the mathematical details of multigrid in great depth, howeverwe introduce the current state-of-the-art in analyzing multigrid on unstructuredgrids. This description is not comprehensive but is intended to introduce somebasic concepts and proves useful in understanding the performance behavior ofmultilevel methods.� Chapter 4 describes the current competitive methods in the �eld of high performancelinear equation solvers for �nite element matrices.� Chapter 5 introduces our multigrid method - we build on earlier work in 2D formula-tions, extending them to 3D and in parallel. This includes our development of a newmaximal independent set algorithm for �nite element meshes that, under the PRAMcomputational model (see 1.7) [41], has O(1) time complexity, and is practical - thisis an improvement over the previous best algorithm [50]. This chapter also includesa set of heuristics and methods for applying this multigrid algorithm e�ectively tocomplex �nite element meshes and represents the most original direct contribution ofthe dissertation to linear equation solver algorithms.� Chapter 6 presents a series of serial numerical studies aimed and elucidating someimportant characteristics of the behavior of iterative solvers in general, and multigridin particular, on problems in solid mechanics. This chapter identi�es and analysesthe behavior of iterative solvers on problems with particular features, such as incom-pressibility, poorly proportioned elements, complex geometries, and large jumps inmaterial coe�cients.� Chapter 7 discusses parallel computational aspects of the �nite element method andunstructured multigrid solvers. We discuss the structure of our code and some of thealgorithmic issues in optimizing performance of multilevel solvers on today's parallelcomputers.� Chapter 8 develops a theoretical framework for modeling multigrid complexity, devel-ops a simple complexity model for the computers in the near future, uses it to analyze



8multigrid solvers, and describes a more detailed computational model of unstructuredmultigrid solvers on distributed memory computers.� Chapter 9 shows numerical results, for problems in 3D linear elasticity, of scalabilityexperiments on an IBM PowerPC and Cray T3E, with up to 7,534,488 degrees offreedom on 512 processors.� Chapter 10 extends our linear solver to material nonlinear and large deformation �niteelement analysis, and shows numerical results for problems of up to 16,553,759 degreesof freedom on 542 processors of a Cray T3E with about 60% parallel e�ciency. Wealso develop methods for extending our solver to constrained problems with Lagrangemultipliers that arise in �nite element simulation with contact.� Chapter 11 concludes with possible directions for future work.� Appendix A lists our test problems and problem speci�cations.� Appendix B lists the machines that we use for our numerical experiments.1.6 ContributionsThis dissertation develops a highly optimal linear equations solver for �nite elementmatrices on unstructured grids. We extend an e�ective serial 2D multigrid algorithm to3D with heuristics to maintain the geometry of a problem on automatically generatedcoarse grids to dramatically improve performance and robustness of out iterative solver.We develop a new parallel maximal independent set algorithm that has superior PRAMcomplexity for �nite element graphs and is very practical as well. We develop algorithms tomitigate the parallel ine�ciency the coarse grids of multigrid solvers on typical computers oftoday. We have developed a fully parallel �nite element implementation built on an existingserial research �nite element code, so as to fully test our code and algorithms. We showperformance results for problems of up to 16,553,759 equations and up to 512 processors ona Cray T3E and an IBM PowerPC cluster in linear elasticity, large deformation elasticity,and plasticity. We also apply our solver, in serial, to contact problems formulated withLagrange multipliers.



91.7 NotationFinite element meshes provide a geometric description of individual elements; dif-ferent element types require di�erent mesh types. A brief taxonomy, by dimension of degreesof freedom, of 3D element types is as follows:� 3D: continuum elements meshes are made of polytopes and are fully 3D elements.� 2D: manifolds elements can be divided into two main classes of element types: platesand shells (with bending energy), and membranes (without bending energy).� 1D: elements can be divided into two main classes of element types: beams or rods(with bending energy), and trusses (without bending energy).Finite element analysis can use any and all of these element types in a single analysis.This dissertation however only discusses continuum elements although multigrid methodsare applicable to all �nite element method formulations (with compactly supported basisfunctions) [83, 39]. Additionally 3D elements are usually either hexahedra or tetrahedra.Our examples use eight node hexahedral trilinear \brick" elements, but our methods canadapt to other element types.We work closely with �nite element meshes, in 3D continuum mechanics, so a fewde�nitions prove useful.� Regular meshes. The grid points are on a regular lattice.� Structured meshes. The grid points are on a logically regular grid, though coordi-nates may be transformed.� Unstructured meshes. The grid points are placed arbitrarily.� Block structured meshes. Unstructured meshes of structured blocks.The meshes of all �nite element applications must satisfy certain conditions, namely that anyvertex that is in the closure of an element domain must be one of the element's vertices, andno two elements may intersect each other. The meshes of primary interest are unstructured,as the primary strength of the �nite element method is its ability to accommodate complexdomains and boundary conditions.



10dof: A degree of freedom, in a �nite element model, is represented by one entry ina vector and produces one equation in a �nite element matrix. The total number of degreesof freedom is denoted as n.Vectors and functions: We use bold face u for functions, and plain text u forvectors. A vector u is a list of weights by which to scale a set of basis functions �i that addtogether to form an arbitrary function (in the span(�i) i = 1; : : : ; m) thus u =Pmi=1 ui�i.residual: The residual of system of equations Ax = b, with a given solutionvector x is de�ned as r = b�Ax. Note, we use the (two) norm of the residual (i.e., prT r)throughout this dissertation, and will generally simple call it the residual.



11Chapter 2Mathematical preliminariesIn this chapter we present background material useful in understanding our work.2.1 IntroductionWe begin with a brief introduction to the �nite element method, highlighting thecomponents similar to those in multigrid. Understanding the mathematical structure ofthe �nite element method is useful in describing the nature of the matrices that we solve,but more importantly it proves useful in understanding multigrid equation solvers. This isbecause the mathematical structure of the �nite element method and multigrid are quitesimilar, even though �nite elements and multigrid are solutions to two entirely di�erentproblems (i.e., multigrid is a method of implementing the application of the inverse ofa �nite element operator). In fact, as we show, the core of multigrid is the recursiveapplication of a variationally induced approximation of the \current" problem (grid) - thisis also a description of the �nite element method.Linear equation solver fundamentals are introduced as the signi�cance of our workcan only be appreciated in the context of the alternatives. Additionally multigrid uses manystandard linear equation solvers in its construction. Modern domain decomposition theoryis introduced (multigrid can be analyzed as a particular domain decomposition method),because modern domain decomposition analysis provides the strongest analytical methodsfor multigrid on unstructured meshes. More importantly, modern domain decompositiontheory can provide invaluable insight into the nature of multigrid solvers and we thus providea brief overview of this theory with the intent of touching on its more salient features.



122.2 The �nite element methodThe problem of simulating physical systems can, in general, be reduced to that of�nding the solution u, for a linearized PDE operator L, and applied \forcing" function Qthat has the general form L (u; t) +Q = 0 in 
 (2.1)u = �u on @
dB (u) = �u on @
nWere @
d is the boundary of the domain for which the displacements, or primal variable,is speci�ed (i.e., Dirichlet boundary conditions); @
n denotes the portion of the boundarywith natural (i.e., Neumann boundary conditions) for which the dual variable (e.g., force)is speci�ed.Complex physical phenomenon are modeled, with complex PDEs, which may in-clude domains of entirely di�erent physical behavior (as with 
uid-structure interactionproblems), or may have multiple coupled physical �elds (as with thermal-mechanical sys-tems). Thus the actual simulation may be a composition of multiple domains and thesePDEs may be very complex. Additionally, accurate simulations are rarely linear, thoughoften they are linearized for use in a nonlinear solution method (e.g., by Newton's method).Thus linear systems may be but one component of a fully nonlinear solution, but the coresolution procedure is the solution of a problem that can be represented symbolically byequation (2.1).The �nite element method is a means of formulating, or (spatially) discretizing,partial di�erential equations, so they may be solved numerically [86, 24]. The �nite elementmethod provides a sound method of �nding the \optimal" solution, within a given subspaceof the space in which the true solution belongs. The �nite element method commonly utilizesa Galerkin condition as its optimality criteria; a Galerkin condition can be stated as �nd~u 2 S = span (�i); i = 1; 2; :::; n such that L~u + Q ? S, or equivalently h(L~u +Q) ;vi =0 8v 2 S where ha;bi = R
 a � b.The success of the �nite element method is due in part to its ability to apply theGalerkin condition to arbitrarily complex domains and boundary conditions. The strengthof �nite elements comes from mappings between arbitrary polyhedra and regular polyhedra(e.g., the unit square where the mathematics are tractable), as well as the availability of



13computational methods for automatically constructing good polyhedra on complex physicaldomains [74]. With mesh generation techniques, these physically intuitive meshes can beused to construct piecewise continuous polynomials for the set of basis functions S.Thus, the �nite element method's success derives from its ability to constructaccurate subspaces (via unstructured meshes), and from the ability to compute projectiononto �nite element spaces relatively inexpensively, as the linearized �nite element operatoris sparse in commonly used �nite element discretizations. These projections are computedwith a linear equation solver - the e�ective construction of these solvers, for large �niteelement problems, is the subject of this dissertation.The process of applying the �nite element method to the simulation of a physicalsystem can thus be summarized as1. Develop a theory to model the physics (i.e., the strong form of the PDE).2. Formulate a weak form of the PDE that can be used in the �nite element method.3. Discretized the domain of interest with a �nite element mesh.4. Pick a set of basis functions for each element - in which to �nd the approximatesolution.5. Formulate a time integrator for transient PDEs.6. Develop a nonlinear solution strategy for the discrete time form.7. For each time step and for each iteration step in the nonlinear solution method, solvea system of linear equations for the parameters of the �nite element basis functions.8. For each time step, substitute the discrete answer into the basis functions to �nd theanswer where required and often derivatives of the answer as well, and transform thisdata into a readable form.2.2.1 Finite element example: Linear isotropic heat equationFor example, the strong form of the heat equation can be written as:DXi=1 @@xi k @T@xi!+Q = �c@T@t in 




14with k the thermal conductivity, � the mass density and c the speci�c heat of the material;or simply r � (krT ) +Q = �c@T@t in 
 (2.2)T = gD on @
D@T@n = gN on @
N@
D [ @
N = 
 and @
D \ @
N = ;T = T0 at t = 0. For simplicity we only discuss the spatial discretization and look for a steady state solution,thus @T@t = 0 in equation (2.2). Also assume homogeneous Dirichlet boundary conditions(i.e., T = 0 on @
), and that the boundary is smooth enough so that the solution to 2.2 isin L2 (
) (i.e., R
 T 2 < 1), then the homogeneous Dirichlet problem can be stated as thePoissons problem L (T ) + Q = r � (krT ) + Q = 0 in 
 (2.3)T = 0 on @
. If we multiply 2.3 by an arbitrary function v 2 L2 which satis�es the boundary conditions,and integrate over the domain, then 2.3 can be equivalently stated asZ
 v [r � (krT ) +Q] @
 = 0 8v 2 H10 (
) (2.4). Where H10 (
) is the set of functions that are zero on @
 and whose �rst derivatives arein L2 (
). As u and v are in Sobolev spaces H10 (
), we can de�ne an inner product(u; v) = Z
 u � vand also a bilinear form a (v; u) = Z
rv � (kru)so equation (2.4) can be transformed, with integration by parts, to the weak form of thedi�erential equation: a (v; u)� (v;Q) = 0 8v 2 H10 (
) (2.5).



15To formulate a numerical solution for a problem with the �nite element methodwe �rst need a test space for v T = span ('1; '2; :::'m)and a solution space S for u S = span (�1; �2; :::�m)We can express a vector ~u 2 S asPnj=1 �j�j , and ~v 2 T asPmi=1 !i'i. In practiceT and S are often the same space, resulting in a Bubnov-Galerkin method, otherwise themethod is known as a Petrov-Galerkin method.A �nite element approximation to T , in equations (2.5) and (2.4), can be con-structed by replacing ~u and ~v in equation (2.5). If T = S, then we have n equation (onefor each test function) in n unknowns of the form:!i nXj=1 a (�i; �j) � �j = !i (�i; Q) (2.6). Remember v is arbitrary, as long as it satis�es the boundary conditions and so !iis arbitrary and thus equation (2.6) may be written asnXj=1 a (�i; �j) � �j = (�i; Q) (2.7). This is a set of n linear equations in n unknowns Ax = b, whereAij = a (�i; �j) = Z
r�i � kr�j ; bi = Z
 �i �Qand x = [�1; �2; :::; �n]T is the discrete vector that we solve for. These inner products areimplemented with numerical integration in which the operator L, in Cartesian coordinates,is evaluated at carefully selected Gauss integration points - the weighed sum of which takenover each element provides an accurate answer for the polynomial shape functions used in�nite elements analysis.Most problems of interest are non-linear, thus A is a function of x. The weakform must then be linearized and a non-linear solution strategy formulated e.g., Newton'smethod [86].



16What remains to be done is to solve this sparse set of algebraic equations, forthe vector x, the answer ~u = Pni=1 �i�i, can then be constructed and the solution or itsderivative can be generated at any point in the domain. Our next step is to introduce thefoundations of the method that we employ to solve these equations.2.3 Iterative equation solver basicsThe section introduces iterative equation solvers so as to motivate our research intomultigrid. Iterative equation solvers rely on the application of a sparse operator. Directsolvers, based on Gaussian elimination, �rst factor an n by n matrix A into an upper anda lower triangular matrix (e.g., �nd L and U such that A = LU).The factorization has a complexity of about O �n3=2� for typical 3D sparse �niteelement matrices, (although the exact cost is dependent on the precise structure of thematrix and the order of the equations). Finite element matrix factorizations have a spacecomplexity (i.e., memory requirement) of about O �n4=3�. Iterative methods have a spacecomplexity of O (n) but the time complexity is method dependent; the minimization of thetime complexity of iterative equation solvers is the primary goal in the design of an iterativemethod. This section gives a brief description of the classical iterative methods, beginningwith the simplest (and least e�ective) and culminating with what we consider the most ef-fective (multigrid). This introduction is useful not only for providing a context for multigridbut also proves useful in that multigrid actually uses many of the classical iterative methodsas components. In fact, multigrid is really nothing more than an intelligent marshaling ofiterative and direct methods in order to allow these methods, operating at di�ering scalesof resolution, to \do what they do best" - this becomes clear in subsequent chapters.2.3.1 Matrix splitting methodsSome of the oldest iterative methods can be described by considering a \matrixsplitting", that is given a matrix A de�ne a splitting, A = M � K. Substituting thisexpression into the system to be solved Ax = b, we get the equivalent expression x =M�1 (b+Kx). This is not very useful in and of itself, however it does suggest an iterative



17method: set k = 0, and while (jb� Axkj > tol) do, k = k + 1xk =M�1 (Kxk�1 + b) (2.8). The idea is now to pick M and K such that the cost of applying the inverse of M isinexpensive relative to the reduction in the error in each iteration.Jacobi's method is a simple iterative method that visits each equation i and setsx(k)i = 1Aii �bi �Pnj 6=i Aij � x(k�1)j �, where (�)(k)i is the ith component of (�) 2 <n at iterationk. Jacobi's method is a matrix splitting method in which M in equation (2.8) (MJ ) isthe diagonal of A. Other commonly used matrix splitting methods are Gauss-Seidel andsuccessive overrelaxation SOR. Gauss-Seidel is a simple and natural improvement (usually)of Jacobi in which the most recent data for x is used instead of only using the values of x formthe previous iteration. For Gauss-Seidel MGS is the diagonal and the lower triangular partof A. SOR follows the intuition that if a correction to an approximate solution to a problemis an improvement, then we can magnify this correction to get more improvement to thesolution. Thus with a user provided parameter ! (typically ! > 1),MSOR is !�1 �D � ! ~L�where ~L is the strictly lower triangular part of A, and KSOR is �!�1 � 1�D + ~U .2.3.2 Krylov subspace methodsKrylov subspace methods are an elegant means of designing iterative solvers thathave proven to be quit valuable in practice. A Krylov subspace is de�ned for a givenmatrix A and vector b by K (A; b)k = span �b; Ab; A2b; :::; Ak�1b�. One advantage of Krylovsubspace methods is that the representation of the operator can be entirely abstracted fromthe iterative method; that is the iterative method need only be able to apply the operatorand need not directly access the data that is used to represent the operator. This is a positiveattribute for an iterative method to possess, but is often not of paramount importance asKrylov subspace methods invariably require preconditioning, which is often some type of anincomplete factorization which in turn requires that parts of the actual matrix be accessed.Regardless, Krylov subspace methods have proven to be very useful in the construction ofiterative solvers; we introduce them here as we routinely use them in our solvers.The �rst Krylov subspace methods were developed in the 1950s, though most ofthe research activity in these methods has taken place since the 1970s [48, 43]. Over thepast 20 years Krylov subspace methods have been designed for may types of matrices; thisis necessary as these methods can take advantage of a priori knowledge of the operator



18(i.e., symmetry, positive de�niteness, semi-de�niteness, etc.), to provide better methods foroperators for which something is know about their spectra. A common property of �niteelement matrices, that Krylov subspace methods can take great advantage of, is symmetricpositive de�niteness (SPD). Conjugate gradients (CG), the �rst Krylov subspace method tobe developed, is an e�ective method that requires that the operator be SPD. We describeand derive CG following the presentation in [43].Consider the functional � (v) = 12vTAv � vT b (2.9)Notice that minimizing � (v) yields v = A�1b = x, that is the minimization of equation(2.9) is equivalent to solving Ax = b for x, if A is SPD. This fact can be deduced by takingthe Frechet derivative of equation (2.9)@@��� (x+ ��)� � (x)�������=0 = 12��TAx+ xTA��� �Tb (2.10)where � is an arbitrary perturbation vector and � is a scalar. By setting 2.10 to zero we �ndthat, if A is symmetric, x = A�1b is required to solve the resulting equation�T (Ax � b) = 0 (2.11)as � is arbitrary. Taking the second Frechet derivative of (2.11), simply give us A, thus ifA is positive we are minimizing the functional.This construction gives us a \heuristic" to iteratively solve for x in Ax = b (ac-tually this is not a heuristic but for the time being we will consider it as such). With thisconstruction we can pick an \optimal" scalar � to improve current solution xk with a vectorp by �nding the � that minimizes � (xk + �p). In so doing we �nd that we should pick � as� = pTrkpTAp (2.12)where rk � b� Axk, if A is symmetric. This is all well and good but how can we pick p?A simple choice is let p = rk, this is the method of steepest descent and it is not e�ective,and does not optimize the solution very well.Since we are only applying the operator, and are only given the vector b, we alsoknow that xk+1 2 K (A; b)k . For general search directions we would like to be able to pickp so the new current solution is optimal in some well de�ned sense. That is we would



19like our solution in xk+1 2 K (A; b)k to minimize the residual in some norm; we can notminimize the error ek as we do not know the solution, but we can calculate the residualrk = Aek = b� Avk.An obvious choice is to use the two norm on the residual qrTk+1rk+1, which,when A is symmetric, is equivalent to requiring that rk+1 ? K (A; b)k , that is the Galerkincondition. With this choice we get general minimum residuals (GMRES) [72]. Conjugategradients chooses p so that the kth iterate xk minimizes the residual in the A�1 norm -kxkA�1 = pxTA�1x.We need to deduce the conjugate gradient choice of p in each iteration. To dothis express xk+1 as a linear combination of vectors p1; p2; :::; pk+1 which span K (A; b)k . Inmatrix notation xk+1 = Pk+1�y (2.13)where �y is a vector of scalar weights of all of the search vectors in the columns of Pk+1.Split equation (2.13) into two partsxk+1 = Pky + �pk+1use equation (2.9) to �nd xk+1, that isminy;�� (Pky + �pk+1)after some manipulation we getminy;��� (Pky) + �yTPTk Apk+1 + �22 pTk+1Apk+1 � �pTk+1b� (2.14)The second term in equation (2.14), the \cross term" is problematic, as without it theminimization decouples into two \simple" minimizations as we show. The solution to min-imizing the cross term is to make it zero, this is accomplished by requiring that all of oursearch vectors be A conjugate, that is pTi Apj = 0 if i 6= j. Thus we have a speci�cation forour search directions.With the cross term eliminated equation (2.14) reduces to two minimizations:miny� (Pky) andmin� �22 pTk+1Apk+1��pTk+1b. The �rst part of this minimizationminy� (Pky)can be assumed to have already been done as we are applying the algorithm recursively;the base case of the recursion Pky = 0 is clearly minimized. The second part of the mini-mization, after being \given" xk from the �rst part, is similar to (2.12), � = pT b=pTAp. So



20we have an expression for � in each iteration and a speci�cation for pk+1, namelypTk+1Apj = 0 j = 1; :::; kAmazingly if we apply a standard Gram-Schmidt technique to calculate pk+1 by A or-thogonalizing Axk with p1; p2; :::; pk, we �nd that we only need the �rst two terms of therecurrence (see [27] for a complete discussion of this material), and only need one matrixvector product per iteration.x0  0, r0  b, p1  b, k 1 { solve Ax = b for xwhile krkk2 > tolz  Apk�k  rTk�1rk�1=pTk zxk  xk�1 + �kpkrk  rk�1 � �kz�k+1  rTk rk=rTk�1rk�1pk+1  rk + �k+1pkk  k + 1 Figure 2.1: Conjugate Gradient AlgorithmThus the beauty of CG is that this \orthogonality" can be maintained (in perfectarithmetic) with a short vector recurrence, unlike GMRES, which requires that all of theold search vectors be stored so that each new one may be orthogonalized against them [72].We can state bounds for the convergence rate for CG askrk+1kA�1krkkA�1 � 21 + 2kp��1 (2.15)or kx� xkkA � 2 kx� x0kA  p� � 1p� + 1!k (2.16)See [27, 61] for details of these derivations. The important point to see from this is thatthe convergence rate of CG depends on the condition number of A. CG provides us withan O �n3=2� solver for our model problem (2D Poisson); this is better than Jacobi andGauss-Seidel and as good as SOR (without the need to pick a parameter) but it is not goodenough for use in very large problems.



21Krylov subspace methods require that they be preconditioned in order to be e�ec-tive - the subject of this dissertation is such a preconditioner. Just about any solver canbe used as a preconditioner for a Krylov subspace method. Many of the classical matrixsplitting methods of x2.3.1, and their generalization in x2.4 are used as preconditioners forthe Krylov subspace smoothers for our numerical experiments throughout this dissertation.Thus preconditioned Krylov subspace methods are central to the subject of this disserta-tion, but before we look at preconditioning we need to look at the convergence propertiesof CG. In addition to CG for SPD matrices there are may other Krylov subspace methodsfor standard matrices classes (i.e., inde�nite, semide�nite, symmetric and unsymmetric),see [27] and the references therein for a full discussion of these methods.2.3.3 Preconditioned Krylov subspace methodsIn the last section we found that the convergence rate of CG (and all other Krylovsubspace methods) is dependent on the condition number of the matrix. A natural way totry to improve the convergence rate is to transform the system to an \easier" one, solve it,and then go back to the original system; that is instead of solving Ax = b we want to �ndan M and solve M�1Ax =M�1b, or in symmetric formM�1=2AM�1=2M1=2x =M�1=2b (2.17)One can substitute equation (2.17) into Figure 2.1; after some algebraic manipulations onecan eliminate the M�1=2 and M1=2 terms, and get the algorithm in Figure 2.2.The objective now resembles that of matrix splitting methods - �nd an M whoseinverse is cheap to apply and is relatively e�ective at reducing the condition number ofthe operator M�1A. We can look at the Krylov subspace method as an accelerator for aniterative solver. We have observed, in informal numerical experiments, that the use of aKrylov subspace method accelerator is almost always economically advantageous (in termsof total execution time for the solve); we therefore only consider this architecture, in ournumerical experiments, as there are many other interesting parameters to investigate. So weare still left with a question of �nding a good preconditioner for a Krylov subspace method.



22x0  0, r  b, k  0 { solve Ax = b for xwhile krk2 > tolz  M�1r�k  rTzif k = 0p zelse p z + (�k=�k�1) pz  Ax� �k=pTzx x+ �pr  r� �zk  k + 1 Figure 2.2: Preconditioned Conjugate Gradient Algorithm2.3.4 Krylov subspace methods as projectionsWe can alternatively look at Krylov subspace methods as a projection of theproblem onto a subspace. We often work with projections in the analysis of domain de-composition methods; but for now we can consider projections as an approximation u in a\low" dimensional space K, to a function u� in a \high" dimensional space V . If� K is a closed subspace of V� V is complete� Our �nite element operator is V-elliptic [24]then we can de�ne a unique approximation that has an error that is orthogonal to thesolution after we equip L with an inner product. Thus we can use the Galerkin conditionfrom x2.2 and insist that the approximate solution satis�es (u� u�)T � v = 0 j 8v 2 L, orin the case of CG require that u minimizes (u� u�)T � (Lu � b).In the case of symmetric systems it is natural to let L = K, and for the positivede�nite case this can be accomplished with little cost. We observe later that the cost of�nding a projection is a linear solve of the order of the size of the subspace. The reason for



23the e�ciency of CG is that the linear system is tridiagonal and hence very cheap to solve,see [27] for details.2.4 One level domain decompositionDomain decomposition methods are a popular approach to construct iterativesolvers, especially in multiprocessor environments. Domain decomposition (of the physicaldomain) is a natural method to consider in a parallel computing environment because the�nite element mesh invariably needs to be partitioned. Thus reasonable to use this structurein the solver, so as to exploit data locality.Domain decomposition methods have been used by engineers for decades to builddirect solvers and iterative solvers alike. Direct domain decomposition solvers are known asnested dissection node ordering or substructuring, iterative solvers are known as iterativesubstructuring or Schur complement methods.Domain decomposition is important in the history of solvers for �nite elementmatrices, but is also pertinent to this dissertation for two reasons. First, one of the simplestdomain decomposition methods is a generalization of Jacobi's methods introduced in x2.3.1;namely use diagonal blocks of the matrix as the preconditioning matrix and use a directsolver on each of these blocks - we often block Jacobi solvers as a component in our solver.The second reason for interest in domain decomposition methods is that during the pastten years a powerful method has been developed in the domain decomposition communityfor the analysis of a wide range of iterative solvers [31], including multigrid methods, onunstructured meshes. See [78] for an introduction to these methods and the referencestherein for the literature in this area.This chapter introduces the background and notation useful in the analysis ofour, and most, iterative solvers for discretized PDEs; additionally the central conceptsof restrictions and interpolation are introduced here as they are used extensively in thedescription of our methods.2.4.1 Alternating Schwartz methodThis section introduces the classical domain decomposition methods for solvingPDEs, starting with Schwarz's method from the 19th century up to the modern numericalmethods. This section is thus intended to provide a basis for the discussion of the analytical



24domain decomposition techniques by providing simple, concrete and intuitive examplesof domain decomposition methods. The purpose of this section is to provide historicalbackground of many of the components of our solve as well as introduce some of the basicconcepts that we use throughout this dissertation. This discussion follows the presentationin [78]. The earliest domain decomposition method was introduced by Schwarz in 1870 tosolve for the continuous solution of a PDE. Schwarz's method was not intended as a numer-ical method but as a way of solving elliptic PDEs composed of the union of simple domainsfor which explicit solutions were available. Thus this section will work with continuousfunctions and linear operators and not their discretized counterparts, vectors and matrices.An example of the classical alternating Schwarz method proceeds as follows. Givena domain 
 = 
1 [ 
2, shown in Figure 2.3, on which we wish to solve the elliptic PDELu = f in 
 (2.18)u = g on @
 (2.19)For instance L could be the Laplacian operator r2, and the boundary conditions couldbe of either Dirichlet or Neumann type, though here we consider only Dirichlet boundaryconditions for simplicity.
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25have use for the boundary @
in�i, that is the \true" boundary (if any) of the subdomain i.We de�ne u(k)i as the current solution at iteration k on domain �
i. Also u(k)i j�j is de�nedas the restriction of u(k)i to �j , that is the values of u(k)i that are on �j . Note that this typeof restriction is simply a selection of certain values or embedding.The classical alternating Schwarz method can be stated as, select an initial guessfor u0, then iteratively for k = 1; 2; ::: solve the boundary value problemLu(k)1 = f in 
1u(k)1 = g on @
1n�1u(k)1 = u(k�1)2 j�1 on �1for u(k)1 , then solve the following for u(k)2Lu(k)2 = f in 
2u(k)2 = g on @
2n�2u(k)2 = u(k)1 j�2 on �2 (2.20)and continue until the solution has converged.In e�ect this method solves a small subdomain problem with boundary conditionsaugmented by the restriction of current solutions on other subdomains. Notice that thisconstruction is similar to Gauss-Seidel iterations in x2.3.1 though instead of solving for justone equation at each substep in the outer iteration we solve a subdomain boundary valueproblem; also notice that if, in equation (2.20), we substitute u(k�1)2 for u(k)2 we get a Jacobilike iteration. Though this is a continuous method, and is not explicitly used in our work,it does provide intuition as to how domain decomposition methods work.2.4.2 Multiplicative and additive SchwarzThe section describes a discrete version of the Schwarz method of the last section,and the additive variant. The next chapter extends these methods to include a coarse gridcorrection used in multilevel methods.



26Figure 2.4 shows a mesh with two subdomains.
Ω1

Ω2Figure 2.4: Two Subdomains with Matching GridsFor simplicity, assume one node has a Dirichlet boundary condition and the non-homogeneous term moved to the right hand side; also order the nodes with the interiornodes of the �rst subdomain �rst, then the �rst subdomain's boundary nodes, followed bythe nodes common to both subdomains, as so on. The vector of unknowns look like thisu = (u
1n�
2 u�2 u
1\
2 u�1 u
2n�
1 )Figure 2.5 shows the resulting graph of the matrix, with this node ordering (nowwe only consider the closure of the domains and this drop the \bar" notation).
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Figure 2.6: Matrix for the Two Subdomain Problemboolean matrix with a very simple form [ I 0 ]. Thus if we had chosen a di�erent orderingof the matrix A then R1 would be a permuted identity matrix with zero columns insertedfor the nodes that are not in 
1. These boolean or embedding operators are su�cient todescribe these simple one level domain decomposition methods - multilevel methods requirethat non-boolean restriction operators be used but they retain this basic structure.We can state some simple iterative solvers based on these decompositions. Figure2.7 shows the multiplicative Schwarz algorithm, to solve Ax� = b for x�.k  0, x0  0while kb� Axkk > tolxk+1=2  xk +RT1 �R1ART1 ��1R1 (b� Axk)xk+1  xk+1=2 +RT2 �R2ART2 ��1R2 �b�Axk+1=2�k  k + 1 Figure 2.7: Multiplicative Schwarz with Two Subdomains



28The additive Schwarz algorithm is shown in �gure 2.8.k  0, x0  0while kb� Axkk > tolrk  b� Axkxk+1  xk +RT1 �R1ART1 ��1R1rk + RT2 �R2ART2 ��1R2rkk  k + 1 Figure 2.8: Additive Schwarz with Two SubdomainsThe additive form of the alternating Schwarz method is a bit cheaper as a newresidual is not formed at each subdomain. The additive form is also more parallelizable asthe solves on each subdomain are independent of each other, only the update of the solutionvector need be synchronized. However multiplicative forms converge faster than additivemethods.



29Chapter 3Multilevel domain decompositionThis chapter extends the discussion of the mathematical and algorithmic under-pinnings of domain decomposition and multigrid methods from the previous chapter. Theone level methods, discussed in the previous chapter, are not e�ective enough in and ofthemselves. The shortcomings of one level methods can be overcome by the use of multiplelevels or multiple scales of resolution of the problem.3.1 IntroductionAll \optimal" methods have some multilevel component; the need for multiplelevels can be understood in many ways. For one, take the linear discretization of thePoisson operator on a regular mesh and a typical row (for vertices with Neumann boundarycondition) of the form (: : :� 1 : : :� 1; 4;�1 : : :� 1); notice that the rows add up to zero.Now, the update, or correction, d for domain i with A
i = A
i  RiARTi in the Schwarzmethod with in the error en in Figure 2.7 can be written asd = RTi A�1
i Ri (b� Axn) = RTi A�1
i RiA (x� � xn) = RTi A�1
i RiAenIf the error en is constant in 
i then the Schwarz updates are zero on interior or \
oating"subdomains (those without any Dirichlet boundary condition) as RiAen = 0. Therefore thesubdomain corrections do not correct the constant part of the error. If the error (projectedonto a subdomain) is dominated by the constant term then the block Jacobi method willnot be e�ective.Intuitively we can see that if the local part of the global error for a subdomain



30is \almost" constant then the global error must be smooth. These simple one level solvermethods are called \smoothers" in multigrid terminology because they are e�ective at re-ducing non-smooth or high frequency error, thereby smoothing the error. This intuition isnot valid for all operators however, more generally these simple methods damp the high en-ergy components of the error and so it is the low energy error that we need to be concernedabout (the energy of our solution error e being given by the bilinear form or eTAe). Thus,for the Poisson operator, the low energy functions are these \smooth" functions becausethe Poisson operator with constant coe�cients is a \smooth" operator.Another way to divine the need for a global component in a solver is from a simpleinformation theoretic viewpoint. This can most easily be seen by allowing the subdomainsto degenerate to single nodes, thus transforming the Schwarz method into Jacobi iterations.If a point load is applied at a corner of a 2D regular mesh then, as Jacobi only transfersinformation via a matrix vector product with M�1K (which has the same graph structureas A) and b, the non-zero structure of x can only advance to the neighbors of a non-zeronode in each iteration. As the shortest path to the furthest node from a corner node in a2D mesh is about p2n long, we require a minimum of p2n iterations to get a non-zero inall n degrees of freedom. The inverse of the Poisson operator is dense so all nodes have anon-zero value, in general, in their solution. Thus Jacobi can not (under any circumstances)converge, with high relative accuracy, in less than p2n iterations for this particular righthand side. To remedy this situation we need to have some form of global communication ineach iteration.The solution to this inherent limitation on the convergence rate of an iterativesolver, is to add a global correction. The global correction is a (perhaps approximate)projection to a smaller subspace. As we see in x3.4.1 these projects are implemented witha small(er) linear solve - we generally apply these methods recursively and only the top(coarsest) grid is solved exactly, thus all but the penultimate grids are corrected with anapproximate projection. The subspace, from which we compute a correction, is a coarse gridspace - the construction of this coarse grid space is the primary distinguishing characteristicof all scalable linear equation solvers.



313.2 A Simple two level methodTo create a coarse grid (C) space the domain must �rst be rediscretized in somefashion, but with far fewer nodes. Using the discretized domain in �gure 2.5 we can redis-cretize. Figure 3.1 shows such a discretization after it has been remeshed.
Ω0

Figure 3.1: Matrix for the Two Level MethodWith this coarse grid we can de�ne a new linear operator AC , treat this like a newoverlapping subdomain, and apply either the additive or multiplicative method from x2.4.2.Thus, we restrict the current residual (b�Axk) up to the coarse mesh, solve for the coarsegrid correction, and interpolate the correction back to the �ne grid. With the addition of acoarse grid we can write the multiplicative form of our two subdomain example in x2.4.2xk+1=3  xk +RT1 �R1ART1 ��1R1 (b� Axk)xk+2=3  xk+1=3 +RT2 �R2ART2 ��1R2 �b� Axk+1=3�xk+1  xk+2=3 + RTCA�1C RC �b� Axk+2=3� (3.1)The restriction matrix for the coarse grid is no longer a simple boolean operator as we needto interpolate the nodal values on the �ne mesh to multiple nodal values of the coarse mesh.Thus we need discrete coarse grid restriction operators; �gure 3.2 show the directed graph(in bold) of this restriction operator. Much is known about calculating interpolation valuesas this is at the core of the �nite element method i.e., mapping between domains. Thusgiven a shape function �I(x) (i.e., the �nite element basis function) for coarse node I , wecan calculate RIj, which is the interpolate of I at the �ne node j, by RIj = �I(j:coord)with j:coord being the coordinate of node j.With this construction we again have the same options as with the one levelSchwarz methods: we can use an additive form or a multiplicative form for the coarse
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Ω0

Figure 3.2: Graph for the Restriction Matrix for the Two Level Methodgrid correction. We can therefore generate four basic forms of this two level method - thealgorithm given in equation (3.1) is the multiplicative-multiplicative form i.e., multiplicativewithin a level and between levels. Additionally we can symmetrize equation (3.1) and if weuse the additive method for the subdomain corrections we get the additive-multiplicativeform xk+1=3  xk +RT1 �R1ART1 ��1R1 (b� Axk) +RT2 �R2ART2 ��1R2 (b� Axk)xk+2=3  xk+1=3 + RTC �RCARTC��1RC �b�Axk+1=3�xk+1  xk+2=3 +RT1 �R1ART1 ��1R1 �b�Axk+2=3�+RT2 �R2ART2 ��1R2 �b� Axk+2=3�(3.2)This gives us the classic multigrid form (with a block Jacobi smoother) and is the basicapproach that we utilize in our numerical experiments. We can now introduce the classicmultigrid algorithm.3.3 MultigridMultigrid has been accepted for the past 25 years as being the theoretically optimalsolution method for some model problems, and a great deal of research has been focused onapplying multigrid to many types of discretized PDEs [66]. In any given year there are manyinternational conferences dedicated to multigrid, additionally multigrid is well representedin domain decomposition conferences and iterative method conferences worldwide.This chapter is concerned with providing the basic multigrid background withoutthe distraction of unstructured meshes and parallel computing. We discuss the classical



33multigrid form which is a natural extension from x3.2 - although unlike most classicalpresentations we assume that multigrid is used as a preconditioner. Using multigrid as apreconditioner merely means that we are not improving a solution of Axk = b with xk , butare �nding an approximate solution to Axk+1 = r. Additionally we enter the algorithm witha residual on the �ne mesh, this changes the structure of full multigrid, and is explainedshortly. We number the grids from the bottom (�ne) to the top (coarse), counter to thepractice in the classic multigrid literature; this is because we start with the �ne mesh andwork our way up to the coarse mesh, stopping when we can solve the problem directly.Historically multigrid has been used primarily on structured meshes as one starts at thetop mesh and continues to re�ne the mesh until we have an accurate answer. Note, we willuse \top" to mean the coarse grid, even though it is at the bottom of �gure 3.4.The primary operators used by multigrid are� Smoother. The smoother S(A; r) is an iterative solver that is applied for only a fewiterations, or even just one iteration. The smoother must be e�ective at reducing theerror up to the frequency that can be resolved on the mesh and down to the frequencythat can be resolved on the next coarsest mesh.� Restriction. The restriction operator R(r) must be able to map residuals to the nextcoarsest grid.� Interpolation or Prolongation. The interpolation operator P (x) must map values(solutions) from a grid to the next �ner grid. The transpose of the restriction operatoris commonly used (i.e., P = RT ).� Coarse Grid Operator. The coarse grid operator Ai+1 must represent all of thefrequencies lower than those that can be e�ectively reduced by the smoother on thislevel. More precisely, the error in the coarse grid representation of the \low" eigen-functions of the �ne grid must be in the space spanned \high" eigenfunctions of the�ne grid. We use a Galerkin or variational coarse grid operator as discussed above,that is Ai+1 = RiAiPi.



34With these components we can state the classic multigrid V-cycle in Figure 3.3.function MGV (Ai; ri)if there is a coarser gridxi  S(Ai; ri)ri  ri � Axiri+1  Ri+1(ri)xi+1  MGV (Ri+1AiRTi+1; ri+1)xi  xi + RTi+1(xi+1)ri  ri � Aixixi  xi + S(Ai; ri)else xi  A�1i rireturn xi Figure 3.3: Multigrid V-cycle AlgorithmWe represent this algorithm schematically in Figure 3.4.
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35The preconditioner, B in Figure x2.2, is MGV (A0; r). In practice it has beenuniversally observed that a variant of the V-cycle, full multigrid or F-cycles, provides bettersolver performance. Figure 3.5 shows the full multigrid algorithm.function FMG(Ai; ri)if there is a coarse gridxi  FMG(Ai+1; Ri+1(ri))ri  ri � Aixielse xi  0xi  xi +MGV (Ai; ri)if there is a �ner mesh return RTi (xi)else return xi Figure 3.5: Full Multigrid AlgorithmAnd we can schematically represent full multigrid in Figure 3.6.
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363.3.1 Convergence of multigridThe intuition behind the convergence behavior of multigrid starts with the no-tion that iterative methods, which \smooth" values of nearest neighbors on the grid, cane�ectively reduce the high frequency, or high energy, component of the residual. Multi-grid organizes standard iterative methods to work at varying scales of resolution so as toallow their work to be most productive. To do this we need to be able to map residualsand corrections between grids in an e�ective manner; and we need a coarse grid opera-tor that represents (in tandem with these inter grid transfer operators) the low frequencycomponents of the error.Informally we want the di�erence between the solution in the coarse grid space,mapped to the �ne grid space, and the true answer on the �ne grid to have little of thelow energy components. Thus the e�ect of the coarse grid correction is to \demote" thelow frequency error to high frequency error, which can be reduced cheaply. For our modelproblem (Poisson's equation in any dimension) a particular multigrid construction satis�esthese requirements extremely well. The Poisson problem is one of the few problems forwhich hard bounds on the number of iterations required to achieve a speci�ed tolerance isknown. The next section sketches the proof of the convergence rate of multigrid on Poisson'sequation on a unit square.Convergence proof outlineWe sketch the proof here as it useful in understanding the frequency domain de-composition nature of multigrid. This presentation follows that in [27]. As a model prob-lem uses the regular 1D Poisson equation with Dirichlet boundary conditions. The optimalmultigrid algorithm for Poisson's equation is carefully constructed to reduce the error byat least a factor of 19 in each iteration.Multigrid is optimal if we use Nk = 2k + 1 nodes, with constant spacing betweengrid points, in each dimension (i.e., �2k + 1�D nodes and �2k � 1�D unknowns). The coarsegrid \picks every other node" from the �ne mesh and by the special choice of grid dimensionthe end nodes remain through all of the grids. In 2D and 3D one can perform the sameprocedure recursively - coarsening the edges then, starting from selected edge nodes, selectsurface nodes, and so on.The restriction (and interpolation) operators are derived from standard linear in-



37terpolation. Thus the �rst row in the restriction matrixR isR(1; :) = [ 12 1 12 0 0 : : : 0 ].The Galerkin form for the coarse grid operator (RART ) is the same Poisson matrix scaled by12 in magnitude and approximately 12 in size. The smoother uses a weighted Jacobi method,similar to that introduced in x2.3.1, where R! = I � !A=2 and c! = !b=2; ! = 1 gives thestandard Jacobi operator. Let ek = xk � x� be the error in the kth iteration, and note thatwith the eigendecomposition Z of A, RJ = Z (I � !�=2)ZT where � is a diagonal matrixof the eigenvalues of A. We have ek = R!ek�1= Rk!e0= �Z (I � !�=2)ZT�k e0= Z (I � !�=2)k ZT e0so ZTek = (I � !�=2)k ZT e0 or �ZTek�j = (I � !�=2)kjj �ZT e0�j�ZTek�j is called the jth frequency component of the error ek . The eigenvalues�j (R!) = 1 � !�j=2 determine how fast each component of the error decreases in eachiteration. Figure 3.7 plots �j (R!).
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38construct an expression for the application of one V � cycle to the errorek+1 = R2=3fI �RT �RART��1RAgR2=3ek (3.3)Note, this expression assumes, by induction, that the coarsest grid is solved exactly [18].This expression can be nearly diagonalized with Z the eigenvector matrix of A. Equation(3.3) is block diagonal with a particular ordering of the eigenvector matrix. The eigenvaluesof these blocks can be explicitly calculated (these blocks are 2 by 2 in the 1D case, 4 by 4in the 2D case, and so on), see [27] and [78] for details. The eigenvalues of the matrix inequation (3.3) are bounded by 19 , and thus we get nearly one digit of accuracy per iteration;this rate is not only fast but it is completely independent of the size of the problem. Thisconstruction is perfect in that as we go down the V � cycle we are reducing the erroruniformly by 13 , and as the corrections percolate back up the V � cycle they do not soil thelower part of the spectrum in any signi�cant way, and they project their correction at leastwell enough so that the smoothing step reduces the entire spectrum of the error by at least19 . Multigrid is thus completely scalable in serial, provided the amount of work periteration is O(n) (i.e., O(1) work for each unknown). As the work per grid is proportional tothe number of unknowns and the number of unknowns per grid decreases with a geometricprogression (i.e., 1; 1=2D; 1=4D; 1=8D; :::; 1=2D�L for L levels in D dimensions) - the amountof work is bounded by twice the work done on the �ne grid in 1D. Multigrid is therefore anO(n) method sequentially.



393.4 Convergence analysis of domain decompositionThe convergence analysis for unstructured problems is less satisfying than thatof the previous section. This is because the analysis for unstructured problems can notprovide absolute bounds on the rate of convergence, but only bounds on the condition ofthe preconditioned system. With bounds on the condition number we can use the boundsfrom the Krylov subspace method (x2.3.2) to give bounds on the convergence rate.Additionally the bounds that can be derived, though impressive feats of analy-sis, have loosely de�ned parameters (h and H) and other parameters that are di�cult toexplicitly calculate. Despite the shortcomings of this analytical framework it is quite valu-able in providing necessary conditions for scalability, as well as for providing a theoreticalframework to compare di�erent algorithms in a rational way.From \Domain Decomposition" [78], page 34In order to understand the convergence behavior of domain decompositionalgorithms we need to introduce a mathematical framework. This is most easilydone in the context of Sobolev spaces and Galerkin �nite elements. Indeed,it turns out that the basic correction steps calculated in virtually all domaindecomposition and multigrid/multilevel algorithms may be viewed as (approxi-mate) orthogonal projections, in some suitable inner product, onto a subspace.This observation makes possible the complete analysis of many domain decom-position and multigrid methods : : :x3.4.1 introduces a variational framework and projections, with the example in x2.2.1,and show that the correction RT1 �R1ART1 ��1R1rk in equation (3.2) in the multiplica-tive Schwarz algorithm is an example of a projection. x3.4.2 will review or introduce thecomponents required to describe, and analyze, all domain decomposition methods with theconvergence theory described in x3.4.3.This presentation follows that in [78].3.4.1 Variational formulationWe recall the steady state Poisson's equation from x2.2.1 and consider only homo-geneous Dirichlet boundary conditions. The strong form isr � (kru) + f = 0 in 
u = 0 on @




40and the weak form a (v;u) = f (v) 8v 2 H10 (
)with a (v;u) = Z
rv � (kru)f (v) = Z
 v � fWithin this variational framework we can demonstrate that the corrections in themultiplicative Schwarz methods are projections of the error. Let un be the solution at theend of the nth iteration, and let un+1=2 be the solution at the end of the substep in iterationn+ 1. Then the one level (continuous) Schwarz algorithm can be written asL �un+1=2 � un� = �Lun + f in 
1un+1=2 � un = 0 on @
1un+1=2 � un = 0 on 
2n
1and L �un+1 � un+1=2� = �Lun+1=2 + f in 
2un+1 � un+1=2 = 0 on @
2un+1 � un+1=2 = 0 on 
1n
2This can be expressed in weak form asa �un+1=2 � un;v� = f (v)� a (un;v) un+1=2 � un 2 H10 (
1) ; 8v 2 H10 (
1) (3.4)anda �un+1 � un+1=2;v� = f (v)� a �un+1=2;v� un+1 � un+1=2 2 H10 (
2) ; 8v 2 H10 (
2)(3.5)Let en = u� � un be the error in the nth iterate un, thena �un+1=2 � un;v� = a (en;v) 8v 2 H10 (
1)and a �un+1 � un+1=2;v� = a �en+1=2;v� 8v 2 H10 (
2) (3.6)



41De�ne the projection Tie, in the inner product a (�; �), bya (Tie;v) = a (e;v) Tie 2 H10 (
i) ; 8v 2 H10 (
i) (3.7)At each half step the corrections, un+1=2 � un and un+1 � un+1=2 calculated in equation(3.6) are projections of the error onto the subspaces H10 (
1) or H10 (
2).Formally a projection of e onto a subspace H10 (
1), in the inner product a (�; �)is de�ned as e1 = Pe = arg infv2H10(
1) ke� vka (3.8)We can alternatively de�ne Pe by the following: Find e1 2 H10 (
1) so thata �e1;v� = a (e;v) 8v 2 H10 (
1)or equivalently a �e1 � e;v� = 0 8v 2 H10 (
1)It is now simple to show that (3.7) is the minimizer of (3.8), and thus our correctionin the Schwarz methods are in fact projections of the error on to a subdomain. Theseprojections have the attractive property that they �nd a correction, in a given subdomain,that is closest to the error in the A, or energy, norm. The next section shows that thisindeed the case for the discrete forms of the Schwarz methods.Matrix representation of projectionsIn x2.2 we constructed the �nite dimensional subspace S = span (�k) � H10 (
) ; k =1; 2; :::; n, we now replace H10 (
1) above by S. After selecting domains 
i; i = 1; 2; : : : ; p,de�ne the sets f�(i)k g i.e., those functions in S with support in 
i. Express u 2 S asu = Pk uk�k and let A be the sti�ness matrix and Aij = a(�i; �j). It is possible to de-rive an explicit representation for Tiu in equation (3.7). Let w = Tiu = Pk wk�(i)k , thenequation (3.7) can be expressed asa Xk wk�(i)k ; �(i)l ! = a Xk uk�k ; �(i)l ! 8�(i)l



42Xk wka ��(i)k ; �(i)l � =Xk uka ��k ; �(i)l � 8�(i)lRecall that the restriction matrix Ri maps the coe�cients of u to coe�cients ofthe local subdomain i, thus a ��(i)k ; �(i)l � = RiARTi . We can now express a discretized formof our projection operator A
iw = (RiARTi )w = RiAuor w = (RiARTi )�1RiAuHence the matrix representation of the operator Ti is given byTi = RTi (RiARTi )�1RiANote, this is the coarse grid correction term in equation (3.3), applied to the error.3.4.2 Domain decomposition componentsWe have described some of the basic components of domain decomposition meth-ods in functional form. This section list the components necessary to specify all domaindecomposition methods, some of which have been introduced previously and some of whichare introduced here.Domain decomposition polynomialsRecall the correction step in the multiplicative Schwarz algorithm in �gure 2.7 isgiven by xk+1=2  xk +RT1 �R1ART1 ��1R1 (b� Axk)xk+1  xk+1=2 + RT2 �R2ART2 ��1R2 �b�Axk+1=2�De�ne Bi by RTi �RiARTi ��1Ri. The operator Bi restricts the residual to one subdomain,solves for a correction in this domain and then interpolates the correction back to the globalspace. We can rewrite the two domain multiplicative Schwarz correction asxk+1  xk + (B1 +B2 �B2AB1) (b�Axk) (3.9)We can interpret multiplicative Schwarz as a Richardson iterative procedure with the pre-conditioner B given by B = B1 + B2 � B2AB1. B can be thought of as a polynomial in



43the residual r. Note that the utility of using a Krylov subspace method is now evident asCG requires very little additional cost and provides a solver with well de�ned optimizationproperties - precisely the optimization properties described in section x3.4.1 for the Schwarzmethods.The form of the multiplicative Schwarz method for the errorek+1  ek + (B1 + B2 � B2AB1)AekWe use the projection operators from x3.4.1 and �nd an expression for the error reductionoperator of the method T = BA = T1+T2�T2T1 = I�(I�T1)(I�T2) with B = B1+B2�B2AB1. We can express the e�ect of a method on the error in the form of polynomials in Ti,with i = 0; 1; 2; :::; p. T0 refers to the coarse grid in our convention. For the multiplicativemultilevel method we have T = BA = P(T0; T1; :::; Tp) = I�(I�Tp) � � �(I�T0). The art ofdesigning preconditioners is to design these polynomials such that they are well conditionedoperators with respect to the cost of their applicationAuxiliary bilinear formsWhen an approximate solver is used in equation (3.4) it becomesa1 �un+1=2 � un;v� = f (v)� a (un;v) un+1=2 � un 2 S; 8v 2 S1likewise equation (3.5) becomesa2 �un+1=2 � un;v� = f (v)� a (un;v) un+1=2 � un 2 S; 8v 2 S2That is we do not require that we have the same bilinear form on the subdomains, be theycoarse grids or subdomains, and can we can therefore use auxiliary bilinear forms.Interpolation operatorsThe existence of subdomains requires interpolation operators to recover the sub-domain corrections. To this end we de�ne the set of operators Ii : Si! S.Domain decomposition componentsWe now have all of the components necessary to de�ne any particular domaindecomposition method



44� A set of subspaces Si.� A set of interpolation operators Ii.� A set of auxiliary bilinear forms ai(�; �).� The polynomial P(T0; T1; :::; Tp) to prescribe the order of the application of the sub-domain corrections.The next section applies the formalism of this section to an abstract analysis applicable toall domain decomposition methods.3.4.3 A convergence theoryThe goal of this section is to sketch an abstract convergence theory for domaindecomposition methods. These methods are composed of somewhat intuitive parametersthat make the utility of multigrid evident as well as serve to provide an understanding ofthe convergence characteristics of domain decomposition methods on unstructured meshes.To begin with we assume, for simplicity, that we have symmetric positive de�niteoperators and work with operators and functions rather than matrices and vectors.First, the abstract convergence theory makes extensive use of the following lemma.LEMMA 1: De�ne: T =PiTi, Thena(T�1u;u) = minui2Vi; u=Pi IiuiXi ai(ui;ui)See [78] for a proof of this.The abstract convergence theory for symmetric positive de�nite problems centersaround three parameters which measure the interaction of the subspacesVi and the bilinearforms ai(�; �) These parameters are presented in the form of assumptions.Assumption 1: let C0 be the minimum constant such that 8u 2 V; 9u =Pi Iiui;ui 2 Vi, with Xi ai(ui;ui) � C20a(u;u)If C0 can be bounded independently of the grid parameters (size of elements and numberof subdomains) then the Vi are said to provide a stable splitting of V. This quantitya(u;u) is referred to as the energy of u. A value of 1 is desirable for C0 - thus we wantthe subdomain spaces to have minimal energy. This assumption together with Lemma 1



45provides a lower bound (C�20 ) on the spectrum of T = PiTi - for the additive Schwarzoperator. Note, multigrid is a stable splitting and the coarse grid functions have relativelylow energy because the linear �nite element shape functions (hat functions) are somewhat\smooth".Assumption 2: De�ne: 0 � Eij � 1 to be the minimal value that satis�esja(Iiui; Ijuj)j � Eija(Iiui; Iiui)1=2a(Ijuj ; Ijuj)1=28ui 2 Vi;uj 2 Vj ; i; j = 1; : : : ; pDe�ne: � (E) to be the spectral radius of E . Note, we do not include the coarse grid spaceV0, in this de�nition. This parameter is in some sense the measure of orthogonality of thesubspaces. When Eij = 0 the subspaces Vi and Vj are orthogonal; when � (E) = 1 wehave the usual Cauchy-Schwarz inequality, and for 0 < � (E) < 1 we have a strengthenedCauchy-Schwarz inequality. A value of 1 is desirable for � (E).Assumption 3: let ! 2 [1; 2) be the minimum constant such that 8ui 2 Vi; i =0; : : : ; p, a(Iiui; Iiui) � !ai(u;u)This parameter refers to quality of the subdomain solves (! = 1 corresponds to exactsubdomain solves). This assumption also restrains us from simply scaling ai(�; �) to decreaseC0. Note, our coarse grid subdomains are recursive applications of multigrid, thus ! 6= 1,except on the penultimate grid, though as we use a direct solver on the local subdomains! = 1 . For a linear operator L, which is self adjoint with respect to a(�; �), we use theRayleigh quotient characterization of the extreme eigenvalues.�Amin(L) = minu6=0 a(Lu;u)a(u;u) ; �Amax(L) = maxu6=0 a(Lu;u)a(u;u)The condition number of L is thus given by �Amax(L)=�Amin(L). As the bound on the numberof iteration of the conjugate gradients method is proportional to the condition number of thepreconditioned system BA, the abstract convergence bounds are derived by using Lemma 1and the three assumptions to �nd expressions for this condition number �Amax(L)=�Amin(L).With this machinery we can state the bound on the condition number of theabstract additive Schwarz method, see Lemma 3 and Lemma 4 in [78] for the derivationsK(BA) � ![1 + �(E)]C20



46and for the abstract multiplicative Schwarz we haveK(BA) � [1 + !2�(E)2]C202� !Lemma 1 in [78] shows that for the two level overlapping Schwarz methods (additiveor multiplicative), with exact subdomain solves and subdomain overlap width of order H(the subdomain size), the condition number of the preconditioned system independent ofH and h (the scale of discretization). Thus, this particular form of multigrid has optimalconvergence characteristics within the context of the abstract convergence theory.



47Chapter 4High performance linear equationsolvers for �nite element matricesThe previous chapter introduced the ingredients used in multilevel iterative equa-tion solvers. This chapter completes the context in which our work resides by discussingthe particular methods that have been developed for the large unstructured sparse matricesthat are of interest to the �nite element community. Scalable solvers for unstructured �niteelement problems is an active area of research. This section provides a brief overview ofcurrent promising methods.4.1 IntroductionWe are interested in scalable technology i.e., we are interested in methods that havethe potential to run in time O(n) sequentially and polylogorithmically in parallel (O(logk n)for a constant k). Thus, we look only at multilevel methods.We segregate the major methods in three (somewhat arbitrary) categories: geo-metric multigrid, algebraic multigrid, and domain decomposition methods. We distinguishbetween algebraic (x4.2) and geometric (x4.3) multigrid methods by calling a method alge-braic if it uses the matrix values in the construction of its restriction operators. We alsodiscuss notable domain decomposition methods that are not multigrid methods (x4.4).



484.2 Algebraic multigridAgain, we de�ne algebraic methods as methods that use the values of the ma-trix entries in the construction of the multigrid restriction operators. Algebraic multigridmethods are an active area of research within the multigrid community as they provide anavenue toward \black box" scalable solvers for PDEs on unstructured meshes. There arethree components to an algebraic (or indeed any) unstructured multigrid method: selectioncriterion for the coarse grid \points", construction of the restriction (and interpolation) op-erators or functions, and the method for construction of the coarse grid operators. The Ai+1coarse grid operators, in algebraic methods, are usually formed in the standard Galerkinor variational way (Ai+1 = RiAiRTi ). Thus, the coarse grid point selection and restrictionfunction formulation are the only distinguishing aspects of an algebraic method.Algebraic methods were �rst introduced by Ruge in 1986 [71], and tested on �niteelement matrices including thin body elasticity and incompressible materials. The results ofthese early algebraic methods were not very promising but they did set the stage for e�ectivemodern methods that we discuss in this section. Before we describe these algorithms wedescribe the general approach that many of these methods employ.Many of the algebraic methods that we are aware of use some type of \heavy edge"(edges are o�-diagonal sti�ness matrix entries) heuristic to \agglomerate" vertices in theselection of the coarse grid point set [83, 32] (much like the method in [19] discussed in x4.3).These methods intend to keep tightly coupled vertices connected to each other via maximalmatching algorithms [32] or \strongly coupled neighborhood of a node" [83]. Once thesesmall (algebraic) regions have been de�ned interpolation functions, with compact support,are then constructed in some fashion.4.2.1 A promising algebraic methodVanek et. al. [83] constructed an algebraic algorithm that is particularly good athandling thin body elasticity and lightly supported structures e.g., a plate with Dirichletboundary conditions on a small portion of the boundary. The algorithm proceeds as follows:� Construct strongly coupled neighborhood of nodes - this approach is meant to mimicthe behavior of semicoarsening [28] for anisotropic and stretched grids.



49� Use these groups to construct a constant interpolation function, that is a functionwith a constant value at all of the vertices in the group and zero everywhere else.These functions are the translational rigid body modes for the group of vertices.� These functions are not ideal as they have very high energy (i.e., a(u;u) is large),this results in a high bound on the convergence rate via the C0 term of \assumption1" in (x3.4.3). This is because these functions are \sharp" - a natural approach is to\smooth" these functions with a simple iterative scheme (i.e., smoother in multigridterminology). Notice though that the support of these functions grows by one \layer"of vertices in each iteration, thus the overuse of this smoothing results in high com-putational complexity in applying them and more importantly a higher complexityof the coarse grid operators as they are constructed from the �ne grid operator andthese interpolation operator. Vanek et. al. thus apply only one step of the smoother(using a slightly altered operator) to produce the \simple" version of their method.� For problems in elasticity, and fourth order problems, their results are dramaticallyimproved with the use of geometric information in the form of what seems to amountto vertex coordinates. The vertex coordinates are used to orthogonalized their initialguess against user-provided polynomials or against the rigid body modes that can beinferred from these vertex coordinates. This approach of removing the rigid bodymodes is similar to many successful methods [19, 77, 63].4.3 Geometric approach on unstructured meshesTo apply classic multigrid techniques to an unstructured grid one is faced with twomain design decisions. Recall from x3.3 that for regular grids, the coarse grids are known apriori, hence the restriction/interpolation and coarse grid operators are known implicitly.For unstructured grids however the coarse grids must be explicitly constructed - after whichstandard �nite element shape functions can be used to construct the restriction operator.The �rst design decision is whether the coarse grids are provided by the �nite element code,or are constructed within the solver from the �ne mesh.The second decision, that often follows from the �rst, is whether to constructthe coarse grid operators algebraically (Galerkin coarse grids) or let the �nite elementimplementation generate the coarse grid operators. There are advantages and disadvantages



50in either approach. The Galerkin approach is harder to implement e�ciently and requiresmore communication (as an \element" can not be redundantly calculated since there areno explicit elements). On the other hand the Galerkin approach is more robust becausethere is no need to take derivatives of the coarse grid shape functions; thus the coarsegrids need not be as \good" e.g., zero volume elements are allowed since they do not haveany �ne grid vertices within them by construction. Also nonlinear elements can be moreeasily accommodated as some element formulations (e.g., large deformation plasticity) arenot robust with poorly proportioned low order tetrahedra. Nonlinear materials can beaccommodated with Full Approximation Storage (FAS) methods [13, 40] where the currentsolution and right hand side are restricted to the coarse mesh and not just the currentresidual - the coarse grid elements thus retain state variables in nonlinear materials.An additional advantage to the Galerkin approach with nonlinear problems is thatregions of localized softening may not appear on the coarser grids if a new �nite elementproblem is formed. However with the Galerkin approach a region of localized nonlinearitywill contribute to the coarse grid sti�ness matrix. Thus Galerkin coarse grids provide, in asense, a higher order of approximation as they sample the function (on the �ne grid) at morepoints. Our method is novel in that it constructs a geometric coarse grid automatically,thus relieving the �nite element user for this burden; we use Galerkin coarse grids becauseof their desirable properties and as they can be constructed automatically within the solver.4.3.1 Promising geometric approachesThe work in applying geometric forms of multigrid to unstructured problems incontinuum mechanics has come primarily from the engineering community. Many of thesemethods require an explicit �nite element mesh for the coarse grids, supplied by the user.Most of this work uses methods that require that coarse meshes (indeed the entire problem)be provided by the user; e.g., see [30] for second order PDEs, [39] for fourth order PDEs,and for nonlinear problems [40, 51, 69] (note [69] uses Galerkin coarse grids). These meth-ods have the same structure as classical multigrid methods (x4.3), as does our method, andgood results can be achieved for the problems that can be addressed with these methods(i.e., problems where the coarse meshes can be e�ectively constructed). These methodshave practical di�culties on large problems with complex boundaries and material inter-faces, as the (small) size of the coarse grids, required for e�ciency, can be so small that the



51geometry of the original problem can not be well represented. Thus some type of approx-imate mesh must be constructed, for these coarse problems, but a mesh generator is notin general equipped to produce such meshes. These methods are e�ective however whenthe geometry/scale of the problem is such that all of the coarse meshes can be e�ectivelyconstructed (and the user is willing to do so).Another method that falls into our de�nition of geometric multigrid but could alsobe called an algebraic method is that of using rigid body modes (Bulgakov et. al.[19]), inthe construction of the restriction operators which are used for the standard Galerkin coarsegrid operators. This method is notable in that it has an algebraic architecture so that theuser must only provide the �ne mesh. This method proceeds by partitioning vertices in the�ner mesh into small sets of connected vertices - these sets then produce a coarse grid spacewith constant interpolation. The displacement and rotational rigid body modes of theseaggregates is then used to provide interpolation values from the �ne (aggregated) verticesto the coarse vertex. This method is similar to that described in [83] with the addition ofrotational modes, discussed in x4.2.A theoretical drawback of this approach is that the (discrete) interpolation func-tions have disjoint support, the actual interpolation functions have high energy, and theconstant C0 in \assumption 1" of x3.4.3 is very large. The numerical results however, showpromising results.4.4 Domain decompositionAs noted previously, domain decomposition methods have a rich history in thestructural engineering community [70] as a way of organizing the direct solution of largecomplex structures. These methods, also known as nested dissection vertex ordering factor-izations, can bene�t from the reuse of factorizations from duplicate substructures. Thesedirect methods explicitly form a Schur complement - its factorization being the primary costof these methods. Multilevel domain decomposition methods use a two level scheme suchas Keyes [55] for 
uid problems, and rely on a powerful overlapping domain decompositionsmoother to ameliorate the e�ects of using a single (very) coarse grid. In the past 15 yearsiterative solutions of the Schur complement have been investigated extensively (see [63] andthe references therein). Here we mention only one method which has been well developedand tested on structures problems.



524.4.1 A domain decomposition methodThe �nite element tearing and interconnect method (FETI) developed by Farhatet. al.[35, 34] is an iterative substructuring method that \tears" the monolithic problem intoa series of subdomains. These subdomains are \interconnected" via Lagrange multipliers -thus the Schur complement is only solving for the Lagrange multipliers (these become theprimary variables in the solve).As the subdomains are given Neumann boundary conditions on the arti�cial (i.e.,�i in x2.4.1) the subdomain are singular in general. Thus, a pseudo-inverse [27] is used forthe subdomain solves. The resulting Schur complement equations need to be augmentedby applying a constraint, again applied with Lagrange multipliers, that the applied loadminus the Lagrange multiplier (on each 
oating subdomain) is orthogonal to the rigid bodymodes of the subdomains. Thus the Schur complement equations must be augmented withLagrange multipliers to enforce the rigid body constraint. This �nal set of equations issolved with a projected conjugate gradient algorithm on the \primary" Lagrange multiplierswhere the rigid body component of the residual is projected out in each iteration.Preconditioning is required for the original Schur complement only and can beimplemented using any of the standard iterative substructuring methods [78]. Thus theFETI method is a non-overlapping domain decomposition method in the dual space of theproblem. The drawback of FETI is that the coarse grid is not in the same form as the �negrid and hence FETI can not be applied recursively - this fact prevents one from developingan optimal complexity multilevel FETI algorithm by simply solving the coarser problemsby another application of FETI.



53Chapter 5Our methodThis chapter, and the numerical results in chapter 6, describe and discuss the coreissues of our algorithms in terms of convergence rates, serial performance, and some simplePRAM parallel complexity. The second half of this dissertation (chapter 7 to the end)discusses parallel performance issues in more depth and veri�es our claim of scalability withperformance results with our largest test problems.This chapter discusses our main contributions to serial multigrid methods for 3D�nite element problems on unstructured grids. We have developed heuristics to optimizethe quality of the vertex sets that are promoted to the coarse grid at all level in multigrid,and techniques to modify the Delaunay tessellation on these sets, to optimize the solu-tion time for solid mechanics problems on unstructured �nite element meshes with largejumps in material coe�cients, complex geometries, thin body domains, and poorly shapedelements. This chapter also discusses our new practical and highly optimal (in PRAM)parallel maximal independent set algorithm.5.1 IntroductionThis chapter discussed the technical details of the multigrid method that we useand is the core of this dissertation. As we have seen in x3.3 multigrid is a very powerful solu-tion method. While multigrid is used extensively for structured meshes, the use of multigridon unstructured meshes is less wide spread. This is due to the fact that the construction ofunstructured meshes is a challenging endeavor. Thus, the e�ective construction of coarsegrids for unstructured problems is not a well developed subject, though an active area of



54research, and is the primary goal of this dissertation.Our work is based on a method developed by Guillard [44], and independently byChan and Smith [23]. This method relies on� Maximal independent sets to automatically select vertices to be \promoted" to thenext coarse grid,� Automatic mesh generation techniques to construct the coarse grids, using these ver-tices,� Coarse grid spaces constructed with �nite element shape functions,� Galerkin coarse grid operators.Our approach has the advantage that it is relatively independent of the �nite elementimplementation, i.e. the solver interface with the �nite element code is relatively small.The �nite element code need only provide nodal coordinates as well as the sti�ness matrixitself. We also use element connectivity information and material type indices (to identifymaterial interfaces). This method can thus be interfaced with an existing �nite elementcode with relatively little di�culty, as the �nite element code need only provide the �niteelement mesh to the solver.Solvers should be highly modular to be useful to the �nite element community.This is of primary importance as the �nite element codes are large and complex systemsthat have, in many cases, been developed over decades. The method that we use satis�esour need for a highly modular and \optimal" �nite element solver.Our method was previously developed in serial for 2D linear elasticity applications.We have extended the method to parallel computers for applications in 3D continuummechanics. The method has on four basic components:1. Coarsening: Multigrid's coarse grids should capture the low frequency eigenvectorse�ectively. Maximal independent sets (MISs) are often an e�ective, and popular,heuristic for capturing the low energy modes of unstructured �nite element problems.We describe a new algorithm for the parallel construction of an MIS in x5.2 [2], aswell as a set of heuristics to improve the quality of the MIS in x5.3[1]. Note thatthere is no fundamental reason to \promote" vertices on the �ne mesh to be in thecoarse mesh, i.e. multigrid does not require \node-nested" coarse grids, see [23] for



55numerical experiments with dual coarse grids; also, we take advantage of this in oneof our methods.2. Mesh: After the vertices have been created we need a mesh; the mesh is used toconstruct the �nite element function space. Thus we need a mesh generator; ourmesh generation is discussed in x5.4.3. Restriction/Interpolation Operators: After the coarse meshes are created onecan use standard �nite element shape functions for the restriction and interpolationoperators. This is described in x5.5.4. Coarse Grid Operators: Coarse grid operators can be constructed in one of twoways as discussed in x4.3. x5.6 describes the construction of Galerkin coarse gridoperators on parallel computers.Also, general issues of smoothers (or preconditioners for our smoothers) are discussed inx5.7 .5.2 A parallel maximal independent set algorithmAn independent set is a set of vertices I � V in a graph G = (V;E), in whichno two members of I are adjacent (i.e. 8v; w 2 I; (v; w) =2 E); a maximal independent set(MIS) is an independent set for which no proper superset is also an independent set. Theparallel construction of an MIS is useful in many computing applications, such as graphcoloring and coarse grid creation for multigrid algorithms on unstructured �nite elementmeshes. In addition to requiring an MIS (which is not unique), many of these applicationswant an MIS that maximizes a particular application dependent quality metric. Findingthe optimal solution in many of these applications is an NP-complete problem i.e., theycan not be solved in polynomial time or can be solved by a nondeterministic(N) machine inpolynomial(P) time [49]; for this reason greedy algorithms in combination with heuristicsare commonly used for both the serial and parallel construction of MISs. Many of the graphsof interest arise from physical models, such as �nite element simulations. These graphs aresparse and their vertices are connected to only their nearest neighbors. The vertices of suchgraphs have a bound � on their maximum degree. We discuss our method of attaining O(1)PRAM (see 1.7) [41] complexity bounds for computing an MIS on such graphs, namely �nite



56element models in three dimensional solid mechanics. Our algorithm is notable in that itdoes not rely on global random vertex ordering (see [50, 60] and the references therein)to achieve correctness in a distributed memory computing environment but explicitly usesknowledge of the graph partitioning to provide for the correct construction of an MIS in ane�cient manner.The complexity model of our algorithm also has the attractive attribute that itrequires far fewer processors than vertices, in fact we restrict the number of processorsused in order to attain optimal complexity. Our PRAM model uses P = O(n) processors(n = jV j) to compute an MIS, but we restrict P to be at most a �xed fraction of n toattain the optimal theoretical complexity. The upper bound on the number of processorsis however far more than the number of processors that are generally used in practice oncommon distributed memory computers of today; so given the common use of relatively fatprocessor nodes in modern computers, our theoretical model allows for the use of many moreprocessors than one would typically use in practice. Thus, in addition to obtaining optimalPRAM complexity bounds, our complexity model re
ects the way that modern machinesare actually used. Our numerical experiments con�rm our O(1) complexity claim.We do not include the complexity of the graph partitionings in our complexitymodel, though our method explicitly depends on these partitions. We feel justi�ed in thisas it is reasonable to assume that the MIS program is embedded in a larger application thatrequires partitions that are usually much better than the partitions that we require.5.2.1 An asynchronous distributed memory algorithm.Consider a graph G = (V;E) with vertex set V, and edge set E, an edge beingan unordered pair of distinct vertices. Our application of interest is a graph which arisesfrom a �nite element analysis, where elements can be replaced by the edges required tomake a clique of all vertices in each element, see Figure 5.1. Finite element methods, andindeed most discretization methods for PDEs, produce graphs in which vertices only sharean edge with their nearest physical neighbors, thus the degree of each vertex v 2 V can bebounded by some modest constant�. We restrict ourselves to such graphs in our complexityanalysis. Furthermore to attain our complexity bounds we must also assume that verticesare \partitioned well" (which is de�ned later) across the machine.We introduce our algorithm by �rst describing the basic random greedy MIS algo-
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GraphFE meshFigure 5.1: Finite element quadrilateral mesh and its corresponding graphrithms described in [60]. We utilize an object oriented notation from common programminglanguages, as well as set notation, in describing our algorithms; this is done to simplify thenotation and we hope it does not distract the uninitiated reader. We endow vertices v witha mutable data member state, state 2 fselected; deleted; undoneg. All vertices begin in theundone state, and end in either the selected or deleted state; the MIS is de�ned as the setof selected vertices. Each vertex v is also given a list of adjacencies adjac.Definition 1: The adjacency list for vertex v is de�ned byv:adjac = fv1 j (v; v1) 2 EgWe also assume that v:state has been initialized to the undone state for all v andv:adjac is as de�ned in Definition 1 in all of our algorithm descriptions. With this notationin place we show the basic MIS algorithm (BMA) in Figure 5.2.forall v 2 Vif v:state = undone thenv:state selectedforall v1 2 v:adjacv1:state deletedI  fv 2 V j v:state = selectedgFigure 5.2: Basic MIS algorithm (BMA) for the serial construction of an MISFor parallel processing we partition the vertices onto processors and de�ne thevertex set Vp owned by processor p of P processors. Thus V = V1[V2[ : : :[VP is a disjointunion, and for notational convenience we give each vertex an immutable data member



58proc after the partitioning is calculated to indicate which processor is responsible for it.De�ne the edge separator set ES to be the set of edges (v; w) such that v:proc 6= w:proc.De�ne the vertex separator set V S = fv j (v; w) 2 ESg (G is undirected, thus (v; w)and (w; v) are equivalent). De�ne the processor vertex separator set, for processor p, byV Sp = fv j (v; w) 2 ES and (v:proc = p or w:proc = p)g. Further de�ne a processorsboundary vertex set by V Bp = Vp \ V S , and a processors local vertex set by V Lp = Vp � V Bp .Our algorithm provides for correctness and e�ciency in a distributed memory computingenvironment by �rst assuming a given ordering or numbering of processors so that we canuse inequality operators with these processor numbers. As will be evident later, if one vertexis placed on each processor (an activity of theoretical interest only), then our method willdegenerate to one of the well known random types of algorithms [60].We de�ne a function mpivs(vertex set) (an acronym for \maximum processor invertex set"), which operates on a list of vertices:Definition 2:mpivs(vertex set) = (maxfv:proc j v 2 vertex set; v:state 6= deletedg if vertex set 6= ;�1 if vertex set = ;)Given these de�nitions and operators, our algorithm works by implementing tworules within the BMA running on processor p, as shown below.� Rule 1: Processor p can select a vertex v only if v:proc = p.� Rule 2: Processor p can select a vertex v only if p � mpivs(v:adjac).Note that Rule 1 is a static rule, because v:proc is immutable, and can be enforcedsimply by iterating over Vp on each processor p when looking for vertices to select. Incontrast, Rule 2 is dynamic because the result of mpivs(v:adjac) will in general change(actually monotonically decrease) as the algorithm progresses and vertices in v:adjac aredeleted.5.2.2 Shared memory algorithmOur Shared Memory MIS Algorithm (SMMA) in Figure 5.3, can be written as asimple modi�cation to BMA.We have modi�ed the vertex set that the algorithm running on processor p uses(to look for vertices to select), so as to implement Rule 1. We have embedded the basic



59while fv 2 Vp j v:state = undoneg 6= ;forall v 2 Vp - - implementation of Rule 15: if v:state = undone then6: if p � mpivs(v:adjac) then - - implementation of Rule 27: v:state selectedforall v1 2 v:adjacv1:state deletedI  fv 2 V j v:state = selectedgFigure 5.3: Shared memory MIS algorithm (SMMA) for MIS, running on processor palgorithm in an iterative loop and added a test to decide if processor p can select a vertex,for the implementation of Rule 2. Note, the last line of Figure 5.3 may delete vertices thathave already been deleted, but this is inconsequential.There is a great deal of 
exibility in the order which vertices are chosen in eachiteration of the algorithm. Herein lies a simple opportunity to apply a heuristic, as the �rstvertex chosen is always selectable and the probability is high that vertices which are chosenearly is also selectable. Thus if an application can identify vertices that are \important" thenthose vertices can be ordered �rst and so that a less important vertex can not delete a moreimportant vertex. For example, in the automatic construction of coarse grids for multigridequation solvers on unstructured meshes one would like to give priority to the boundaryvertices [1]. This is an example of a static heuristic, that is a ranking which can be calculatedinitially and does not change as the algorithm progresses. Dynamic heuristics are moredi�cult to implement e�ciently in parallel. An example is the saturation degree ordering(SDO) used in graph coloring algorithms [14]: SDO colors the vertex with a maximumnumber of di�erent colored adjacencies; the degree of an uncolored vertex increases as thealgorithm progresses and its neighbors are colored. We know of no MIS application, thatdoes not have a quality metric to maximize - thus it is of practical importance that anMIS algorithm can accommodate the use of heuristics e�ectively. Our method can stillimplement the \forall" loops, with a serial heuristic, i.e. we can iterate over the verticesin Vp in any order that we like. To incorporate static heuristics globally (i.e. a rankingof vertices), one needs to augment our rules and modify SMMA, see [1] for details, but in



60doing so we lose our complexity bounds, in fact if one assigns a random rank to all verticesthis algorithm would degenerate to the random algorithms described in [60, 50].To demonstrate correctness of SMMA we proceed as follows: show termination;show that the computed set I is maximal; and show that independence of I = fv 2 V jv:state = selectedg is an invariant of the algorithm.� Termination is simple to prove and we do so in x5.2.4.� To show that I is maximal we can simply note that if v:state = deleted for v 2 V , vmust have a selected vertex v1 2 v:adjac as the only mechanism to delete a vertex isto have a selected neighbor do so. All deleted vertices thus have a selected neighborand they can not be added to I and maintain independence, hence I is maximal.� To show that I is always independent �rst note that I is initially independent - asI is initially the empty set. Thus it su�ces to show that when v is added to I , inline 7 of Figure 5.3, no v1 2 v:adjac is selected. Alternatively we can show thatv:state 6= deleted in line 7, since if v can not be deleted then no v1 2 v:adjac can beselected. To show that v:state 6= deleted in line 7 we need to test three cases for theprocessor of a vertex v1 that could delete v:{ Case 1) v1:proc < p: v would have blocked v1:proc from selecting v1, becausempivs(v1:adjac) � v:proc = p > v1:proc, so the test on line 6 would not havebeen satis�ed for v1 on processor v1:proc.{ Case 2) v1:proc = p: v would have been deleted, and not passed the test online 5, as this processor selected v1 and by de�nition there is only one thread ofcontrol on each processor.{ Case 3) v1:proc > p: as mpivs(v:adjac)� v1:proc > p thus p 6� mpivs(v:adjac)the test on line 6 would not have succeeded, line 7 would not be executed onprocessor p.Further we should show that a vertex v with v:state = selected can not be deleted,and v:state = deleted can not be selected. For a v to have been selected by p it must havebeen selectable by p (i.e. fv1 2 v:adjac j v1:proc > p, v1:state 6= deletedg = ;). Howeverfor another processor p1 to delete v, p1 must select v1 (p1 = v1:proc), this is not possiblesince if neither v nor v1 are deleted then only one processor can satisfy line 6 in Figure



615.3. This consistency argument is developed further in x5.2.4. Thus, we have shown thatI = fv 2 V j v:state = selectedg is an independent set and, if SMMA terminates, I ismaximal as well.5.2.3 Distributed memory algorithmFor a distributed memory version of this algorithm we use a message passingparadigm and de�ne some high level message passing operators. De�ne send(proc;X;Action)and receive(X;Action) - send(proc;X;Action) sends the object X and procedure Actionto processor proc, receive(X;Action) receives this message on processor proc. Figure 5.4shows a distributed memory implementation of our MIS algorithm running on processor p.We have assumed that the graph has been partitioned to processors 1 to P , thus de�ningVp, V Sp , V Lp , V Bp , and v:proc for all v 2 V .while fv 2 Vp j v:state = undoneg 6= ;forall v 2 V Bp - - implementation of Rule 1if v:state = undone thenif p � mpivs(v:adjac) then - - implementation of Rule 2Select(v)proc set  fproc j v 2 V Sprocg � pforall proc 2 proc set send(proc; v; Select)while receive(v; Action)if v:state = undone then Action(v)forall v 2 V Lp - - implementation of Rule 1if v:state = undone thenif p � mpivs(v:adjac) then - - implementation of Rule 2Select(v)if v1 2 V B thenproc set  fproc j v1 2 V Sprocg � pforall proc 2 proc set send(proc; v1; Delete)I  fv 2 V j v:state = selectedgFigure 5.4: Asynchronous distributed memory MIS algorithm (ADMMA) on processor p



62procedure Select(v)v:state selectedforall v1 2 v:adjacDelete(v1)procedure Delete(v1)v1:state deletedFigure 5.5: ADMMA \Action" procedures running on processor pA subtle distinction must now be made in our description of the distributed mem-ory version of the algorithm in Figure 5.4 and 5.5: vertices (e.g. v and v1) operate on localcopies of the objects and not to a single shared object. So, for example, an assignment tov:state refers to assignment to the local copy v on processor p. Each processor has a copy ofthe set of vertices V Ep = Vp[V Sp , i.e. the local vertices Vp and one layer of \ghost" vertices.Thus all expressions refer to the objects (vertices) in processor p's local memory.Note that the value of mpivs(v:adjac) monotonically decreases as v1:state (v1 2v:adjac) are deleted, thus as all tests to select a vertex, are of the form p � mpivs(v:adjac)some processors have to wait for other processors to do their work (i.e. select and deletevertices). In our distributed memory algorithm in Figure 5.4 the communication timeis added to the time that a processor may have to wait for work to be done by anotherprocessor; this does not e�ect the correctness of the algorithm but it may e�ect the resultingMIS. Thus ADMMA is not a deterministicMIS algorithm; although the synchronous version- that we use for our numerical results - is deterministic for any given partitioning.The correctness for ADMMA can be shown in a number of ways, but �rst we de�nea weaving monotonic path (WMP) as a path of length t in which each consecutive pair ofvertices ((vi,vj) 2 E) satis�es vi:proc < vj :proc, see Figure 5.6.
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Figure 5.6: Weaving monotonic path (WMP) in a 2D FE meshOne can show that the semantics of ADMMA run on a partitioning of a graphis equivalent to a random algorithm with a particular set of \random" numbers. Alterna-tively, we can use the correctness argument from the shared memory algorithm and showconsistency in a distributed memory environment. To do this �rst make a small isomorphictransformation to ADMMA in Figure 5.4:� Remove v:state  selected in Figure 5.5, and replace it with a memoization of v soas to avoid \selecting" v again.� Remove the \Select" message from Figure 5.4 and modify the Select procedure inFigure 5.5 to send the appropriate \Delete" messages to processors that \touch"v1 2 v:adjac.� Rede�ne I to be I = fv 2 V j v:state 6= deletedg at the end of the algorithm.� Change the termination test to: while (9v1 2 v:adjac j v 2 Vp; v:state 6= deleted; v1:state 6=deleted), or simply while (I is not independent).This does not change the semantics of the algorithm but removes the selectedstate from the algorithm and makes it mathematically simpler (although less concrete of adescription). Now only Delete messages need to be communicated and v:state deleted isthe only change of state in the algorithm. De�ne the directed graph GWMP = (V S ; EWMP ),EWMP = f(v; w) 2 E j v:proc < w:procg; in general GWMP is a forest of acyclic graphs.Further de�ne GWMPp = (V Sp ; EWMPp ), EWMPp = f(v; w) 2 E j w:state 6= deleted; v:proc =pg. GWMPp is the current local view ofGWMP with the edges removed for which the \source"



64vertices have been deleted. Rule 2 can now be restated: processor p can only select avertex that is not the end of an edge in EWMPp . Processors deletes \down stream" edgesin EWMP and send messages so as other processors can delete their \up stream" copiesof these edges, thus GWMPp is pruned as p deletes vertices and receives delete messages.Informally, consistency for ADMMA can be inferred as the only information 
ow (explicitdelete messages between processors) moves down acyclic graphs in GWMP ; as the test,(8v1 2 v:adjac j v1:proc � p or v1:state = deleted) for processor p to select a vertex v,requires that all edges (in EWMP ) to v are \deleted". Thus the order of the reception ofthese delete messages is inconsequential and there is no opportunity for race conditions orambiguity in the results of the MIS. More formally we can show that these semantics insurethat I = fv 2 V j v:state 6= deletedg is maximal and independent:� I is independent as no two vertices (in I) can remain dependent forever. To showthis we note that the only way for a processor p to not be able to select a vertex vis for v to have a neighbor v1 on a higher processor. If v1 is deleted then p is free to\select" v. Vertex v1 on processor p1 can in tern be selected unless it has a neighborv2 on a higher processor. Eventually the end of this WMP is reached and processorpt processes vt and thus releases pt�1 to select vt�1 and on down the line. Thereforeno pair of undone vertices remains, and I is eventually be independent.� I is maximal as the only way for a vertex to be deleted is to have a selected neighbor.To show that no vertex v that is \selected" can ever be deleted, as in our sharedmemory algorithm, we need to show that three types of processors p1 with vertex v1can not delete v.{ For p = p1: we have the correctness of the serial semantics of BMA to ensurecorrectness, i.e. v1 would be deleted and p would not attempt to select it.{ For p > p1: p1 will not pass the mpivs(v1:adjac) test as in the shared memorycase.{ For p < p1: p does not pass the mpivs(v1:adjac) and will not \select" v in the�rst place.Thus I is maximal and independent.



655.2.4 Complexity of the asynchronous maximal independent set algo-rithmIn this section we derive the complexity bound of our algorithm under the PRAMcomputational model. To understand the costs of our algorithm we need to bound the costof each outer iteration, as well as, bound the total number of outer iterations. To do thiswe �rst make some restrictions on the graphs that we work with and the partitions thatwe use. We assume that our graphs come from physical models, that is vertices are onlyconnected by an edge to its nearest neighbors so the maximum degree � of any vertex isbounded. We also assume that our partitions satisfy a certain criterion (for regular mesheswe can illustrate this criterion with regular rectangular partitions and a minimum logicaldimension that depends only on the mesh type). We can bound the cost of each outeriteration by requiring that the sizes of the partitions are independent of the total numberof vertices n. Further we assume that the asynchronous version of the algorithm is madesynchronous by including a barrier at the end of the \receive" while loop, in Figure 5.4,at which point all messages are received and then processed in the next forall loop. Thissynchronization is required to avoid more than one leg of a WMP from being processed ineach outer iteration. We need to show that the work done in each iteration on processor pis of order Np (Np = jVpj). This is achieved if we use O(n) processors and can bound theload balance (i.e. maxfNpg=minfNpg) of the partitioning.LEMMA 3.1. With the synchronous version of ADMMA, the running time of thePRAM version of one outer iteration in Figure 5.4 is O(1) = O(n=P ), if maxfNpg=minfNpg =O(1) Proof. We need to bound the number of processors that touch a vertex v i.e.jvjproc � ���proc j v 2 V Sproc��� In all cases jvjproc is clearly bounded by �. Thus, max jvjproc �Npis O(1) and is an upper bound (and a very pessimistic bound) on the number of messages sentin one iteration of our algorithm. Under the PRAM computational model we can assumethat messages are sent between processors in constant time and thus our communicationcosts in each iteration is O(1). The computation done in each iteration is again proportionalto Np and bounded by � �Np, the number of vertices times the maximum degree. Thisis also a very pessimistic bound that can be gleaned by simply following all the executionpaths in the algorithm and successively multiplying by the bounds on all of the loops (�



66and Np). The running time for each outer iteration is therefore O(1) = O(n ��=P ).� Notice for regular partitions jvjproc is bounded by 4 in 2D, and 8 in 3D, and thatfor optimal partitions of large meshes jvjproc is about 3 and 4 for 2D and 3D respectively.The number of outer iterations, in Figure 5.4, is a bit trickier to bound. To do this we lookat the mechanism by which a vertex fails to be selected.LEMMA 3.2. The running time in the PRAM computational model, of ADMMA,is bounded by the maximum length weaving monotonic path in G.Proof. To show that the number of outer iterations is proportional to the maximumlength WMP in G, we need to look at the mechanism by which a vertex can fail to be selectedin an iteration of our algorithm and thus potentially require an additional iteration. For aprocessor p1 to fail to select a vertex v1, v1 must have an undone neighbor v2 on a higherprocessor p2. For vertex v2 to not be selectable, v2 in turn must have an undone neighborv3 on a higher processor p3 and so on until vt is the top vertex in the WMP. The vertex vtat the end of a WMP is be processed in the �rst iteration as there is nothing to stop vt:procfrom selecting or deleting vt. Thus, in the next iteration, the top vertex vt of the WMPhas been either selected or deleted; if vt was selected then vt�1 has been deleted and theUndone WMP (UWMP), a path in GWMP , is at most of length t � 2 after one iteration;and if vt was deleted (the worst case) then the UWMP could be of at most length t � 1.After t outer iterations the maximum length UWMP is of length zero, thus all vertices areselected or deleted. Therefore, the number of outer iterations is bounded by the longestWMP in the graph.� COROLLARY 3.1. ADMMA will terminate.Proof. Clearly the maximum length of a WMP is bounded by the number ofprocessors P . By LEMMA 3.2 ADMMA will terminate in a maximum of P outer iterations.� To attain our desired complexity bounds, we want to show that a WMP can notgrow longer than a constant. To understand the behavior of this algorithm we begin witha few observation about regular meshes. Begin by looking at a regular partitioning of a2D �nite element quadrilateral mesh. Figure 5.6 shows a 2D mesh and a partitioning with



67regular blocks of four (2 � 2) and a particular processor order. This is just small enoughto allow for a WMP to traverse the mesh inde�nitely, but clearly a nine (3 � 3) vertexpartitions would break this WMP and only allow it walk around partition intersections.Note that the (2 � 2) case would require just the right sequence of events to happen on allprocessors for this WMP to actually govern the run time of the algorithm. On a regular 3D�nite element mesh of hexahedra the WMP can coil around a line between four processorsand the required partition size, using the same arguments as in the 2D case, would be �vevertices on each side (or one more than the number of processors that share a processorinterface line).For irregular meshes one has to look at the mesh partitioning mechanism employed.Partitions on irregular meshes in scienti�c and engineering applications generally attemptto reduce the number of edges cut (i.e. ���ES���) and balance the number of vertices on eachpartition (i.e. jVpj � p=n � 1). We assume that such a partitioner is in use and make a fewgeneral observations. First the partitions of such a mesh will tend to produce partitionsin the shape of a hexagon in 2D for a large mesh with relatively large partitions. Thisis because the partitioner is trying to reduce the surface to volume ratio of each partition.These partitions are not likely to have skinny regions where a WMP could jump through thepartition, and thus the WMP is relegated to following the lines of partition intersections.We do not present statistical or theoretical arguments as to the minimum partition size Nthat must be employed to bound the growth of a WMP for a given partitioning method;though clearly some constant N exists that, for a give �nite element mesh type and a givenreasonable partitioning method, will bound the maximum WMP length by a constant. Thisconstant is roughly the number of partitions that come close to each other at some point,an optimal partitioning of a large D dimensional mesh will produce partitioning in whichD+ 1 partitions meet at any given point. Thus, when a high quality mesh partitioner is inuse, we would expect to see the algorithm terminate in at most four iterations on adequatelywell partitioned and sized three dimensional �nite element meshes.5.2.5 Numerical resultsWe present numerical experiments on an IBM SP with 80, 120 Mhz, Power2(P2SC) processors at Argonne National Laboratory. An extended version of the FiniteElement Analysis Program (FEAP)[36], is used to generate out test problems and produce



68our graphics. We use ParMetis [53] to calculate our partitions, and PETSc [10] for ourparallel programming and development environment. Our code is implemented in C++,FEAP is implemented in FORTRAN, PETSc and ParMetis are implemented in C. We wantto show that our complexity analysis is indicative of the actual behavior of the algorithmwith real (imperfect) mesh partitioners. Our experiments con�rm our PRAM complexitymodel is indicative of the performance one can expect with practical partitions on graphsof �nite element problems. Due to a lack of processors we are not able to investigate theasymptotics of our algorithm throughly.Our experiments are used to demonstrate that we do indeed see the behavior thatour theory predicts. Additionally we use numerical experiments to quantify lower boundon the number of vertices per processor that our algorithm requires before growth in thenumber of outer iterations is observed. We use a parameterized mesh from solid mechanicsfor our test problem. This mesh is made of eight vertex hexahedral trilinear \brick" elementsand is almost regular; the maximum degree � of any vertex is 26 in the associated graph.Figure 5.7 shows one mesh (13,882 vertices). The other meshes that we test are of the samephysical model but with di�erent scales of discretization (this problem is referred to as P1in later chapters.
Figure 5.7: 13,882 vertex 3D FE meshWe add synchronization to ADMMA on each processor by receiving all messagesfrom neighboring processors in each iteration, to more conveniently measure the maximumlength WMP that actually governs the number of outer iterations. Table 5.2.5 shows theresults of the number of iterations required to calculate the MIS. Each case was run 10times, as we do not believe that ParMetis is deterministic, but all 10 iteration counts were



69identical, thus it seems that this did not e�ect any of our results. A perfect partitioning ofa large D-dimensional mesh with a large number of vertices per processor results in D + 1processors intersecting at a \point", and D partitions sharing a \line". If these meshesare optimal we can expect that the length of these lines (of partition boundaries) are ofapproximately uniform length. The length of these lines required to halt the growth ofWMPs is D+ 1 vertices on an edge, as discussed in x5.2.4. If the approximate average sizeof each partition is that of a cube with this required edge length, then we would need about64 vertices per partition to keep the length of a WMP from growing past 4. This assumesthat we have a perfect mesh, which we do not, but none the less this analysis gives anapproximate lower bound on the number of vertices that we need per processor to maintainour constant maximum WMP length. ProcessorsVertices 8 16 24 32 40 48 56 64 72 80427 3 3 3 3 4 4 4 4 6 61,270 2 4 3 3 4 4 4 3 4 32,821 3 3 4 3 3 3 4 3 4 45,296 2 2 3 3 3 3 4 3 3 38,911 3 3 4 3 4 3 4 3 3 313,882 3 3 3 3 3 3 3 3 3 3Table 5.1: Average number of iterationsFigure 5.8 shows a graphic representation of this data for all partitions. The growthin iteration count for constant graph size is reminiscent of the polylogarithmic complexityof 
at or vertex based random MIS algorithms [50]. Although ParMetis does not specifythe ordering of processors, it is not likely to be very random. These results show thatthe largest number of vertices per processor that \broke" the estimate of our algorithmscomplexity bound is about 7 (6.5 average) and the smallest number of vertices per processorthat stayed at our bound of 4 iterations was also about 7 (7.3 average). To demonstrateour claim of O(1) PRAM complexity we only require that there exists a bound N on thenumber of vertices per processor that is required to keep a WMP form growing beyondthe region around a point where processors intersect. These experiments do not show anyindication that that such a N does not exist. Additionally these experiments show thatour bounds are quite pessimistic for the number of processors that we were able to use.



70This data suggests that we are far away from the asymptotics of this algorithm, that is, weneed many more processors to have enough of the longest WMPs so that one consistentlygoverns the number of outer iterations.
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715.3 Maximal independent set heuristicsThis section discusses heuristics useful in optimizing the quality of multigrid re-striction operators. These methods use coordinate data available in all �nite element simu-lations, and we also employ some element data: element type (e.g. tetrahedra, quadrilateralshell, etc.) and element connectivity. We use this data to categorize topological elementsof the �nite element mesh, and use this information to modify the graph used in the MISalgorithm to improve solver performance. We also show how these heuristics can be appliedglobally on parallel platforms, as well as a simple method to get the coarse grids to moree�ectively \cover" the �ne grids.5.3.1 Automatic coarse grid creation with unstructured meshesThis section introduces the components that we use for the automatic constructionof coarse grids on unstructured meshes, but �rst we state what we want our coarse grids tobe able to do. The goal of the coarse grids in multigrid is to approximate the low frequencyerror in the current grid. Each successive grid's �nite element function space should (witha drastically reduced vertex set) approximate, as best as it can, the highest frequency (oreigenfunctions) of the current grid. That is with say 10% of the vertices it is natural toexpect that one could only represent the lowest 10% of the �ne grid spectra well.The coarse grid functions should approximate the highest part of this lower partof the spectrum as well as possible. It is not possible to satisfy this criterion directly (onunstructured grids), but a natural heuristic is to represent the geometry as well as possiblewith a much smaller set of vertices. One promising approach is to use computationalgeometry techniques to characterize features and maintain them on the coarser grids [81].One popular method is to use a maximal independent set as a heuristic to evenly coarsenthe vertex set, as discussed in the last section. If vertices are added to the MIS randomlythen the MIS is expected to be a good representation of the �ne grid in the sense of evenlycoarsening the grid points and maintain the feature characteristics of the mesh. An MIS isnot unique in general, and an arbitrary MIS is not likely to perform well as we show below,thus we use heuristics to improve performance.We motivate our approach by �rst looking at the structured multigrid algorithm.We can characterize the behavior of multigrid on structured meshes, as shown in Figure5.9, as: select every other vertex (starting from the boundary), in each dimension, for use



72in the coarse grid.
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2 Figure 5.9: Multigrid coarse vertex set selection on structured meshesTo apply multigrid to unstructured meshes it is natural to try to imitate thebehavior of the structured algorithm in hopes of imitating its success. Consider that, inaddition to evenly coarsening the vertex set, the coarse grids in Figure 5.9 also emphasizethe boundaries. One description of multigrid meshes on regular grids is: place each vertexv in a topological category of dimension d, for instance, corners (d = 0), edges (d = 1),surfaces (d = 2), and interiors (d = 3). Note, we overload edges here to mean a topologicalfeature and not a graph edge - the type of \edge" should be obvious from the context in thefollowing discussion. Given these categories we have collections of features for each category(e.g. a set of 3D connected surface vertices bounded by edge vertices would be one face inthe set of faces in the problem). Notice that the regular mesh in Figure 5.9 produces anMIS within each feature. This section discusses algorithms to implement these observationsand provide numerical experiments on model problems in linear elasticity. Note, Guillardand Chan and Smith also use simple 2D heuristics to preserve boundaries and emphasiscorners [44, 23].Maximal independent set algorithmsRecall the basic greedy MIS algorithm in Figure 5.10, which we discussed in x5.2.There is a great deal of 
exibility in the order that vertices are chosen in eachiteration of the algorithm. Herein lies a simple opportunity to apply a heuristic, as the �rst



73forall v 2 Vif v:state = undone thenv:state selectedforall v1 2 v:adjacv1:state deletedI  fv 2 V j v:state = selectedgFigure 5.10: Basic MIS algorithm for the serial construction of an MISvertex chosen is always selectable and the probability is high that vertices which are chosenearly are also selectable. Thus if an application can identify vertices that are \important"then those vertices can be ordered �rst and so that a less important vertex can not delete amore important vertex. We can now decide that corners are more important than edges andedges are more important than surfaces and so on, and order the vertices with all corners�rst, then edges, etc. With this heuristic in place and the basic MIS algorithm in Figure5.10 we can guarantees that the number of edge vertices on the coarse grid (in each edgesegment) satis�es ���V coarseedge ��� � ��V fineedge ���23 for 2D meshes; whereas a valid MIS could remove alledge and corner vertices from the graph, which would be disastrous, as is shown in x5.3.7.Parallel maximal independent set algorithmsThe order in which each processor traverses the local vertex list can be governedby our heuristics although the global application of a heuristic requires an alteration in theMIS algorithm in x5.2. Our partition based MIS algorithm requires that vertices v are givean immutable data member v:topo; in the MIS algorithm, processor p can select a vertex vonly if f8v1 2 v:adjac j v1:state 6= deletedg:v1:topo < v:topo or (v1:topo = v:topo and v1:proc < v:proc)This replaces the test expression in line 6 of Figure 5.3.5.3.2 Topological classi�cation of vertices in �nite element meshesOur methods are motivated by the intuition that the coarse grids of multigridmethods must represent the boundary of the domain well in order to approximate thefunction space of the �ne mesh well, which is necessary for multigrid methods to be e�ective



74[44, 23]. Intuitively this can be done by emphasizing the vertices that \de�ne" the domain.Note, we de�ne a domain in a slightly non-standard way as to mean a contiguous region ofthe real �nite element domain with a particular material property, thus for our discussionthe boundary of the PDE proper are augmented with boundaries between di�erent materialtypes. If the domain is convex then a convex hull is useful in reasoning about how to bestclassify the vertices. Vertices that are on the convex hull should be given more emphasisthe those that are not (i.e. interior vertices). Vertices that are required to de�ne the convexhull are likewise more important than vertices that simply lien the convex hull. Domainsof interest are by no means necessarily convex, but the idea of emphasizing vertices bytheir contribution to de�ning the boundary of a domain is useful in the exposition of ourmethods.The �rst type of classi�cation of vertices is to �nd the exterior vertices - if con-tinuum elements are used then this classi�cation is trivial. For non-continuum elementslike plates, shells and beams, heuristics such as minimum degree could be used to �nd anapproximation to the \exterior" vertices, or a combination of mesh partitioners and con-vex hull algorithms could be used. For the rest of this section we assume that continuumelements are used and so a boundary of the domains, represented by a list of facets or 2Dpolygons, can be de�ned. The exterior vertices give us our �rst vertex classi�cation fromthe last section: interior vertices are vertices that are not exterior vertices. Exterior verticesrequire further classi�cation, but �rst we need a method to automatically identify faces inour �nite element problems.5.3.3 A simple face identi�cation algorithmTo describe our algorithm we assume that a list of facets facet list has beencreated of the boundaries of the �nite element mesh. Assume that each facet f 2 facet listhas calculate its unit normal vector f:norm. Assume that each facet f has a list of facetsf:adjac that are adjacent to it. With these data structures, and a list with with AddTailand RemoveHead functions with the obvious meaning, we can calculate a face ID for eachfacet with the algorithm shown in Figure 5.11.This algorithm simply repeats a breadth �rst search, of trees rooted at an arbitraryundone facet, which is pruned by the requirement that a minimum angle (arccos TOL) bemaintained by all facets in the tree relative to the root. This heuristic is a simple way to



75forall (f 2 facet list) f:face ID 0Current ID 0forall f 2 facet listif f:face ID = 0list ffgnorm f:normCurrent ID Current ID + 1while list 6= ;f  list:RemoveHeadf:face ID Current IDforall f1 2 f:adjac TOL, �1 < TOL � 1, is a user selected toleranceif normT � f1:norm > TOL and f1:face ID = 0list:AddTail(f1)Figure 5.11: Face identi�cation algorithmidentify faces (or manifolds that are somewhat \
at") of the boundaries in the mesh.These faces are useful for two reasons:� Topological categories for vertices, used in the heuristics of x5.3.3, can be inferredfrom these faces:{ A vertex attached to only one face is in the interior of a surface.{ A vertex attached to two di�erent faces is in the interior of an edge.{ A vertex attached to more than two di�erent faces is a corner.� Vertices not associated with the same faces should not interact with each other in theMIS algorithm.This second criterion is discussed in the next section.5.3.4 Modi�ed maximal independent set algorithmWe now have all of the pieces that we need to describe the core of our method.First we classify vertices and ensure that a vertex of lower rank does not suppress a vertexof higher rank - this was done with a slight modi�cations to standard MIS algorithms in



76x5.3.1. Second we want to maintain the integrity of the \faces" in the original problem asbest we can. The motivation for this second criterion can be seen in Figure 5.12.
Fine Grid

Coarse Grid

Deleted Vertex

Selected VertexFigure 5.12: Poor MIS for multigrid of a \shell"If the �nite element mesh has a thin region then the MIS as described in x5.3.1 caneasily fail to maintain a cover of the vertices in the �ne mesh. This comes from the abilityof the vertices on one face to decimate the vertices on an opposing face as shown in Figure5.12. This phenomenon could be mitigated by randomizing the order that the vertices areadded to the MIS, at least within a vertex type. But randomization is not good enough asthese skinny regions tend to lower the convergence rate of iterative solvers, so we need todo something better.A simple �x for this problem is to modify the graph to which we apply the MISalgorithm - we want to maintain the same vertices in the graph, but will reduce the edge set.To avoid the problems illustrated in Figure 5.12, we can look at our method of classifyingvertices again:� A vertex attached to only one face is in the interior of a surface.� A vertex attached to two di�erent faces is in the interior of an edge.� A vertex attached to more than two di�erent faces is a corner.Now we claim that by removing all edges between vertices that are not attached toa common face, we force the MIS to be a more \logical" and economical (in terms of solverperformance) representative of the �ne mesh, as shown in Figure 5.13. For instance wedo not want corners to delete a edge vertex with which it does not share an exterior facet.Another example is that we do not want edge vertices to delete edges with which it does not



77share a face (this is the most e�ective heuristic in this example). And �nally we augmentour heuristic and not allow corners to be deleted at all - this could be problematic on somemeshes that have many initial \corners", as de�ned by our algorithm, and a reclassi�cationof the remeshed vertices on coarse meshes is advisable.
Figure 5.13: Original and fully modi�ed graphWe are now free to run our MIS algorithm on this modi�ed graph, Figure 5.14shows and example of a possible MIS and remeshing.

Fine Grid

Coarse GridFigure 5.14: MIS and coarse mesh5.3.5 Vertex ordering in MIS algorithm on modi�ed �nite element graphsAn additional degree of freedom, in this algorithm as described thus far, is theorder of the vertices within each category. Thus far we have implicitly ordered the verticesby topological category; the ordering within each category can also be speci�ed. Two simpleheuristics can be used to order the vertices: random order, or a \natural" order. Meshes may



78be initially ordered in either a block regular order (i.e. an assemblage of logically regularblocks), but this depends on the mesh generation method used. Initial vertex orders canalso be ordered in a cache optimizing order [82] like Cuthill-McKee. Both of these orderingtypes are what we call natural orders, and we assume that the \initial" order of our meshis of this type (if not then we can make it so). The MISs produced from natural orderingstend to be rather dense, random ordering on the other hand tend to be more sparse. Thatis the MISs with natural orderings tend to be larger than those produced with randomorders. Note that for a uniform 3D hexahedral mesh, the asymptotics of the size of theMIS is bounded from above by 1=23, and from below by 1=33 as the largest MIS will pickevery second vertex and the smallest MIS will select every third vertex; natural and randomorderings are simple heuristics to approach these bounds.Small MISs are preferable as this means that there is less work to be done onthe coarser mesh, also fewer levels are required before the coarsest grid is small enough tosolve directly, but care has to taken to not degrade the convergence rate of the solver bycompromising the quality if the coarse grid representation. In particular, as the boundariesare important to the coarse grid representation it may be advisable to use natural orderingfor the exterior vertices and a random ordering for the interior vertices - we use this approachin many of our numerical experiments.Meshing of the vertex set on the coarse gridThe vertex set for the coarse grid remains to be meshed - this is necessary inorder to apply �nite element shape functions to calculate the restriction operator. We usea standard Delaunay meshing algorithm to give us these meshes. This is done by puttingthe mesh inside of a bounding box, thus adding dummy vertices to the coarse grid set, andthen meshing this to produce a mesh that covers all �ne grid vertices. The tetrahedronattached to the bounding box vertices are removed and the �ne grid vertices within thesedeleted tetrahedron are added to a list of \lost" vertices (lost list).With this body we continue to remove tetrahedra from the mesh that connectvertices that were not \near" each other on the �ne mesh (recall the vertex set are stillnested), and that do not have any vertices that lie \uniquely" within the tetrahedron.De�ne a vertex v to lie uniquely in a tetrahedron if v lies completely within the tetrahedraand not on its surface, or there is no adjacent tetrahedra to which v can be added. More



79precisely if a vertex's shape function values are all larger than some small tolerance � (weuse only linear shape functions), or there is not an adjacent tetrahedra that can \accept"the vertex, then that tetrahedra is deemed necessary and not removed. We also use amore aggressive phase in which we use a more negative, though still small, tolerance, to tryto remove more tetrahedra - but the \orphaned" vertices are added to the lost list. Theresolution of the vertices in the lost list is discussed in x5.3.6.5.3.6 Coarse grid cover of �ne gridThe �nal optimization that we would like to employ is to improve the cover of thecoarse mesh on the �ne vertex set. With these coarse grids constructed the interpolationoperators are calculated by evaluating standard �nite element element shape functions ofthe element to which the �ne grid vertex is associated. Each �ne grid vertex is associatedwith an element on the coarse grid - the element that covers the �ne grid vertex. In generalhowever some �ne grid vertices (the lost list from the previous section) will fail to be coveredby the coarse grid as shown in Figure 5.14. This problem can be solved in one of two ways:�nd a nearby element and use it (thus extrapolate), or move the vertices on the coarse gridso as to cover all �ne grid vertices. We can use the extrapolation of an element that doesnot cover a �ne mesh point, the extrapolation values will simply not all be between zero andone. Intuition tells us however that interpolation is better than extrapolation. Alternativelyone can move the coarse grid vertex positions to cover the �ne vertices in lost list.The optimal coarse grid vertex positions (or an approximation to them) couldperhaps be constructed with the use of interpolation theory to provide cost functions, andlinear or nonlinear programming. We have instead opted for a simple, greedy algorithm thatiteratively traverses the exterior vertices of the coarse mesh and applies a simple algorithmto try to cover the uncovered vertices that are near it. First we de�ne a list ext neighc,for each coarse grid vertex c, that contains all of the vertices attached to all of the exteriorfacets to which c is attached. We de�ne a list lost listc for each coarse grid vertex c, and putthe vertices v in lost list into the list of the coarse grid vertex to which v is closest; lost listcis then expanded to include the vertices in lost listi for each vertex i 2 ext neighc. Givena maximum number of outer iterations M , a maximum distance tolmax that a vertex canbe move, and a larger tolerance toldelete to prune the list of potential coarse grid verticesthat can help to cover a �ne grid vertex, the algorithm is as follows



80� do M times: forall c on the exterior of the coarse grid{ Calculate a vector �: the weighted average of the outward normals of the facetsconnected to the coarse grid vertex (c:facet list), weighted by the facet area.{ The normal of each facet that does not have a positive inner product (with this� vector) is added to � until ff 2 c:facet list j f:normT � � < 0g = ;, then � isnormalized to unit length.{ !  1{ forall v 2 lost listc: forall f = (a; b; c) 2 c:facet list� Solve for � in����������� a:x a:y a:z 1b:x b:y b:z 1c:x+ � � �:x c:y + � � �:y c:z + � � �:z 1v:x v:y v:z 1 ����������� = 0:0� if � > toldelete remove v from lost listc� else if � > tolmax: !  tolmax� else if � > 0 and � < !: !  �{ if ! <1� c:cood c:cood+ ! � �� Recalculate the shape functions for all of �ne grid vertices that are withinan element connected to c, c:elems.� For all e 2 c:elems, For all v 2 lost listc: calculate the shape function for vin element e� If all shape values are greater than �� for some small number �, then� Add v to e and remove v from lost listi for all i 2 ext neighc



81Figure 5.15 shows an illustration of what our algorithm might do on our runningexample.
Fine Grid

Coarse GridFigure 5.15: Modi�ed coarse gridFigure 5.16 shows an example of our methods applied to a problem in 3D linearelasticity. The �ne (input) mesh is shown with three coarse grids used in the solution.
Figure 5.16: Fine (input) grid and coarse grids for problem in 3D elasticity



825.3.7 Numerical resultsTo demonstrate the e�ectiveness of the methods that we have discussed we usethree test problems in linear elasticity, shown in Figure 5.17. The problems are chosento exercise the primary problem features that we have tried to accommodate: materialcoe�cient discontinuities, thin \shell" types of features, and curved surfaces. The �rstproblem is of a hard sphere (Youngs modulus E = 1, Poisson ratio � = 0:30) encased in asoft rubber-like material (E = 10�4, � = 0:49 ). The second problems is a steel beam-columnconnection made of thin, poorly proportioned, elements. The third problem is of a tube�xed at one end and loaded at the other end like a cantilever - a thin slit of the rubber-likematerial of the �rst problem runs down the length of one side of the tube. The \sphere"problem has 39,732 equations, the \beam" has 34,460 equations, and the \tube" has 57,600equations. All problems use eight vertex trilinear \brick" elements; the hard material is astandard displacement element [86] and the soft material is a mixed formulation [76].
Figure 5.17: Test problems from linear elasticity: Sphere (39,732 dof), beam-column (34,460dof), tube (57,600 dof)Each problem is solved with a conjugate gradient (CG) solver, to a relative tol-erance of 10�6. Full multigrid is used for the preconditioner, the smoother is CG precon-ditioned by block Jacobi, the number of blocks was reduced by a factor of eight for eachsuccessive level. All problems used three coarse grids, so that the top grid (solved directly)was a few hundred equations in size. We present numerical experiments on an IBM SP(120 MHz Power2 - P2SC). The Finite Element Analysis Program (FEAP)[36], is used togenerate out test problems and produce our graphics. We use ParMetis [53] to calculateour partitions, and PETSC [10] for our parallel programming development environment.Our code is implemented in C++, FEAP is implemented in FORTRAN, and PETSc and



83ParMetis are implemented in C.To demonstrate the e�ectiveness of our methods, we run these test problems with:Pure MIS (no optimizations); Pure MIS with the heuristics of exterior vertices ordered�rst, and interior ordered last and randomly; our modi�ed MIS without the vertex coverheuristics; and �nally all of our optimizations. The solution times and the iteration countsare shown in Figure 5.2.To demonstrate the e�ectiveness of our methods, we run these test problems with:� Pure randomized greedy MIS (no optimizations) [2].� Pure MIS with the heuristic of exterior vertices ordered �rst, and interior ordered lastand randomly x5.3.5.� Our modi�ed MIS x5.3.4, without the vertex cover heuristics x5.3.6� All of our optimizations x5.3.5, x5.3.4, and x5.3.6.The solution times and the iteration counts are shown in Table 5.2.Problem Names Sphere Beam-column TubeNumber of equations 39,732 34,460 57,600Condition K(A) of matrix 7:2 � 106 1:0 � 108 1:8 � 105Number of pre (and post) smoother applications 2 3 3Number of blocks in Jacobi smoother (�ne grid) 240 32 256Pure MIS (no optimizations) 116(58) 201(50) 296(69)Pure MIS w/ exterior ordered 1st, interior last and random 75.1(36) 225(54) 286(70)Modi�ed MIS w/o vertex cover heuristics 56.5(27) 91.0(25) 104(14)Modi�ed MIS w vertex cover heuristics (all optimizations) 56.5(27) 91.0(25) 52.8(9)Matrix vector product time on the �ne grid (sec) 0.0727 0.057 0.0907Table 5.2: Solve time in seconds (number of iterations)These experiments show that our methods provide signi�cant improvement overa random MIS, especially on complex domains. Moving coarse vertices to cover �ne ones,did not help on meshes that do not have curved surfaces, as is expected, and provide someimprovement to meshes with curved surfaces. The vertex orderings, within each categorywhen applicable, a�ects these results a small amount, particularly on the \Pure MIS" data;we see about a 10-15% variance with di�erent randomization schemes. Thus one shouldconsider that the standard deviation rather high for this data - but we have consistently



84observed the dramatic bene�t of the modi�ed MIS, that is re
ected in this data. Thus wefeel that our modi�ed MIS heuristics are e�ective - especially on domains with complexgeometry.5.4 Mesh generationMesh generators have been developed using three basic methods: Advancing front[21, 9, 59, 45], Delaunay [11], and Octree [20]. We use a simple Delaunay method withWatson's insertion algorithm [38]. This method proceeds by trivially meshing a \dummy"envelope of vertices then inserting each vertex into the existing mesh. The algorithm in-variant is that the mesh remain a valid Delaunay mesh after each vertex insertion. Themethod is not highly optimal nor parallelizable but it is simple to implement, moreover wedo not need a parallel Delaunay, the the design of which is an open problem [12].Additionally Delaunay is only well de�ned on vertex sets with no nontrivial copla-nar or cospherical point sets - most algorithms work on these non-general position pointsets although exact arithmetic is required for robustness. Delaunay methods in 3D requirethe evaluation of a 5 by 5 determinant - exactly - although only the sign (negative, zero, orpositive) is required.We use a very e�cient method of adaptive precision arithmetic that is specializedfor the numerical predicates used in Delaunay tessellations [73]. This method achieves itse�ciency by �rst unrolling the loops in the determinant evaluation. After the result hasbeen calculated and intermediate results have been judiciously saved, a backward erroranalysis is performed and if the results of this analysis suggest that the sign of the answercan not be trusted then this processes is repeated back through the intermediate levelsuntil the values of the intermediate results can be trusted and exact arithmetic is usedfor the rest of the calculation. Note, if a set of input points is in general positions (andplain double precision arithmetic is robust) then the only additional cost in this methodis the one backward error analysis (this is about a 10% time penalty). If the points arecospherical then the determinant is zero and the calculation must be done completely inexact arithmetic, otherwise this method allows for as much of the earlier terms to be reused.



855.5 Finite element shape functionsAfter the coarse meshes are created one can simply use standard �nite elementshape functions for the restriction and interpolation operators. Linear (and bilinear ortrilinear) �nite element shape functions are a�ne mappings of a point in space with thevertices of a polytope or element. That is, given a point in space we would like to expressits coordinate as a weighted sum of the coordinates of the element vertices. This in e�ectrequires that the element vertices be used to construct a shape function which has the veryintuitive meaning of the assumed shape of the element, given the displacements of its ver-tices. These shape functions are in general a partition of unity so that any constant functioncan be represented exactly. Note, displacements are the vertex variables for displacementbased �nite element methods, however the vertex variable may, in general, be any physicalquantity - e.g. coordinates, velocities, temperature, pressure, 
ux, or electro magnetic �eld.One needs to �nd the element that contains each �ne grid vertex (j). The �niteelement shape function (for the element) is evaluated, at the location of the �ne grid vertex,for each vertex (I) of the coarse grid element containing j to compute the RIj entry in therestriction operator. Note that in general one needs to search the coarse grid elements to�nd the place for each �ne grid vertex, this can be done in O(log(n)) time with an optimalsearching algorithm, but since our coarse vertices are created from the �ne ones it is possiblefor each vertex to �nd its \parent" in constant time.5.6 Galerkin construction of coarse grid operatorsThe Galerkin construction of the coarse grids requires that three sparse matricesbe multiplied together. In indicial notation (i.e., with the sumi symbol omitted) we haveAcoarseIJ  RIiAfineij RJjThis construction takes about 5 or 6 times as many 
oating point operations (
ops), forhexahedral meshes, as a matrix vector product on the �ner grid, although achieving optimalperformance is di�cult as there are no sparse libraries that currently support a sparse matrixtriple product. We have implemented a distributed memory sparse matrix triple productthat operates on PETSc [10] matrices. We are only able to get about 18-41% of the 
oatingpoint performance that we get in the multigrid iterations on one processor, but this matrix



86triple product a small though not insigni�cant part of the solve, and it scales reasonablywell. The reasons for this lack of performance is three fold:� We have four sparse objects in the matrix triple product and only one in the matrixvector product - this requires much more indirect addressing.� Communication in the matrix triple product requires that a matrix be communicatedinstead of a vector (in the matrix vector product) - matrices are much \heavier"objects than vectors (i.e. they are 2D sparse arrays, whereas vectors are 1D densearrays)� We implemented this, and as the performance of the matrix triple product is not theobject of this research, and it is not a bottleneck in the code, we have devoted alimited (although not insigni�cant) amount of development e�ort to the task.That said, we can brie
y discuss our algorithm and our reasons for the decisions that wemade. We �rst assume that the matrices are ordered in block rows (with compressed sparseblock row storage format), that is each processor \own" a contiguous logical block of thematrix - this is standard practice and is the format used by PETSc.For example a matrix A (for an almost regular block of hexahedral elements) with14,880 dof that has 1,064,988 non-zeros, its restriction matrix R has 1,938 rows (and 14,880columns) with 47,633 non-zeros and the coarse matrix is 1,938 by 1,938 and has 211,982non-zeros. Thus the restriction operator has about 120 as many non zeros as the largersti�ness matrix, and about 14 as many non-zeros as the smaller sti�ness matrix. Fromthis example it is clear that the �ne grid sti�ness matrix is much larger than all of theother matrices combined - thus we wish to begin with the �ne grid matrix in optimizingfor cache performance. This implies the �rst two loops of our iteration, in Figure 5.18,runs sequentially through the �ne grid matrix. This decision now dictates that we accessmatrix entries in R that are stores on another processor, and also that we accumulate o�-processor data to the product matrix Acoarse. Therefore some parts of R are replicatedand communication is required to accumulate the results - but this is more attractive thancommunicating and duplicating parts of the �ne grid matrix.Figure 5.18 does not show many optimizations that are done in practice but isintended to show the details of the computation and the structure of these matrices. Note



87� � pRowStart and pRowEnd are the �rst and last rows on processor pfor i = pRowStart : pRowEndforall j 2 i:columns �� i:columns is the set of adjacencies for vertex ifor II = 1 : 4 for each vertex in :elementI = i:element:vertex[II ]:index�� shape(c) is the scalar value, at coordinate c, of the shape functionshape I = i:element:vertex[II ]:shape(i:coord)for JJ = 1 : 4J = j:element:vertex[JJ ]:indexshape J = j:element:vertex[JJ ]:shape(j:coord)�� Note that AIJ 2 <ndf�ndfAcoarseIJ  AcoarseIJ + shape I �Aij � shape JFigure 5.18: Matrix triple product algorithm running on processor pthat this matrix triple product is, in general, only done once for each �ne grid matrix andso there is no opportunity to amortize the communication costs of the �ne grid matrix inorder to save costs in the communication of the resultant coarse grid matrix.5.7 SmoothersSmoothers are \simple" solvers in and of themselves, x2.3.1, x2.3.2, and x2.4. Ma-trix splitting methods such as Jacobi, Gauss-Seidel and SOR are used frequently althoughthey are not e�ective enough for illconditioned systems. Jacobi and its generalization blockJacobi however is very useful as a smoother in our solver as we shall see. Another popularpreconditioner is a so-called incomplete factorization which calculates a factorization of Athat limits the amount of �ll that occurs [80]. This �ll is responsible for the non-O (n)complexity in factoring and solving �nite element matrices.We use Krylov subspace (x2.3.2) smoothers (x3.3) preconditioned with one leveldomain decomposition methods (x2.4). We have found that the best smoother precondi-tioner, available in PETSc are diagonal, block Jacobi, and overlapping Schwarz - with blockJacobi being our primary method for harder problemsAs we are using (or at least assuming) unstructured grids, the construction of the



88subdomains de�ning the block of the block Jacobi smoother is by no means evident. For-tunately a good solution exists - it is natural to think that we would want \well" shapedsubdomains in a domain decomposition smoother, so as to capture the lowest energy func-tions as is possible with a �xed number of vertices per block - thus improving the constantof \assumption 2" in x3.4.3. We can use our standard mesh partitioners to give us goodpartitions - thus we construct our subdomains with METIS [52].



89Chapter 6Multigrid characteristics on linearproblems in solid mechanicsThis chapter presents numerical studies that are aimed at providing insight intosome of the fundamental challenges in applying iterative methods to the solution of complexproblems in solid mechanics and some characteristics of iterative solvers in general, andmultigrid in particular. Recall that the motivation for using iterative methods is to solvelarge scale problems; we address issues of scale in the following chapters, but �rst we studythe convergence behavior of our solver on some basic classes of problems in linear elasticity.6.1 IntroductionThis section addresses the issues of incompressibility (x6.5), poor aspect ratio ele-ments (x6.6), poor \geometric" conditioning (x6.3), and large jumps in material coe�cients(x6.3,x6.4), via a suite of numerical experiments. But �rst we shall verify that multigridworks in x6.2 - that is, for simple problem in linear elasticity the convergence rate is in-variant to the scale (or \�neness") of discretization. We conclude that multigrid is a verypromising solver of the challenging �nite element problems that are found in many areas ofscience and engineering.



906.2 Multigrid worksOur model problem for this section is a long thin cantilever beam (i.e. all displace-ments fully restrained at one end of a long skinny rectangular prism). We use a regularmesh, with perfect cubic elements, for a 1� 1 � 32 cantilever discretized with N elementsthrough the thickness. A load applied at the end and and use a linear elastic displacementbased element with Poisson ratio of 0:3, shown in Figure 6.1. The load is \o� axis", that isthe load vectors (all parallel) have signi�cant components in all three directions (-1.0 in alldirections, with the axis at the support and the beam being in the positive 1 direction) - thisis signi�cant as we are using Krylov subspace methods and the convergence rate can dependon the nature of the applied load. For example if the applied load were an eigenvector ofthe sti�ness matrix then any (unpreconditioned) Krylov subspace method would convergein one iteration.
Time = 0.00E+00Time = 0.00E+00Figure 6.1: Cantilever with uniform mesh and end load, 4� 4� 128 element mesh, N = 4This problem is meant to demonstrate that multigrid, applied to a model problem,does indeed converge at a rate independent of the scale of discretization. Actually weshow some superlinear convergence; this is a common phenomenon, i.e. better mesheslead to faster convergence with multigrid. Table 6.1 shows the number of iterations, andthe condition number of each matrix. The condition number is estimated from belowby running CG without preconditioning and calculating the extreme eigenvalues of theprojected tridiagonal matrix that CG uses to calculate its (approximate) answer (x3.4.1).This unpreconditioned CG solve was run with a relative residual tolerance of 10�6. Thedrastic increase in the number of iterations shows that these matrices are indeed getting



91harder for CG to solve.Our solver is CG with a full multigrid preconditioner, using a diagonally precon-ditioned CG smoother. We use two iterations in the pre and post smoothers. We declareconvergence when norm of the initial residual has been reduced by a factor of 10�6.N Levels Iterations dof Condition Unpreconditioned iterations2 2 14 1,728 2:9 � 107 4784 3 12 9,600 1:2 � 108 10528 4 10 62,208 4:3 � 108 2200Table 6.1: Multiple discretizations of a cantileverFigure 6.2 shows the convergence history of these problems.
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Figure 6.2: Residual convergence for multiple discretizations of a cantileverNote another phenomenon that is common of iterative solvers, the residual in-creases (jumps) during the �rst few iterations. This jump can sometimes be down; a generalrule of thumb is that the more poorly conditioned the problem the larger this initial jumpis. This section shows that multigrid has a hope of being an e�ective solver for �nite



92element method matrices. We can see that on a trivial problem, multigrid's rate of conver-gence is indeed nearly independent of the condition number of the matrix as re
ected in�ner discretizations - indeed, it improves with size. The next section also uses this modelproblem and shows that multigrid is invariant to changes in material coe�cients - if thematerial interfaces are captured on the coarse grids.6.3 Large jumps in material coe�cients - soft section can-tilever beamIn this section we take the cantilever beam of the last section and add two rows of asoft material in the middle (thus the problem is singular if the soft material has no sti�ness).The N = 8 (62,208 dof) problem is used from the last section - the \soft" material has aPoisson ratio of 0:3 and we parameterize its elastic modulus to range from 1:0 (that of therest of the mesh) down to the point that the matrix is singular to working precision (andCG breaks down). We have encouraged a very regular structure of the coarse meshes byusing the natural vertex order in the maximal independent set algorithm - additionally wehave placed this \soft" layer judiciously so as to produce the \best" coarse grids (withoutchanging the mesh's geometric con�guration). Thus this is very much an arti�cial exampleand it is simply meant to show that indeed \multigrid can work perfectly" for 3D elasticity,with large jumps in material coe�cients, if the problem is perfectly partitioned Table 6.2shows the results in terms of iteration count for these problems. Figure 6.3 shows thelog10Esoft 0 �2 �4 �6 �8Iterations 11 11 12 13 14Condition 4:3 � 108 5:6 � 108 1:5 � 1010 - -Unpreconditioned iterations 2193 2717 6738 - -Table 6.2: Cantilever with soft sectionconvergence history of these problems.The important point to notice here is that the slope of the convergence is the samefor all of the problems. Also notice the \dot" plots in Figure 6.3 of the true residual (i.e.explicit calculation of b � Axk) - the last two problems do not converge to the speci�edtolerance because of the illconditioning caused by these extreme coe�cients.
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946.4 Large jumps in material coe�cients - curved materialinterfaceThis section demonstrates the e�ect of not capturing the geometry perfectly ina mixed coe�cient problem. Figure 5.7 shows a �nite element model of a hard sphereincluded in a \soft" somewhat incompressible material (Poisson ratio of 0:49) [76]. Thedi�culty with this problem is that the coarse grids can not capture the geometry of the �negrids (unless all vertices on the curved surface were retained in the coarse grid). This resultsin �ne grid points on the curved surface being interpolated by points in the interior of thesoft material, thus points of very di�erent character (sti�ness in this case) are \polluting"each other.We use block Jacobi preconditioner for the CG smoother as this is most e�ectivefor this problem x5.7. Our problem has 24,800 dof and we use 150 blocks in the block Jacobipreconditioner for the conjugate gradient smoother in multigrid.Table 6.3 shows the convergence (again with a residual tolerance of 10�6). Figurelog10Esoft 0 �2 �4 �6 �8 �10 �12Iterations 17 19 24 45 55 55 55Condition 6:4 � 104 3:5 � 104 3:5 � 106 3:5 � 108 3:1 � 1010 NA NAUnpreconditioned iterations 926 930 8607 9000+ 9000+ NA NATable 6.3: Iterations for included sphere with soft cover6.4 shows the convergence history of these problems.Thus, unlike the previous example where we were able to capture the materialinterface perfectly on the coarse grids, the convergence rate does degrade as the elasticmodulus of the soft material is reduced.
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966.5 Incompressible materialsThis section investigates the e�ect of incompressible materials on the convergencerate of our solver. We use the 14,800 dof version of the same model as the last section. Weparameterize the Poisson ratio �soft. The ratio of the elastic modulus in the soft material,to that of the hard material, is held at 10�4, Three di�erent smoothers are used, conjugategradients preconditioned with: Jacobi, block Jacobi, and overlapping Schwarz (one layer ofoverlap). Table 6.4 shows the number of iterations for each case as well as the conditionnumber of a smaller version of this problems (see below for more details). Note, we restart�soft 0:3 0:4 0:45 0:49 0:499Jacobi 17 19 22 74 188Block Jacobi 11 13 15 33 126Overlapping additive Schwarz 12 12 16 19 35Condition ( 3; 420 dof version) 1:52 � 106 1:64 � 106 1:70 � 106 1:75 � 106 1:76 � 106Unpreconditioned iterations 5131 5686 6855 8643 9146Table 6.4: Iterations for included sphere with common preconditioners in CG smootherCG every 30 iterations for the data in Table 6.4. Figure 6.5 shows the solve time andconvergence history of these problems with each smoother.We can observe many common characteristics of iterative solvers in this data.First, the condition number of the matrix is not e�ective at predicting the convergencebehavior of these problems as the convergence rate deteriorates drastically whereas thecondition number is hardly e�ected by the higher Poisson ratio. Also we can see that themore expensive preconditioners become economical an the harder problems onlyThe condition number is calculated by calculating the entire spectrum with LA-PACK's \dsyev" [3]. Figure 6.6 shows a plot of the spectrum for �soft = 0:3 to 0:49999,on a 3; 420 dof version of this problem. From this we can see that the Poisson ratio e�ectsonly the eigenvalues in the middle of the spectrum (up to the point where the volumetricsti�ness of the \soft" material is rivaling and surpasses that of the \sti�" material. Thusfor all but the � = 0:49999 the condition number of these problems are virtually identical.The second observation to be made from this data is that the more powerfulpreconditioners are only cost e�ective on the harder problems with the the overlappingSchwarz preconditioner being the most powerful. Note, we are not able to achieve the same
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996.6 Poorly proportioned elementsThis section investigates problems with poorly proportioned elements. It is wellknown that the use of elements with large aspect ratios severely degrades the performance ofiterative solvers [80, 83]. The reasons for this are not well understood; though the conditionnumber of the elements does increase the overall condition of the matrix does not risedramatically. For these tests we use a model of a truncated hollow cone, shown in Figure6.7 with the deformed shape and the �rst principal stress. These elements have aspectratios in of about 12 : 5 � 9 : 1. This problem has 21; 600 dof and a condition number of3:6 � 107 - the total solve required 27:4 seconds (19 iterations) on one node of a Cray T3E.A matrix vector product takes about 0:0283 seconds, thus the total solve time(coarse grid matrix vector products and the actual solve) takes the time required to do� 970 matrix vector products. Figure 6.8 shows the convergence history of this problem.These results show that this method has the potential to be e�ective on thin body elasticityproblems with poor aspect ratio elements. Additionally, in our experience, these types ofproblems bene�t greatly from our heuristics described in x5.3.
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Figure 6.8: Residual convergence for Cone problem6.7 ConclusionThis section has demonstrated many of the characteristics of multigrid solversfor computational mechanics problems on model problems designed to isolate some of themore common components of problems in solid mechanics. We have shown that multigridhas the potential to be an e�ective solver for the challenging problems in industry andacademia. We have identi�ed some of the characteristics of solid mechanics problems thatmake them hard for iterative solvers, e.g. incompressibility, thin elements, large jumps inmaterial coe�cients, and curved surfaces. The next chapter discusses the performance andparallelism issues of multigrid on large scale �nite element problems.



101Chapter 7Parallel architecture andalgorithmic issuesThis chapter discusses general parallelism issues of �nite element codes, archi-tectural details of our parallel �nite element implementation, our parallel �nite elementprogramming model, and parallel algorithmic issues of large scale parallel �nite elementimplementations.7.1 IntroductionWe proceed by discussing parallelism issues in large �nite element codes and \al-gebraic" multigrid methods in x7.2. x7.3 describes our parallel �nite element design andimplementation. We discuss our programming model for the complete parallelization ofan existing large �nite element code with minimal modi�cation to, and no parallel con-structs in, the existing �nite element code. We conclude with algorithmic issues associatedwith optimizing performance of multilevel solvers on common parallel computers in x7.4,by developing algorithms for grid agglomeration, useful in mitigating the inherent paralleline�ciencies of the coarsest grids in multigrid solvers.7.2 Parallel �nite element code structureThis section discuses parallelism issues of �nite element codes and \algebraic"multigrid methods. This section proceeds as follows: x7.2.1 discusses the e�ect of the



102time integrator on the structure of �nite element codes; x7.2.2 discuses parallelism in �-nite element codes; x7.2.3 discuses graph partitioning; x7.2.4 describes parallel computerarchitectures of today; x7.2.5 discusses the need for multiple levels of partitioning on highperformance computers; x7.2.6 touches on overall solver structure and complexity.7.2.1 Finite element code structureHere we review, and the next section will extend, the basic steps of the �niteelement method as listed in x2.2. The �rst four of these steps do not have a signi�cantimpact on the code construction, but the �fth step \Formulate a time integrator for thePDE" does have a major impact on the code construction and problem characteristics.One of the distinctions among �nite element implementations is whether a codeis an \implicit code" or an \explicit code". This is a bit surprising as the time integratormay not be the most distinguishing aspect of a �nite element package. One would thinkthat a \
uid or solid or multiphysics" distinction would be more important. One might alsothink that \linear or nonlinear", or \transient or static" would be a more important way tocategorize a code - yet the \implicit or explicit" descriptor seems to play a far greater rolein the construction of �nite element implementations than one would initially expect.An implicit method must apply the inverse of the linearization (the sparse sti�nessmatrix) of the residual to the residual - this inverse is a dense operator. An explicit methodapplies the inverse of the mass matrix to a vector - the mass matrix can be approximatedwith a \lumped", or \block diagonal," mass matrix e�ectively, and thus its inverse is notdense. Herein lies the source of the di�erence in the structure of implicit and explicit codes.The source of the e�ect of the time integrator on �nite element codes can to somedegree be attributed to the fact that direct solvers have dominated much of the �nite elementcommunity in the past. Direct solvers for the sti�ness matrix have time complexity O(n2)for 3D �nite element problems with n degrees of freedom (dof), whereas the applicationof the elements to form the residual and the application of the inverse of the mass matrixhave time complexity O(n). The result of this fact is that the performance of implicitcodes is dominated by the solver whereas the performance of explicit codes is dominatedby the element application - optimizing performance for these two endeavors requires verydi�erent techniques. Note that although iterative methods are about O(n) in time andspace complexity, and are often more easily parallelized than direct methods, the constants



103of iterative methods (for most interesting �nite element applications) are still much largerthan that of the element code - thus the solver will remain the bottleneck with iterativesolvers also.The optimization of an element formulation requires many di�erent \small" nu-merical operations (e.g., tensor operations in element material constitution, inversions ofsmall Jacobians, sometimes small nonlinear solves, and many other operations), all of whichrequire intimate knowledge of the �nite element formulation. Element optimization has tra-ditionally been done entirely by engineers; whereas direct solver performance is primarilyin the realm of a numerical linear algebraist, as sparse direct solvers are used in many dis-ciplines. Thus the di�erent nature of optimizing implicit and explicit codes is one sourceof the in
uence of the time integrator on the structure of �nite element codes. This disser-tation is concerned with solvers (step seven in x2.2), and thus we assume that an implicittime integrator is in use, or an explicit method that uses preconditioning to \soften" theoperator [65].7.2.2 Finite element parallelismThe parallel implementation of the �nite element method requires that we augmentthe basic steps in x7.2.1 and x2.2. At some point the domain requires partitioning, asinter-processor communication costs are inherently a bottleneck if they are not minimized.Traditionally sparse matrix implementations use a block row (or block column) partitioningof the matrix storage - this implies that a row or nodal partitioning is su�cient to parallelizethe matrix storage, as �nite element matrices are structurally symmetric. A high degreeof scalability requires partitioning all of the work and storage for each vertex and eachelement. Any non-parallel constructs, or signi�cant parts of the code that do not scale well,will in
ict severe performance penalties as the scale of the problems increase.The partitioning, or parallelization, needs to be brought into the system as earlyas possible to allow for the maximum amount of scalability and must itself be parallelizedfor the scale of problems that are of interest to this dissertation. Additionally the back endof the system (the last step in x2.2) should remain parallel for as long as is possible. Wehave elected to draw the line for parallelism of the �nite element system after the meshgeneration but before the partitioning (although if a parallel mesh generator were availableit would be simple to insert); and we go back to the serial code after the solve but before



104the visualization.7.2.3 Parallelism and graph partitioningMesh partitioning is central to parallel computing with unstructured meshes andwe thus discuss some of the basic issues and algorithms involved. Mesh partitioning isthe assignment of each vertex and element to one processor p of the P processors, therebyde�ning a set of local vertices an elements for each processor. Note, we partition elementsand vertices as most of the costs of a �nite implementation can be e�ectively Because ofthe size of our our �nite element problems and the (increasing) ratio of processor speeds tocommunication speeds, we need to have each processor be responsible for many more thanone vertex. The physical nature of �nite element graphs (i.e., vertices communicate onlywith physically close vertices), allows graph partitioning to be very e�ective at reducingthe amount of data required from other processors, which is generally several orders ofmagnitude more expensive to use than local data. Thus, as we want good scalability (atleast at the algorithmic level), a nontrivial nodal partitioning (and the related elementpartitioning) must be computed.Partitioners attempt to minimize communication cost by minimizing the numberof ghost vertices on each processor (ghost vertices are non-local vertices that are connectedto at least one local vertex), and the amount of load imbalance i.e., the maximum amount ofwork for any one processor divided by the average amount of work per processor. In generalone wants to weigh the cost of load imbalance and the cost of a ghost, along with the numberof neighbor partitions, to de�ne an optimization problem. Most partitioning methods tryto minimize edge cuts (as a heuristic to minimizing ghosts), with the constraint that thenumber of vertices per partition are equal within some tolerance. In attempting to optimizethe solution time of an iterative solver it is natural to optimize the performance of the matrixvector product, as this is where a majority of the computation takes place. Also, essentiallyall of the communication takes place in the matrix vector product, thus its optimizationis essential for parallel e�ciency. Thus we can, and do, simplify the partitioning problemto that of optimizing the matrix vector product. This optimization is relatively simple, asopposed to partitioning for sparse matrix factorizations. Not all vertices in a �nite elementproblem are associated with the same amount of computation (especially in domains wheredi�erent physics exist), so it is desirable to not simply place equal number of vertices in



105each partition but to put equal amounts of work (i.e. 
oating point operations and data)in each partition.Partitioners that are of interest today fall into two groups: geometric partitioners[42] and multilevel partitioners [53, 46]. Geometric partitioners have low complexity (aslow as O(1) in PRAM, see x1.7) and use vertex coordinates only to separate the graphinto two roughly equal pieces - applied recursively they can generate partitions with 2kpartitions. These partitioners can be shown to produce partitions with (expected) separatorsizes within a constant factor of optimal i.e., the size of the set of vertices that separates agraph, with bounded aspect ratio elements, into two unconnected pieces is O(nD�1D ), andwithin a constant of optimal load balance [42]. These methods do not however look at theedges in the graph but instead rely on the \physical" nature of �nite element graphs tominimize edge cuts by minimizing the number of vertices \near" a cut.Multilevel partitioners rely on the notion of restricting the �ne graph to a muchsmaller coarse graph, by using maximal independent set or maximal matching algorithms.This process is applied recursively until the graph is small enough that a high quality parti-tioner such as spectral bisection [47] or k-way partitioners can be applied. This partitioningof the coarse problem is then \interpolated" back to the �ner graph - a local \smooth-ing" procedure (e.g., Kernighan-Lin [54]) is then used, at each level, to locally improve thepartitioning. These methods have polylogarithmic in n complexity though they have theadvantage that they can produce more re�ned partitions and can more easily accommodatevertex and edge weights in the graph. We use a multilevel partitioner as a good publicdomain implementation exists - ParMetis [52].Coarse grid partitioningChapter 5 described our method of \promoting" vertices to coarse grids; thischapter has discussed partitioning the �ne grid - we have yet to de�ne the partitioning ofthe coarse grids. We have a natural partitioning for the coarse grids, as our coarse gridvertices are derived from �ne grid vertices. This natural partition is, however, not adequatefor many classes of problems.One must explicitly repartition the coarse grids - even if the �ne grid is perfectlybalanced the coarse grids are in general unbalanced. One source of imbalance is intentional,nonuniform coarsening in the domain [64]. Another source of imbalance is nonuniform



106subdomain topologies (e.g., an area with \line" topology like a cable, and areas with \thin"topology) coarsen at di�erent rates from each other and from \thick body" subdomains(x5.3). On our uniform problems, the load imbalance increases only mildly as we go up thegrid hierarchy; nonuniform problems however develop severe load imbalance and thus werepartition the coarse grids (note, ParMetis provides services to improve existing partitionswith minimal vertex movement).7.2.4 Parallel computer architectureCommon computer architectures of today have a hierarchy of memory storagecomponents. The top of the memory hierarchy are the registers - data must be in registersto be used. Below the registers are often two or three levels of cache, next is main (local)memory, and other processor elements (PE) main memories, then disk, and so on. Movingdata between levels of the memory hierarchy is generally far more expensive than performing
oating point operations on data in registers, thus communication is often the bottleneckin numerical codes. Figure 7.1 shows a schematic of the common computer architectures oftoday.
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107Some sort of partitioning is required for all of these levels, as we see in the nextsection. We explicitly partition once for \
at" machines, and twice for clusters of symmetricmulti-processors (SMPs), which we call \CLUMPs".7.2.5 Multiple levels of partitioningA reason for multiple levels of partitioning is minimize movement of data betweenlevels of the memory hierarchy on todays computers. Our problems (multiple degrees offreedom per vertex) are naturally partitioned for registers, though perhaps not optimally.Local matrix vector products require matrix ordering to optimize cache performance (uti-lizing a graph partitioner is one method [82]).In the case of CLUMPs, we partition our domain to the SMPs �rst, as communi-cation is much faster (at least in theory) within an SMP, we then partition to each processorwithin the SMP. We use a 
at MPI programming model (one thread per processor); themessage passing layer can be optimized with a multiprotocol MPI [62], to communicatemore quickly within an SMP than between SMPs, although the SMP cluster that we use(Blue-TR at LLNL) does not yet have a multiprotocol MPI implementation thus multiplelevels of partitioning is not currently of bene�t. Alternatively a multithreaded matrix vectorproduct could be used, to take advantage of the shared memory, and thus use a non-
atprogramming model for some parts of the code. The purpose of the second partitioningphase, on each SMP, is to minimize the communication within the SMP; even if a multi-threaded matrix vector product were in use, this partitioning would serve to minimize cachemisses on the left hand side vector.7.2.6 Solver complexity issuesFor our overall non-linear solver, we use a Newton-Krylov-Schwarz solution method[55] - that is, our multilevel Schwarz algorithm (discussed in the last chapter) is used asa preconditioner for a Krylov subspace method (discussed in the chapter 2) which in turnis used as an approximate linear solver in an outer Newton iteration (see any numericalanalysis text for a description of Newton's method [56]). The complexity of our system isgoverned primarily by the application of our multigrid preconditioner.Global communication (such as dot products, or other \small" global reductionoperations) are in general required in each of the control steps (e.g., time step selection,



108Newton convergence checking, and solver convergence checking), and within the solver itselfif a Krylov subspace smoother is used - these reductions are the most non-scalable constructsin our algorithms (i.e., the log(P ) or log(n) terms in the PRAM complexity). The constantsfor the log(n) terms are small, but will increasingly become important as the scale ofproblems increases.7.3 A parallel �nite element architectureOur code - ParFeap - is composed of three basic components:� Athena is a parallel �nite element code (without a parallel solver) that uses ParMetis[53] to partition the �nite element graph, then constructs a fully valid \serial" �niteelement problem, and �nally runs a serial research �nite element implementation -Finite Element Analysis Program (FEAP) [36] - to provide a well speci�ed �niteelement problem on each processor.� Epimetheus is an \algebraic" multigrid solver infrastructure that provides a solver toAthena, a driver for Prometheus and an interface to PETSc [10] (x7.3.2) and numericalprimitives not provided by PETSc (i.e., the matrix triple product and a Uzawa solverx10.6).� Prometheus is our restriction operator constructor - the core of the research workfor this dissertation.Athena, Epimetheus, and Prometheus are implemented with about 30,000 lines of C++code, PETSc and ParMetis are implemented in C, and FEAP is implemented in FORTRAN.7.3.1 AthenaWe have developed a highly parallel �nite element code, built on an existing serialresearch \legacy" �nite element implementation. Testing iterative solvers convergence ratesrequires that challenging test problems be used - test problems that test a wide range of�nite element techniques. We needed a full featured �nite element code, but full featured�nite element codes are inherently large, complex, and not easily parallelized. Thus bynecessity we have developed a domain decomposition based parallel �nite element program-ming model, in which a complete �nite element problem is built on each processor. This



109abstraction allows for a very simple though expressive interface, and required only verysimple modi�cations to FEAP.Athena uses ParMetis [53] to calculate a mesh partitioning, and then constructsa fully valid (though not necessarily well posed) �nite element problem for each processor.In addition to the \local" vertices for processor p, prescribed by the vertex partitioning V Lp(x5.2.1), duplicate vertices are required (i.e., \ghost" vertices that are required for somelocal computation but are not in V Lp ). The partitioning also requires duplicate elements,as each partition must have a copy of all elements that touch any local vertex if one wishesto calculate the sti�ness matrix without any communication (although with redundantcomputation). The displacements or Dirichlet boundary conditions must be applied redun-dantly (i.e., on ghosts), whereas the loads (Neumann boundary conditions) must be applieduniquely to maintain the semantics of the problem (as residuals or forces are added intoa global vector) - if elements are not redundantly applied (otherwise the residuals for theghost vertices are ignored). Materials are speci�ed by index, bound to the elements in thepartition, and speci�ed at run time with a \material �le" described below.A slightly modi�ed serial �nite element code runs on each processor. Thoughthe serial code is modi�ed it does not have any parallel constructs or knowledge of theglobal problem - this is useful for debugging and the continued independent developmentof FEAP. Parallelism is introduced by providing the �nite element code with a matrixassembly routine, solve routine, and a global dot product (additional support functions areprovided for expressiveness and performance but are not strictly necessary). The global dotproduct is hardwired for a vector of the type x or b in an equation like Ax = b (where A isthe sti�ness matrix for the entire local �nite element problem), and thus allows for a verysimple parallelization of the serial code, that with the addition of a \solver" is adequate,for all or most of the global operations in all �nite element codes. This simple interfacecould also be adequate for a simple explicit method, where the solver simply needs to inverta diagonal mass matrix and do a component by component vector-vector product - andthen communicate the solution, on local vertices, to neighbor processors. Any method thatrequires other global operations (e.g., a solver with solver speci�c initialization routines) canbe added as needed - thus this interface provides the kernel for a full featured parallel �niteelement implementation. The advantage of this method is that the serial �nite element code(e.g., FEAP) is completely parallel - and has a very small interface with the parallel code(e.g., Athena). With the addition of a solver that allocates the parallel sti�ness matrix and



110global vectors and solves a system of the form Ax = b, many �nite element codes (amongthose used in industry and academia) are ready-to-run.7.3.2 EpimetheusPrometheus provides Epimetheus with restriction operators, and Athena usesEpimetheus to solve the equations. Epimetheus uses METIS [52] to determine the blockJacobi subdomains and PETSc for the parallel numerical library and programming develop-ment environment. Future workmay include adding an interface to the parallel unstructuredmultilevel grids that we use to construct our coarse grids as these are generally useful foranyone building a parallel \algebraic" multigrid code, or in fact any parallel algorithm onunstructured multilevel grids, similar to how Kelp [8] and Titanium [85] provide parallelmultilevel structured grid primitives.7.3.3 PrometheusFEAP provides Prometheus with the local �nite element problem (that was orig-inally constructed by Athena) i.e., coordinates, element connectivities, material identi�ers,and the boundaries conditions. Prometheus constructs the global restriction operators foreach grid, and is the core of the algorithmic contribution of this dissertation discussed atlength in chapter 5.7.3.4 Athena/Epimetheus/Prometheus construction detailsThis section discusses some low level details of our code construction; this is notintended to be a manual or speci�cation but is intended to provide enough details so thatthe interested reader can get some idea of the interface and architecture. Note, for theinterested reader, the FEAP manual can be found in [36].To run our system one must �rst input a problem into a serial version of FEAP,using FEAP's simple mesh generation, then output a mesh �le (a FEAP input �le) in a\�xed" format so as to allow it to be read e�ciently in parallel - this �le is the input toAthena. If one had a scalable mesh generator to provide the mesh at run time, then onewould only need disjoint vertex and element partitionings and provide each processor withits vertices and elements (there are no constraints on the properties of these partitions other



111than being disjoint). Alternatively one could transform a pre-generated mesh into our (
atFEAP) format easily as it is very simple.One can now run ParFeap with three input �les: the large 
at FEAP input �le andtwo small �les, one with the material parameters and the other with the FEAP-solution-script; FEAP's command language is used to invoke Athena routines from this FEAP-solution-script, as well as invoke FEAP commands (see Figure 7.2). We will not discussthe \material �le" further, but the FEAP-solution-script is of interest as it uses FEAP'scommand language and is an important component of the user interface with ParFeap(again, documentation details may be found in [36]). Athena can now be run with anynumber of processors, including one processor, with no further preparation. This 
exibilitydrives this design, as it is paramount for solver development (e.g., debugging, experimentingwith new methods, and collecting performance data).Within the FEAP-solution-script, displacements can be written to a �le after timestep is complete. The serial version of FEAP is then invoked, FEAP's \read" command isused to open the �le (for example \read,disp" reads in the displacements in a �le named\disp"), and the results can then be visualized using the serial version of FEAP. If a moresophisticated visualization tool were available, it could be inserted here. Figure 7.2 showsan example FEAP-solution-script that initializes Prometheus (mgin), makes four coarsermultigrid levels (mg++), �nalizes the data structures (mgfn) - then does a simple linearpseudo time stepping problem and writes out the displacements at each step.Figure 7.3 shows a graphic representation of the overall system architecture.
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batch ! begin batch blockmgin ! initialize Prometheusloop,,4mg++ ! make a new levelnextmgfn ! �nalize the multigrid setup - prepare for a solvedt,,0.01 ! set the \time" stepprop ! use a \prop"ortional loadloop,time,10 ! loop for 10 time stepstime ! increment the timetang,,1 ! form and solve the tangent (sti�ness) matrixmgds ! write a PETSc displacement �lenextmgds,end ! collect displacements and write to FEAP �leend ! end batch blockinte ! begin interactive modeFigure 7.2: FEAP command language example in the FEAP-solution-script
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1147.4 Processor subdomain agglomerationSubdomain agglomeration refers to reducing the number of active processors andcoalescing (agglomerating) the subdomains on each processor to a new reduced set of activeprocessors. Subdomain agglomeration is valuable for two entirely di�erent reasons, �rst forperformance and second for algorithmic considerations. As mentioned in x5.2 we partitionmany vertices (i.e., O(104)) to each processor - this allows all of the processors to do usefulwork in much of the multigrid algorithm - for the \large" problems of today (e.g., 106 -108 vertices). The di�culty is that, as the number of vertices per processor dwindles theability to do work e�ciently decreases. At some point in the grid hierarchy it is e�cientto let some processors remain idle and agglomerate the work to fewer processors - that is,the time spent on a grid will decrease if fewer processors are used. Note, agglomeration,and more signi�cantly repartitioning, can slow the restriction and interpolation operatorson the previous grid - to some degree - though we are not able to quantify this well and thusmust rely on the total run time to justify, and optimize, agglomeration. Also, agglomerationrequires data movement in the setup phase, though as agglomeration takes place when thereare very few vertices per processor the cost is not signi�cant.A second reason for the use of processor agglomeration comes from the multigridalgorithm that we use, both in terms of mathematics and practical implementation issues.Mathematically, when any multigrid algorithm uses a block Jacobi preconditioner in thesmoother you no longer have the \same solver" in parallel, as on one processor, since onecan no longer maintain the same block sizes on the coarser grids (assuming that a serialsolver is used on the subdomains).Agglomeration should take place when the value of the global M
op rate (e.g.,Figure 7.4 (left)), of the operator that one wishes to optimize on your machine, usingthe current number of active processors, falls below that of a smaller integer number ofprocessors. We need a methods to pick the number of processors to use given the structureof the sti�ness matrix at each level of multigrid. This section will discuss three approachesto determine, at run time, the number of processors to use for the coarsest grids. Firstx7.4.1 will discuss a simple method and introduce some of the concepts and tools involvedin subdomain agglomeration algorithms; x7.4.2 de�nes the problem more concretely as aninteger programming problem. A sophisticated, though complex and intractable, approachwill be discussed in x7.4.3, and the method that we use in our numerical results (x9.6) will



115be discussed in x7.4.4.7.4.1 Simple subdomain agglomeration methodWe can quantify the point at which this agglomeration should take place for aparticular problem by measuring the performance of the operation (or mix of operations)one is optimizing for on each level. A simple method is to �rst measure the performanceof the operator on a range of matrix sizes and number of processors. For example, if weapproximate our operator (multigrid on one given level) by a matrix-vector product, thenwe can use Figure 7.4.A simple subdomain agglomeration method is to decide on the \optimal" numberof equations to have on each processor B and, given the number of equations on a grid ni,use Pi = dniB e processors if Pi � P . From this data we could conclude that the optimalnumber of equations per processor is about 300 on the Cray T3E, as this is about where wehave peak 
oating point operation (
op), or mega
op (M
op), rates.
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Figure 7.4: Matrix vector product: per processor, and total, M
op/sec on a Cray T3EExperience has shown that this very simple method is not adequate (at least onsome of the platforms that we use), as the optimal number of equations per processor is afunction of P . Also, as our coarse grids tend to be denser than the �nest grid, the numberof non-zeros in the matrix should also be considered, though we do not currently considerthe number of non-zeros.



1167.4.2 Subdomain agglomeration as an integer programming problemThe optimal number of processors is a constrained optimization problem. Firstwe de�ne our constraints: obviously we need an integer number of processors, but we arenot free to select any number of processors in our system as our implementation is notcompletely 
exible in the number of processors used. For simplicity of the implementation,we require that the number of active processors is a factor of the number of processors onthe previous (�ner) grid. For example, if we have six levels and 36 processors, then theseries of processor group sizes f36 36 36 18 12 1g is not valid, as 12 is not a factor of 18;while the set f 36 36 36 18 9 1g is valid. Note, this constraint is not onerous as the numberof equations drops by a signi�cant fraction (e.g., 4 to 8) on the coarser grids, though it doesdemand that we avoid using a number of processors with large primes in their factors.We want to pick the number of processors to minimize the time to do the work on aparticular level. We neglect the e�ect of agglomeration on the restriction and interpolationoperations as they are not large on machines with good networks, are di�cult to measureaccurately without e�ecting the performance, and there inclusion would signi�cantly com-plicate the optimization problem (which, as we will see, is already too complex for us to dodirectly). Most of the 
ops, in a level of multigrid, are in the matrix-vector products andthe block Jacobi preconditioner. Block Jacobi preconditioners require no communication,hence motivate the use of as many processors as there are blocks. Matrix-vector productshave some nearest neighbor communication and, do not speedup perfectly forever as seen inFigure 7.4. Additionally, the dot products require global communication, but perform veryfew 
ops per dof. Hence the dot products push for fewer processors than other operators,especially on machines with slow communication.To select the number of processors P to use on a coarse grid G with an integerprogramming technique, one needs an explicit and accurate function T (G;P ) for the ex-ecution time of a particular grid on a particular machine with any number of processors.Integer programming could then be used to �ne the minimum, with respect to P , of thisfunction T to decide on the number of processors to partition the current grid on to. Thenext section will discuss issues in construction a function T via a computational model.



1177.4.3 Potential use of a computational modelWe can pick the optimal number of processors by modeling the time complexity ofa level of multigrid as a function of the number of processors P , and the number of verticesn as follows. First we de�ne complexity as the maximum time Tx that any processor spendsin operation x. Note, this is a di�erent de�nition of T than we use in chapter 8 (i.e.,T = maximum time � number of processors), because here we have already \paid" for theprocessors and gain no bene�t from using fewer processors, thus this as a somewhat unusualcost model. De�ne fp1: the minimum 
op rate on any processor for BLAS11 operators,�: the maximum message latency, �: the maximum inverse bandwidth between any twoprocessors for a double precision 
oating point number, and ndf : the number of degrees offreedom per vertex. In other words the time to send a message with n words is � + n � �.A simple model of dot products isTdot(P; n) � 2 � ndf � nP � fp1 + (�+ �) log(P )We will assume perfect load balance and ignore network contention, thus each processor hasexactly nP vertices and � and � are not functions of P . Note, as all the cost componentsare the maximum costs on any one processors, and we are looking for the maximum totaltime on any one processor, we use Tdot(P; n) � � � �To model the cost of the matrix vector product, we can use a simple model (seex8.5.4 for a more detailed model); assume all vertices have 27 neighbors (i.e. neglect theboundary and assume that the problem is uniform), and fp2 is the minimum 
op rate ofmatrix vector products on any one processor, Assume there are 6 � ( nP )2=3 ghosts vertices(see x8.5.4), then the matrix-vector product complexity could be modeled asTmatrix�vector(P; n) � 2 � 27 � ndf2 � nP � fp2 + 6 � ndf � � � nP 23 + 22 � �This assumes the maximum number of neighbor processors is 22, as this is a commonmaximum that we observe in our numerical experiments.1BLAS1, BLAS2, BLAS3: Basic linear algebra subroutines (BLASs) refer to a set of subroutinede�nitions that de�ne an interface for highly tuned machine speci�c implementations of standard linearalgebra operators. BLASs operations fall into three categories, de�ned by the algebraic objects in theoperation. A BLAS1 subroutine operates on vectors and scalars only. BLAS2 operate on at least one vectorand one matrix, and BLAS3 operate on matrices only. These categories are useful as they accurately de�nethe performance of the operations within them, with BLAS3 operations being the fastest and the BLAS1being the slowest.



118We can model the cost of a level of multigrid with diagonal preconditioning by twodot products and one matrix-vector product i.e., TMG(P; n) � 2 �Tdot(P )+Tmatrix�vector(P )ignoring the lower order terms e.g., smoother preconditioner, AXPYs. We can minimizethe cost by solving ddP TMG(P; n) = 0 for P (assuming that our TMG(P; n) expression is andequality), withddP TMG(P; n) = 2(�+ �)P � 4 � ndf � nP 2 � fp1 � 27 � ndf2 � nP 2 � fp2 � 4 � ndf � � � n2=3P 5=3 (7.1)This simple model is however not accurate, as the load imbalance has not beenconsidered, and the � and � terms need to include the costs of packing, and unpacking,vector data in the matrix-vector product (note, we de�ne � and � to include this in x8.5.4),but this reduces the generality of these terms and requires that they be derived from numer-ical experiments on typical problems. Also, more signi�cantly, the matrix-vector productexpression implies that using more processors always lowers the run time - this is not anaccurate assumption, as � is a function of P , as Figure 7.4 demonstrates for small problems(i.e. typical coarsest grids). We discuss modeling via operation counting in more detail inthe next chapter, as well as reasons for the discrepancy between these models (see x8.5.5for matrix-vector product models in more detail).7.4.4 Subdomain agglomeration methodWe currently work with empirical models, based on curve �tting, that use mea-surements from actual solves. This method has the disadvantage that model parametershave to be calculated for each machine that the code is to be run on, and may need tobe recalculated for di�erent problem types, but it has the advantage that it is resonablyaccurate and simple to construct.We can start by looking at in Figure 7.5 - the form of the function f that we want.The concave shape of the curve, for f , in Figure 7.5 is derived from the intuition that asmore processors are in use the log(P ) term in the dot products, and any other source ofparallel ine�ciency, will push for the use of fewer processors. For convenience we transposethis function to get the convex function n = g(P ).Now it is natural to begin to approximate this function with a quadratic polynomialn = AP 2 + BP , or alternatively nP = A � P + B
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n = g(P ) for machine XFigure 7.5: Cartoon of cost function, and its transposewhere nP is the problem size per processor. or the function that we actually wantPfloat = �B +pB2 � 4AC2A (7.2)A and B are machine and problem dependent parameters that are determined by experi-mental observation on actual multigrid solves of the problem at hand, or from experiencewith other problems on the target machine. We have selected A and B by starting withstarting with an initial guess and using a large problem to \search" for the optimal solvetime by perturbing A, measuring the total performance (the only quantity that we can ef-fectively measure), and \search" for an \optimal" A (we assume that solve time is a convexfunction of A); we repeat this process for B, and go back to A, and so on until we �nd theminimal solve time for this one problem. This will give us good results on similar problemsas the one that we test on.In a production setting one could automate this process for selecting the coe�cients(e.g., A and B) for a polynomial (e.g., equation 7.2), by running parametric experiments(parametric in A and B) with a large representative problem; one could then simply selectthe A and B used in the experiment with the fastest solve time, or use curve �tting toconstruct a function that can be minimized. Note, this process would be repeated for eachnew machine or machine con�guration and for each problem class.The use of many more processors would likely require that a higher order polyno-mial or a more complex function be used. Note, for more accuracy one should also use thenumber of non-zeros in the matrix in addition to the number of equations n, as this is amore direct measure of the matrix vector cost, and does not remain constant on all grids.Equation (7.2) provides us with reasonable results, as we run homogeneous problems (i.e.,trilinear elements with three dof per node) with an (approximately) even distribution ofnon-zeros.
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121Chapter 8Parallel performance andmodelingThis chapter discusses performance modeling for multigrid solvers in general andour solver in particular.8.1 IntroductionAccurate time complexity models based on operation counts are very challengingon todays parallel machines; even for regular problems (i.e., parallel dense linear algebra)accurate computational models can be intractable because of the many contributors toperformance and their complex interactions [79]. Previous multigrid modeling work, forregular 2D grids on a 1,024 processor NCUBE (run with approximately 10�2 times as manynon-zeros per processor as is typical today), can be found in [84]. This chapter discussescomplexity issues and models of 3D unstructured multigrid solvers.The goal of this chapter is to develop the basis for a useful model to predict the runtime, and memory usage, of multigrid solvers with unstructured �nite element meshes ontypical computers of today. An accurate complexity model of this type is beyond the scopeof this dissertation, however, we will discuss qualitative models useful in understanding theoverall complexity of multigrid solvers, begin to develop quantitative models of some of themajor components of multigrid solvers, and present a framework for a multigrid complexitymodel. Additionally this chapter will discuss our performance measures, which will be usedin our numerical experiments in chapters 9 and 10. Thus, the primary goal of this chapter



122is to introduce the overall complexity structure of multigrid on unstructured meshes andbegin to develop a complexity model via a decomposition of multigrid and analysis of someof its components.Our complexity models will �rst decompose multigrid into components whose in-teraction, with each other, can be ignored. We assume that all of our models are staticin that we are able to count for all of the work to be done in a solve, at least to the levelof detail that we articulate in our decomposition. At some point our decomposition takesthe form of a functional decomposition (e.g. time to apply an operator = number of 
ops� 
ops per second). At the component level one may resort to a bottom-up model thatis based on low level (and general) machine speci�cations such as clock rate, cache size,network speci�cations, etc, or one can use a top-down approach of measuring the codecomponent on a particular machine with various inputs and curve �t the function to ap-proximate the measured data [15]. See Table 8.1 for the pros and cons of bottom-up andtop-down approaches. Pros and constop-down bottom-upNeeds running implementation can predict performance on new machines,on a give machine or without implementationscan predict performance only for di�erent may badly underestimate time dependingparameter values on a given machine on whether all operations are countedtakes all interactions into account may be very hard to count all operationsor model their interactionsmay or may not account for irregular operations may requireirregular operations approximating work per processorTable 8.1: Top-down vs. bottom up performance modelingThis chapter proceeds as follows: x8.2 discusses the motivation for complexitymodeling, the notation and the complexity models that we use. x8.3 presents a simplecomputational model based on PRAM [41] that is used to speculate on the scale of futuremultigrid solves and is intended to introduce multigrid complexity by providing an overallview of the complexity of multigrid solvers. x8.4 discusses the high level structure of ourcost model, and introduces our primary metric (e�ciency). x8.5 discusses the scope of ourmodel, the primary cost components of the multigrid solution phase, models for some of theprimary solver components, and quantitative measures of the complexity of unstructured



123multigrid solvers. x8.6 will conclude with a sketch of a path for continuing to develop ourcomplexity model.8.2 Motivation, computational models, and notationThere are several reasons for developing performance models and performing com-plexity analysis of a multigrid code. First, multigrid solvers have many parameters (e.g.,number of processors, subdomains, smoothing steps, etc.) and many algorithmic choices(e.g., additive or multiplicative methods) - so one would like to make these choices on arational basis since experience shows that performance can be a sensitive function of theseparameters. A second use of performance modeling is to identify bottlenecks in the codethat are an artifact of a code bug, a system problem (e.g using non-optimal system pa-rameters or system bugs), platform speci�c behavior (e.g., a poor contention managementimplementation in the communication system might require more synchronous communica-tion patterns), or some other \�xable" problem. A third reason for performance models isto project the behavior of your algorithm on new or future machines so to make informedpurchasing decisions and so that system manufacturers can make informed decisions aboutthe their system design (assuming that the manufacturer is interested optimizing the per-formance of their products for your application). Additionally performance models can beused to chose the optimal number of processors to employ at any given level as discussedin chapter 7, and to estimate resource needs on shared machines.8.2.1 Notation and computational modelsWe need to decide which operations to count in our performance model. We usetwo complexity models of the underlying machine: PRAM and LogP [26].For some algorithms we use the RAM (random access memory) and PRAM (par-allel RAM) complexity models, as a basis for high level discussions and occasionally en-rich them. The RAM model makes the simpli�cation that all memory can be accessed inconstant time (1) and primitive operations (i.e., +;�;�;� also take the same constanttime. The PRAM model builds on the RAM model and includes parallel constructs - itassumes that sending and receiving data, from and to any process, can also be done inconstant time per data word. PRAM models come in many types: all combinations ofconcurrent(C)/exclusive(E) and reads(R)/writes(W), concurrent reads and exclusive writes



124(CREW) being the most intuitively realistic for a general computer program, queued writeand others. We do not distinguish between these PRAM models in our work as we workprimarily with a distributed memory programming model, however if it is not otherwisestated we assume the CREW PRAM model. The advantage of the PRAM model is itssimplicity; this simplicity is also its limitation as communication costs can be very complex.The second model that we use, LogP [26], models the communication systemmore realistically. We use the LogP model in the more detailed discussions of multigridcomplexity - LogP models, the overhead in communication (overhead o), network (inverse)bandwidth and capacity (gap g), and network latency (latency L). P stands for the numberof processors.The overhead o is the time that the processor uses to process an MPI messageplus the time that our solver (PETSc actually) spends collecting, packing, unpacking andplacing data to and from a message. Gap g is the period during which messages (of a givensize) can be processed by the network without stalling. Latency L is the time that it takesbetween the time that message is sent (by the application, via an MPI call) and the timethat the application receives the message on another processor. We will use a simpli�edversion of LogP and let � = O+L and � = g. Often empirical data is available in the formof measured time for an operation t, the number of processors involved in communicationp, and an average number data words n in the communication with each processor, thus welook for functions of the form t = f(p; n) = p � (�+ n � �).NotationMultigrid requires many parameters; Figure 8.1 labels the components and nota-tion, of a multigrid solve, that we will use throughout this chapter.



125L � number of levels in multigridi � grid number (i = 0 for the �nest grid and thus i = L� 1 for the coarsest grid)Pi � number of processors active on grid ini � number of total degrees of freedom on grid iD � dimension of problem (e.g., 3)ndf � degrees of freedom per vertex (e.g., 3)s � number of pre/post smoothing steps (e.g., 2)k � number of iterations in global linear solutionbi � number of blocks in block Jacobi preconditioner on grid iAi � matrix on level iRi � Restriction operator from grid i to grid i+ 1Pi = RTi � Interpolation operator from grid i+ 1 to grid iMveci � Matrix vector multiply on grid i (Ai � x! b)V ecDoti � vector dot product on grid i (yTi � xi)V ecNormi � vector norm on grid i (qxTi � xi)Axpyi � �xi + yi ! yiRestricti � Ri � ri ! ri+1Interpolatei � RiT � xi+1 ! xiTriProdi � Ri �Ai �RTi ! Ai+1Fi � Full factorization of matrix AiSi � Forward elimination and back substitution with the factored AiF ji � Factorization of the matrix for a subdomain j of AiSji � Forward elimination and back substitution with the factored subdomain matrix j ofAiNneigh � maximum number of neighbors of any processor domain.F (x) � Flops in one application of operator x.C(x) � Communication time in one application of operator x.T (x) � Time to do one application of operator x.Figure 8.1: Multigrid computational components labels and parameters



1268.3 PRAM computational model and analysisBefore we articulate a more detailed complexity model of multigrid solvers, wedevelop a simple model with an optimistic machine that we hope can be built in the future.We use PRAM-like complexity models (PRAM with some simple enhancements). PRAMis far too blunt a tool to model the performance of these codes, but it does provide a meansof seeing the big picture. We also exercise this model by speculating on the scalability ofthe multigrid algorithm that we use, by de�ning a \base" case with no signi�cant paralleline�ciency (in our model), and stipulating that we are only willing to solve problems with atleast 50% parallel e�ciency (see x8.4.1 for the de�nition of parallel e�ciency); we show thatproblems of the order of trillions of unknowns could be solved with our current multigridalgorithm. This is meant to bring some perspective to the scale of problems that could beaddressed with our multigrid solver.We will model only the multigrid preconditioner and ignore the accelerator, andassume that we are using diagonal preconditioning for our smoothers. We ignore the AXPYsand other BLAS1 operators that require no communication, and the factorization cost onthe coarsest grid L as this is a small constant shared by all solves. We also neglect the costof the coarse grid construction and any subdomain setup, Thus we need only model thematrix-vector products, the dot products, and the forward elimination and back substitutionon the coarsest grid.Assume that we have 64K equations per processor on the �nest grid - this is a bitlarger than our common size but is reasonable on a well con�gured machine, with about 256Mb of main memory per processor and a production quality implementation of our solverand PETSc (chapter 11). Assume a reduction of a factor of 8 on each successive grid, andthat we have nL�1 = 4K equations on the coarsest grid. Let us also assume that we areonly willing to tolerate 128 equations on a processor before we \agglomerate" subdomains(x7.4) - and that this number is independent of the number of processors. Note, all ofthe coarsest grids have 128 equations per processor in this discussion. In this model, thenumber of levels L = log8( n04K ) = log8 n0 � 3, n0 being the global number of equations onthe �ne grid (assume n0 is a power of eight).First, de�ne S(niPi ) to be the cost, in time, of one level (not the coarsest level) ina multigrid \V" cycle, with niPi equations on each processor - assume that this is a linearfunction in niPi , except for the parallel ine�ciency of the matrix vector products and the time



127in the global reductions (dot products) which have a log(P ) in their PRAM complexity. Agood communication network is essential in containing the costs of these reductions (seex9.5) - many machines in the past have networks that could handle reductions e�ectively(CM5, Intel ASCI Red at Sandia National Laboratory [7]). We temporarily neglect thelog(P ) terms (two in each iteration of the Krylov subspace method smoother) because theyhave small constants, the range of performance on machines of today varies enormously, andthese terms are di�cult to capture in this model - though we accommodate them below.This assumption that the cost of S(niPi ) is linear in niPi , assumes that the matrix-vectorproducts scale linearly, this is not realistic as was discussed in x7.4, so we constrain ourproblems to have have at least 1K equations per processor, or penalize grids with fewerthan 1K equations per processor. Thus, to account for the fact that the coarse grids runslower than the �ner grid (i.e., speedup is not perfect forever), we add a factor of 4 tothe costs of the coarsest grids (this re
ects our empirical measurements of communicatione�ciency, or lack thereof).De�ne D(nL�1) to be the cost of the coarse grid solve (without the factorization),with nL�1 equations and as many processors as we like on the coarsest grid (e.g., PL�1 =32 = 4K128). We estimate the solve cost of the coarsest grid D(nL�1), in terms of S(nL�1PL�1 ) =S(nL�132 ) = S(128), as the coarse grid would use 32 processors if it were treated as a non-coarsest grid. First, we estimate that S(128) is 6 times larger than a matrix vector productwith the sti�ness matrix on the coarsest grid; this is the number of matrix vector productsin S() if we use two pre and post smoother applications and neglect the other terms in theS() complexity (see Figure 8.8 for an inventory of multigrid component applications). Next,we estimate that the 
op count in D(nL�1) is 5 times larger than that in a matrix vectorproduct on the coarsest grid (this is an approximation using the band width of the sti�nessmatrix for a cube with 4K equations). Thus, D(nL�1) = 5�46 S(128) = 103 S(128). Note, analternative to one small set of processors working on the coarse grid solve is to have nL�1processors factor the coarse grid, and solve for one row of the explicit inverse of the coarsegrid sti�ness matrix - each solve (i.e., D(nL�1)) consists of a broadcast of the right handside vector, a dot product of size nL�1 (on nL�1 processors), and a special interpolationoperator [22].Now we can state a cost estimate of full multigrid in equation (8.1)T (n0) = S(64K) + 2 � S(8K) + 3 � S(1K) + L�2Xi=3 (i+ 1) � 4 � S(128) + L � 103 � S(128) (8.1)



128The factors (2, 3, i+1, and L�1) come from the number time that full multigrid is appliedon each level (see Figure 3.6 and Figure 8.8).Table 8.3 shows some grid statistics with this model; from this we can see that,for example, with only two levels of partitioning (i.e., three distinct processor groups) andL = six levels, we can solve a 128 million degree of freedom problems with 2K processors.Model Con�guration (example with L = 6 and P = 2K)Grid number (L total) # active processors # equations per processor Total equationsL-1 (5) 32 (32) 128 (128) 4K (4K)L-2 (4) 256 (256) 128 (128) 32K (32K)L-3 (NA) 2K (NA) 128 (NA) 256K (NA)� � � �4 (3) 32 �8L�4 (2K) 128 (128) 4K �8L�4 (256K)3 (2) 32 �8L�4 (2K) 1K (1K) 4K �8L�3 (2M)2 (1) 32 �8L�4 (2K) 8K (8K) 4K �8L�2 (16M)1 (0) 32 �8L�4 (2K) 64K (64K) 4K �8L�1 (128M)Table 8.2: Future complexity con�guration (K = 210 � 103; M = 220 � 106)As a thought experiment, let us de�ne a \base" case for which there is no signi�cantparallel ine�ciency, and see how large of a problem can be solved, in this model, with50% parallel e�ciency described below. Let us de�ne a \base" case to be, the largestproblem in which no processors are idle, except on the coarsest grid, and no grid has amatrix-vector product with less than 1K equations per processor. Thus, the base case has2M equations as all processors must be active and have 1K equations on the penultimategrid, the penultimate grid must have 8 � 4K = 32K equations as nL�1 = 4K; thereforeP0 = P1 = PL�2=2 = 32 and n0 = 2M = 32 � 64K and L = 4. Thus the 2M degreeof freedom problem with 32 processors is the largest problem with no signi�cant paralleline�ciency. To get a rough idea of the size of problems that can be solved economically,with this performance model, we de�ne an acceptable level of e�ciency of 50% relative toour base case; i.e., we decide that we are willing to allow for twice the compute time for ourlargest problem, thus running at one half of the e�ciency of the base case.How many extra grids can we use, with this model and e�ciency \pain" tolerance?First let us make a gesture to the log(P ) and assume that 25% (or 50% of the extra time) ofour compute costs are going into the communication cost of the dot products - so we onlyallow for a 50% longer compute time in the model. Note, this is a constant (though large)



129approximation to the log(P ) terms in the dot products. We have 7 extra levels (L = 11) togive a problem size of n = 4K � 810 � 4 � 1012, or about 4 trillion equations on about seventymillion processors (a peta
op machine).One should note that this model does not attempt change our basic solver con-�guration (i.e., full multigrid, and Krylov smoothers). Depending on the machine andproblem, additive formulations and/or \V" cycle multigrid, may be more economical as,without Krylov subspace method smoothers, \V" cycle multigrid has PRAM complexity oflog(n) whereas full multigrid has PRAM complexity of log(n)2.This model is meant to give a big picture view of multigrid complexity issues, tobegin to augment the PRAM multigrid models so as to re
ect the machines of today andthe near future, and to put some approximate constants in the complexity of full multigrid,with Krylov subspace smoothers and accelerators. Thus, this section has introduced thebroad outlines of multigrid complexity - we are now ready to build a multigrid complexitytheory from the ground up (or from LogP up).8.4 Costs and bene�tsBefore we set out to model multigrid solvers we will de�ne what we are tryingto accomplish and how we measure success. Our ultimate goal is to solve all sparse �niteelement problems, on unstructured grids - cheaply. The problems that we are concernedwith are accurate simulations of complex physical phenomenon in solid mechanics via �niteelement methods on unstructured meshes; in particular we are concerned with the linearsolve or preconditioning of matrices from such methods. The �rst metric that we introduceis the bene�t that we wish to enjoy - \all sparse �nite element problems" is not a feasiblegoal, nor easily quanti�able, and so we use the number of degrees of freedom (dof) as ourmeasure of bene�t for which we have costs. We implicitly include \all sparse �nite elementproblems" by applying our solver to challenging test problems.Costs can be de�ned in many ways - we use the run time of sample problems andapply other costs as constraints, (e.g., memory costs are included by assuming that it is freebut limited to the size of main memory on most of todays machines). We have attempted tobuild test problems that are indicative of the \real world" problems that some people wantto simulate and thus provide an approximate prediction of the costs of our solver on somedemanding �nite element simulations. Thus robustness is implicitly included in our analysis



130by the nature and di�culty of our test problems, and by using methods and parametersthat are indicative of the most e�cient way for us to solve these test problems. Cost is thusde�ned as the product of the maximum time required, by any one processor, to solve theproblem and the maximum number of processors used.With costs and bene�ts de�ned, we can describe the overall computational struc-ture of solvers that is useful in providing broad categories in which all of our costs reside.There are three basic cost phases of a linear solve.1. Setup cost per distinct mesh. The setup cost of a con�guration or graph e.g., con-structing coarse grids and restriction matrices, allocating memory for the data andsetting up communicators and bu�ers for matrix vector products, etc.2. Setup cost per matrix for a mesh that has been setup. Preprocessing each matrixfor a solve e.g., the LU factorization for a direct method, matrix triple products andsubmatrix factorizations for multigrid.3. Cost for each right hand side associated with a given matrix e.g., backward substitu-tion for a direct method and the actual iterations in an iterative solver.All thing being equal, we would in general like to move costs \up" this list, sothey may be done less frequently, and optimize the implementations \down" the list as thenumber of applications of these cost components increases as we go move down the list. Thesetup cost for each mesh (phase 1) is of the same order as that of one solve on our lineartest case in chapter 9 (though this is very machine and problem dependent), and it scalesabout as well as the solver (see Figure 9.9). Finite element applications require many solveson each con�guration and thus this cost can be amortized by each application of the solver,thus we do not focus on the cost for each con�guration. Figure 8.2 show the high level costfeatures that we measure: the red boxes, or leaves of the cost tree, are where actual workis done and are the high level code segments that are measured in x9.7 to give an overviewof the \end-to-end" costs of a �nite element simulation.Now, we want to solve interesting problems cheaply - but how do we know when (orby how much) we have succeeded? To judge success, we measure e�ciency - the percentageof \optimal" performance; this gives us a metric that tells us the fraction of \perfection"that we have achieved for the code or any subcomponent.
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FE Costs

Solve for "x" (PETSc)

Subdomain factorizations (PETSc)R * A * P (Epimetheus)

Configuration Costs

Solve Costs

Solve Setup

Restriction construction (Prometheus)

Partitioning (Athena/FEAP)

Fine grid creation (FEAP)Figure 8.2: Finite element cost structure (code segment from 7.3)8.4.1 E�ciency measuresWe de�ne parallel e�ciency e, or scaled e�ciency, as the time to solve a problemof size n1 on one processor divided by the time to solve a re�ned discretization of theproblem, with nP equations on P processors, such that P �n1 = nP . Thus, parallel e�ciencye = T (1)=T (P ), where T (P ) is the time to solve the problem discretization for P processors.We use time e�ciency because it directly addresses the total cost of solving aproblem when the machine is being used e�ciently. Unscaled \Speed-up" plots (cost ofsolving a �xed sized problem vs. number of processors), are a useful diagnostic tool tojudge the robustness of an implementation but are not useful in directly estimating thecost of using a particular machine. Thus our model of our environment is that we havea large number of processors (with �nite memory per processor), many patient users withlarge implicit �nite element problems, perfect job scheduling, and we select the number ofprocessors to use for each job so as to maximize job throughput on the entire machine.We separate the serial e�ciency and the parallel e�ciency - the total e�ciencybeing the product of the two. We de�ne the following e�ciency measures, or sources ofine�ciency:� serial e�ciency s: the fraction of peak mega
op rate (M
op/sec) of the serialimplementation. Peak is de�ned as the M
op rate of the fastest 
op rate on any
oating point dominated application. The fastest dense matrix-matrix multiply is usedfor the peak 
op rate if available, and the Linpack [29] \toward perfect parallelism"benchmark is used otherwise.



132� work e�ciency w: the fraction of 
ops in the parallel algorithm that are not redun-dant; i.e., the number of 
ops in the serial algorithm divided by the number of 
opsin the parallel algorithm - on the same problem discretization.� scale e�ciency z: this is the scalability of the algorithm with respect to 
ops perunknown in the RAM complexity model (i.e., the 
ops done per unknown as theproblem size increases); z is similar to in that it relates to 
op ine�ciency, thoughdistinct from w. Work e�ciency w is related to the number of processors used, scalee�ciency z is related to the size of the problem. Note, \scaled e�ciency" plots thatwe use extensively will in general measure all of the parallel e�ciency measures thatare present in the system.� load balance l: the ratio of the average to the maximum amount of work (
ops) thata processor does for an operation. This is easily measured (and de�ned) as we do notuse any non-uniform algorithmic constructs (i.e., we do not use task level parallelism).� communication e�ciency c: the highest percentage of time that a processor isnot waiting, processing, packing data, or any other form of work associated withinterprocess communication.All of the algorithm components that we use, with the exception of the �ne gridmatrix creation (FEAP's element state determination), have perfect work e�ciency i.e.,w = 1. In our numerical experiments during the �ne matrix creation, each processorcalculates all of the elements that any vertex on a processor touches, and the sti�nessmatrix entries that belong on another processors are discarded; this leads to about 80% worke�ciency on our test problems and common solver con�guration (i.e., trilinear hexahedraand about 25; 000 dof per processor). This redundant evaluation of elements runs faster thanexclusive element evaluation, on many machines, as there is no communication required.Full multigrid is perfectly scalable in the sense that the amount of work (
ops)required for each degree of freedom approaches a constant as the number of degrees offreedom goes to in�nity, thus z approaches a constant - in theory. In fact, our one processorproblems are large enough that the number of 
ops per equation is a constant (or as close toa constant as we can e�ectively measure), as the problem is scaled up (see Figure 9.6). Thusz e�ciencies are close to 1:0 and we do not discuss them further. Therefore we concentrateon the ine�ciencies: c,l,s.



133E�ciency plotsE�ciency has the property that we can measure or model the sources of ine�ciencyand simply multiply them to get a total e�ciency. Figure 8.3 shows a cartoon of a typicale�ciency plot, and it is instructive to point out some of its more salient features.
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Figure 8.3: E�ciency Plot StructureIf we identify two sources of ine�ciency e1 and e2, and we can model the e�ect ofonly one e�ectively (e.g., e1 = load balance, could be estimated with the number of 
opson each processors, or some other measurable quantity), then we can plot e1 and the total\measured quantity" time in Figure 8.3 - and the ratio is e2. Also other curves could bemodeled by various means as is described in this section, to provide approximate data onthe particular sources of ine�ciency. Note, this characterization implies that ine�cienciesare decoupled, in the sense that they could be isolated, and have the same value regardlessof the presence of the other - this is not in general true but is often a close approximationin our application. Note, these e�ciency plots require that we prescribe the size of eachproblem np for each number of processors p - this is not in general possible so we pick thenumber of processors for each problem discretization and add a factor ( npn1�p) to the e�ciencyplots to adjust for this error in our experimental structure.We also occasionally plot total M
op/sec against processors used (again withscaled problem discretizations). Total M
op/sec plots are useful as the data is easily mea-sured for the solve or some part of the code with good load balance and they provide auseful diagnostic tool to see how e�ciently the machine is being used in the 
oating pointintensive parts of the code. M
op/sec data is not useful to compare with non-
oating point



134intensive parts of the code like the partitioning and the coarse grid set up phases; nor is ituseful in understanding costs, as they do not include convergence rate - a core componentof the cost of iterative methods.8.5 Computational model of multigridThis section introduces a more detailed performance model of multigrid. First, thismodel does not take into account the convergence rate of the solver in question, and thuswe only discuss the time to solve a problem with a given number of iterations; con�gurationcosts are not generally included, so the only costs that we will be concerned with will bethe matrix setup and the solve costs. Therefore we do not present a complete performancemodel that could be used to, for example, provide the number of subdomains to use inthe block Jacobi preconditioner on a given number of processor, on a given machine, andso on. We concentrate on analyzing the run time of components for a particular solvercon�guration on a particular type of problem, to provide concrete (and more readable)expressions. To avoid a glut of variables we �x the number of iterations at a value typical ofour test problems. Note, we show, in chapter 9 that the number of iterations, that our solverrequires to achieve a �xed relative reduction in the residual, is not e�ected by the scale ofthe problem - thus the assumption of a �xed number of iterations for any one problem isvalid. We further simplify the analysis by making assumptions about the class of prob-lems and the solver con�guration, in our model. In particular we assume that we are workingwith uniformly \thick body" problems i.e., problems in which coarsening can take place inall three dimensions at all levels, throughout the domain. We assume that we are using thesymmetrize multiplicative Schwarz method, equation (3.2). Our model could easily be mod-i�ed to accommodate additive methods but we do not conduct numerical experiments withadditive methods as we have not spent time optimizing them (i.e., we have not introducedthe task level parallelism that makes additive methods attractive).We assume that the top (coarsest) grid has about 500 degrees of freedom. This isa rather small problem for the top grid as can be inferred by the fact that the time spentin the top (coarsest) grid is minute compared to the time of the penultimate grid (x9.6).There are two reasons for this less than optimal choice of parameters (i.e., using too manygrids)



135� memory: we are often memory bound and as we have a fully symmetric program-ming model using a smaller top grid reduces the maximum memory used on any oneprocessor.� program development: we want to scale to much larger problems, so we want to\harden" the algorithms so as to ease the eventual transition to larger problems. Atiny coarse grid may introduce robustness problems in problem with more complexgeometries, so we wish to try to reveal these issues in preparation for larger machines.We currently use PETSc's serial sparse solver for the top grid; future work will includeincorporating a parallel direct solver [58] for the coarse grid problem.For simplicity we restrict ourselves to one set of solver parameters - typical of ournumerical experiments. We assume two (s = 2) iterations of a CG smoother, preconditionedwith block Jacobi with nb � 150 equations per block, thus the number of blocks is bi = d ni150e.We let the number of levels L = dlog8(n0)e � 3 (with n0 > 512), this assumes that thecoarsest grid has about 83 = 512 equations. The problem size is n0 = ndf � jV j equations(ndf degrees of freedom per vertex), and ni � n08i . These will eventually be used in themultigrid inventory of Figure 8.8 to give us the total component count of a multigrid solveas a function of problem size n0, and the number of iterations k. We denote the cost (intime) of an operator x by T (x), the 
oating point cost by F (x), and the communication costsby C(x). We do not include load balance in F (x), nor do we explicitly include nonuniformcommunication or network contention costs between individual processors in C(x).This section proceeds as follows, �rst x8.5.1 rewrites the \full" multigrid algorithmin more detail than we have previously. x8.5.2 discusses models for the sizes of coarsegrids and \ghost" vertices, used primarily in the communication cost models. The costsof the components are modeled, in terms of 
oating point operations and 
op rates inx8.5.3; communication costs are modeled in x8.5.4. x8.5.5 integrates the communicationand 
oating point costs; matrix vector products are modeled in more detail as they are oneof the largest costs in most multigrid solves.8.5.1 Multigrid component labelingThis section enumerates the complexity structure of full multigrid. First let usshow the \full" multigrid cycle that we use, as a preconditioner for a Krylov subspacemethod, in all of our numerical experiments in Figures 8.4.



136x =MultiGrid Fcycle(Ai; b)if Ai:IsCoarsest()x A�1i � b { direct solveelse�r  Ri � b { restrict the residual b to the coarsest grid�d MultiGrid Fcycle(Ai+1; �r) { recursion to get �rst correction from coarsest gridx Pi � �d { interpolate correction back to this grid ir  b� Ai � x { form new residualx̂ MultiGrid V cycle(Ai; r) { approximate solvex x+ x̂ { add correctionx =MultiGrid V cycle(Ai; b)if Ai:IsCoarsest()x A�1i � b { direct solveelsex Smooth(Ai; b) { smooth errorr  b� Ai � x { form new residual�r  Ri � r { restrict the residual r to the coarsest grid�d MultiGrid V cycle(Ai+1; �r) { get coarse grid correctionx̂ Pi � �d { interpolate correction back to this grid ix x+ x̂ { add correctionr  b� Ai � x { form new residualx̂ Smooth(Ai; r) { smooth errorx x+ x̂ { add correctionFigure 8.4: Full Multigrid Cycle



1378.5.2 Coarse grid size and densityTo model the scale of our coarse matrices, we assume that each grid has a factorof 8(= 2D for D = 3 dimensional problems) fewer vertices than the previous grid. Thiscomes from the assumption that every other vertex is being \promoted" to the next gridin each dimension - this is true for regular meshes. This assumption is not always true forirregular meshes as even on a regular grid a maximal independent set (MIS) in x5.2 couldpick every third vertex resulting in a factor of 27 reduction at each level.We intentionally randomize the vertex order of the \interior" vertices in our MISimplementation (subject to the constraints in x5.3.5), to increase the reduction factor - thuswe actually observe reduction factors of about 10 between the �nest and �rst coarse gridand about 8 on the subsequent grids. Modeling this reduction factor is further complicatedby the fact that the \graphs" on the coarse grid are not, in general, well de�ned in thesense that they are not graphs of valid �nite element meshes (with either tetrahedral orhexahedral elements). In fact our code has three graphs associated with each coarse grid i:� The non-zero structure of Ai (= Ri�1Ai�1RTi�1 in x2.4.2) which we call Gexact� The graph of the Delaunay tessellation described in x5.3.5 - GDelaunay (note, this is avalid �nite element graph)� The approximate adjacencies that we create immediately after the MIS to facilitatee�cient implementation of the \symbolic" phase of our codeThese algorithmic complexities also present di�culties in making a priori estimatesof the number of non-zeros in the coarse grid matrices. We have observed reduction ratesin the number of non-zeros from grid i to grid i+ 1 of about 5 on problem P1 in chapter 9.Thus we use 5 for our non-zero (edge) reduction factor for all grids as an approximation.Number of adjacent processor subdomains and size of \ghost" vertex listsTo model communication costs we �rst characterize the maximum number of ad-jacent neighboring processors and the number of \ghost" vertices with which any processorhas contact - Nneigh � maximum number of neighbors of any processor domain. To esti-mate these quantities we take advantage of the fact that our problems come from physicaldomains. The mesh partitioner attempts to minimize edge cuts in the graph - this has



138the physical analogy of minimizing the surface to volume ratio of the partitions. Optimalpartitions are hexagons for a 2D continuum and rhombic dodecahedrons a 3D continuum.Thus the \optimal" Nneigh is about 12 in a regular 3D mesh. Note that for 3D partitioningwith cubes Nneigh is 26. We use Nneigh = 22 as this is typical of what we see in practice.That is, Nneigh = 22 is the maximum number of neighbors for any processor, with about25; 000 degrees of freedom per processor and about 200 processors. Note that this numberwill most likely go down with increased dof per processor and better mesh partitioners, andup with more processors as statistical e�ects of nonuniform partitioning come into play.Now we estimate the number of ghost vertices (o� processor vertices which areconnected to a local vertex) for each processor (e.g., the number of entries of x that weneed, from other processors, to compute the local entries in y  Ax in a matrix vectorproduct). Likewise, we need the number of local \boundary" vertices whose values mustbe sent to other processors. We can again use the physical properties of our graphs byassuming that a processor's subdomain is a sphere with radius rp, and each vertex \�lls" aunit volume. With jVpj processor vertices we have jVpj = 43 � � � r3p. By assuming that thethickness of the boundary layer of vertices is 1, the interior vertices V Ip have a radius rp�1,thus ���V Ip ��� = 43 � � � (rp � 1)3. After truncation of higher order terms we have���V Ip ���jVpj � 1� 3rpsince we have rp � �3 jVpj4� �13we get ���V Ip ���jVpj � 1� 3�3jVpj4� � 13 (8.2)Our numerical experiments use about 15; 000 to 25; 000 dof per processor (about 5; 000to 8; 000 vertices per processor) on the �ne grid. Substituting these partition sizes intoequation (8.2) gives us about 70� 75% interior vertices, which is line with the values thatwe measure in our numerical experiments. To get an expression for the number of ghostvertices, we assume that the ghost layer is one unit thick, so that ���V Gp ��� = (rp + 1)3 � r3p,and after dropping low order terms, we get���V Gp ��� � 5 � jVpj23 + 8 � jVpj13



139and similarly as ���V Bp ��� = r3p � (rp � 1)3���V Bp ��� � 5 � jVpj 23 � 8 � jVpj 13An alternative model is to assume that the subdomains are cubes, we can now us anexplicit discrete graph with a regular grid of hexahedra, by assuming that each subdomainhas Np vertices on the side of its cube. The number of vertices per subdomain as jVpj = N3p .Further we can model the number of interior vertices (vertices with no contact with otherprocessors as ���V Ip ��� = (Np � 2)3; Np > 1and boundary vertices ���V Bp ��� � 6 � jVpj23 � 12 � jVpj 13and the number of ghost vertices���V Gp ��� � 6 � jVpj 23 + 12 � jVpj 13which is largely similar to the model based on spheres. Again for � 5; 000 to 8; 000 verticesper processor problems we get about 70� 75% interior vertices.8.5.3 Floating point costsThis section lists the 
oating point counts for the components in multigrid - theseestimates assume that we are using eight node hexahedral trilinear elements [86]. We assumethat our subdomains (for the block Jacobi preconditioner) are 4� 4� 4 node cubes, whichgives blocks with 192 equations. Further we are oriented toward thick body problems, asthis is the type of problem that we use for our linear scalability studies, in chapter 9.We need a 
op rate to estimate the costs of 
oating point operations: M
op/sec= 106� 
ops / sec. M
op/sec is a machine dependent parameter, and even on any onemachine we subdivide M
op/sec into several types. Below are �ve types of flop rates, withthe M
op/sec rate of the appropriate on a T3E and IBM PowerPC in Table 8.5.3, on atypical problem (i.e., about 20,000 unknowns on one processor).� Mflop1=sec: Dot products AXPYs, any norm, etc.� Mflop2=sec: Sparse matrix vector products and solves, with a ndf � ndf matrix ofdouble precision scalars per block matrix entry



140� Mflop2a=sec: Sparse matrix vector products, 1 scalar per block matrix entry� Mflop3=sec: Sparse direct matrix factorization� Mflop3a=sec: Sparse matrix-matrix-matrix productsT3E (625 M
op/sec peak) IBM PowerPC (258 M
op/sec peak)Mflop1=sec 85 22Mflop2=sec 95 37Mflop2a=sec 19 15Mflop3=sec 193 173Mflop3a=sec 12 14Table 8.3: MFlop rates for MFlop types in multigrid)Floating point counts are estimated in some cases by measuring the 
op counts ofrepresentative problems, otherwise they are models for typical hexahedral meshes. Figure8.5 shows the 
oating point counts that we use in our analysis, (�) refers to values that aremeasured from numerical experiments, and (=) are modeled values.F (Mvec0) = 2 � 80 � �n0 = 160 � ni - Mflop2F (Mveci) � Mvec05iF (Restricti) = 2 � 4 � ni - Mflop2aF (V ecDoti) = 2 � ni - Mflop1F (V ecNormi) = 2 � ni - Mflop1F (Axpyi) = 2 � ni - Mflop1F (TriProdi) � 5 �Mveci � 1000 � ni - Mflop3aF (F ji ) � 30; 000 - Mflop3F (Sji ) � 18; 000 - Mflop2F (FL�1) � 7Mflop - Mflop3F (SL�1) � 0:4Mflop - Mflop2Figure 8.5: Floating point counts for multigrid operators - 
op-rate type



1418.5.4 Communication costsCommunication costs are di�cult to model e�ectively; their di�culty will requirethat we use the LogP complexity models (overhead (o) and latency L) described at thebeginning of this chapter. As with the 
op rate above, there are di�erent overhead o typesfor di�erent operations; we include the time to \pack" messages, in the application layer,in overhead. Overhead is subdivided into �, the overhead for each processor with whichwe communicate, and � the overhead for each word (double) being communicated; i.e., thecost to send n words is �+ n � �. We de�ne three types of �� �1: Dot products, the true machine/system software below the application: 2 � (o+L)for the reduction to compute the answer and a broadcast to disseminate it.� �2: Vector \scatter/gather" in sparse matrix vector products: posting receives andother per send or receive overhead.� �3: Matrix operations in the matrix construction: like �2 setting up for each sendand receive.In general, Nneigh is multiplied by � to get time due to latency in matrix-vector products.Note we do not include the initial setup phase for the data structures in �2 and �3 (i.e.,allocating bu�ers, communicating maps between local and non-local vertices for the sendand receives, etc.).For completeness we describe � in the same way as �. Dot product communicationbandwidth has no dependence on numbers of vertices (we assume that all active processorson a level i have at least one vertex by de�nition), so we need only de�ne �2 and �3. �2could be a function of ndf and V Gp the number of ghost vertices, where ndf is the number ofscalars associated with each vertex in a vector. �3 could be a function of x, ndf2, and V Gp ,where an average of x matrix entries are in a row associated with an o�-processor vertexthat must be communicated. We will estimates these parameters with experimental data,and as we only test ndf = 3 problems, we assume �2 is a linear function of ndf and �3 is aquadratic function of ndf (we could include ndf , as we do in x8.5.5 for V Gp , to get a moreaccurate complexity).Matrix vector products (�2) use indirect indexing into a dense vector, to copy(\gather") values to bu�er for sending to a neighbor processor; this process is reversed onthe receiving side as processors unpack a message and \scatter" it into a sparse vector.



142Matrix triple products calculate some o� processors values and could accumulate theminto a local sparse matrix; �3 costs occur after the 
oating point work is complete, eachprocessor will copy their o� processor data into messages for sending, and will then receivecorresponding messages and accumulate this data into their local sparse matrix. We will notmeasure �3 or �3, as these values are inherently very implementation and data structuredependent, and they are not as large a cost in the solve as the �2 or �2. We use �3and �3 here, to derive an order of the complexity for matrix vector products; we providequantitative measures for �2 and �2 in x8.5.5.In constructing our complexity model we use the subdomain-as-cube model ofx8.5.2 to give, on grid i with ndf dof per vertexC(Mveci) � Nneigh � �2 + ndf � �2 �6 � jVpj 23 + 12 � jVpj13 � (8.3)Note we ignore latency L as we can overlap communication and computation e�ectively, atleast on the �ner grids (see x8.5.5 for details). Additionally we haveC(V ecDoti) = 2 � dlog2(Pi)e � (o+ L)using the raw machine overhead o and latency L, andC(V ecNormi) = C(V ecDoti)C(Axpyi) = 0 (8.4)The number of o�-processor ghost vertices, for the restriction operatorC(Restricti),(for which we require values for the left hand side vector) is about the same as that for thematrix-vector product. Again as we have ndf dof per vertex and 4 coarse grid vertices, ingeneral, connected to each �ne grid vertex through the restriction operator.C(Restricti) � Nneigh � �2 + ndf � �2 (4 � Vp) (8.5)For C(TriProdi) assume that a processor adds values into all graph edges (o�-diagonal matrix entries) to/from their ghost vertices, and self edges (diagonal entries) onthose vertices. Additionally a processor can potentially add values to the o�-processoredges between two ghost vertices. With this we can estimate the number of o� processormatrix entries that a processor sends as the number of ghost vertices (diagonal entries),



143and edges \between" processors (i.e., ���(v; w) 2 ES j v 2 Vp��� in x5.2.1), and the number ofedges between ghost vertices. To simplify C(TriProdi) we assume that all ghost vertices ofprocessor p on grid i have about half (15 � �85�i) of their matrix row entries touched by theprocessor p, thus C(TriProdi) � Nneigh � �3 + ndf2 � �3 � 15 � �85�i � ���V Gp ��� (8.6)���V Gp ��� = 6 � jVpj 23 + 12 � jVpj 13This expression is in line with our observations on problem P1 (chapter 9).8.5.5 Total cost of componentsFor most of the components in our multigrid model we can simply add the com-munication time to the 
oating point time as there is either no opportunity for overlappingcommunication and computation, or we (or PETSc) have not implemented it.The only computational component that requires that we articulate the modelfurther isMvec, discussed below. The rest of the multigrid components are simply modeledas the sum of their computation and communication times shown in Figure 8.6.T (Restricti) = Nneigh � �2 + ndf � �2 ���V Gp ���+ 2�4Mflop2a=sec � n08i�PiT (V ecDoti) = �1 � dlog(Pi)e+ 2Mflop1=sec � n08i�PiT (V ecNormi) = �1 � dlog(Pi)e+ 2Mflop1=sec � n08i�PiT (Axpyi) = 2Mflop1=sec � n08i�PiT (TriProdi) � Nneigh � �3 + ndf2 � �3 � 15 � ���V Gp ���+ 800Mflop3a=sec � n08i�PiT (F ji ) � 0:003Mflop3=secT (Sji ) � 0:0018Mflop2=secT (FL�1) � 7Mflop3=secT (SL�1) � 0:4Mflop2=sec���V Gp ��� = 6 � ��� n08i�Pi ��� 23 + 12 � ��� n08i�Pi ��� 13Figure 8.6: Costs for multigrid operators



144Matrix vector product costTo form the total cost of matrix-vector products we look at the matrix data struc-ture in more detail; this is because matrix vector products are responsible for most of thetime in a multigrid solve and the communication and computation patterns of our matrixvector products are not obvious and allow for some overlap of communication and compu-tation. PETSc implements its parallel matrix class with two serial sparse matrices on eachprocessor, plus a small amount of global data. The local \short fat" submatrix (block ofglobal rows partitioned to processor p) is column partitioned into the diagonal block (Ap)of the global matrix, and the rest, or o� diagonal, local part (Bp). The advantage of thisscheme is that Ap only works on the local parts of the source and destination vectors (x andb, respectively), and can thus be done without any communication. The PETSc method ofperforming b Ax on processor i, is as follows (note, matrix subscripts refer to processorsubmatrices and not grids)� post receives for necessary parts (ghost values) of xj j j 6= i (actual receives in thefourth step)� send necessary parts of xi to all processors j that \touch" i (corresponding send ofreceives in the fourth step)� bi  Ai � xi (work on local data)� receive all o�-processor entries in xj� bi  bi +Bi � xjWith this we can state a cost model for matrix vector productsT (Mveci) = 2 � �Nneigh � �2 + ndf � �2 � ���V Gp ����+ndf2 � �85�i � �9 � ���V Bp ����Mflop2=sec + ndf2 � �85�i � �27 � ���V Ip ���+ 18 � ���V Bp ����Mflop2=sec���V Gp ��� = 6 � ���� n08i � Pi ���� 23 + 12 � ���� n08i � Pi ����13���V Bp ��� = 6 � ���� n08i � Pi ���� 23 � 12 � ���� n08i � Pi ���� 13



145Here we assume that there is enough work in the bi  Ai � xi term of the matrix vectorproduct to \hide" the latency in the communication; this will not be the case in general,especially on the coarsest grids.We can measure the maximum time that any processor spends in each of thesephases, with varying numbers of processors to estimate the value of �2 and �2; table 8.5.5shows these maximum times for a problem (P1 described in chapter 9) with about 25,000equations per processor on the Cray T3E at NERSC.Fine grid matrix vector product data, with 25,000 equations per processor# processors (# dof x1000) 2 (40) 64 (1,343) 256 (6,489)Max. send time (max/min) tmaxsend 0.00065 (1.6) 0.0033 (3.6) 0.0038 (2.9)Max. diag. block mat-vec time (max/min) 0.0318 (1.0) 0.0341 (1.1) 0.041 (1.1)M
op/sec per proc. diag. block mat-vec 96 90 87Max. receive time (max/min) 0.00035 (2.4) 0.0013 (2.9) 0.0018 (4.5)Max. o�-diag. block mat-vec time (max/min) 0.0018 (1.1) 0.0048 (1.9) 0.0054 (2.0)M
op/sec per proc. o�-diag. block mat-vec 60 57 61Max. neighbor processors Nneigh 1 18 20Ave. number ghosts in each neighbor proc. ng 583 180 183Table 8.4: Matrix vector product phase timesNote, this data is from the standard \summary" output in PETSc, although weadded ten lines of code to PETSc's matrix vector product routine (to start and stop timersfor each of the �ve phases).To use this data to estimate �2 and �2, we �rst notice that our model predictsthat the send and receive phases should be equal - this is not the case. The sends arenon-blocking, and the receives can potentially block, but for the �ne grid this is not likelyas there is much work (the local diagonal block matrix vector product) to hide the latencyin the sends. We use the send times for this demonstration.For a model of the slowest processors communication time, we will use the maxi-mum time and the maximum number of neighbor processors (although we do not know ifa processor with the largest number of neighbor processors was in fact the processor withthe largest time, but it natural to assume so). We will also assume that all of the messagesare of the same length, as the average length of messages is the only data that is available,and use this to calculate the average number of ghost vertices in each message ng. We cannow use this data from the three samples to give us three equations in two unknowns of the



146form Nneigh � �2 +Nneigh � ng � ndf � �2 = tmaxsend .2664 1 58318 18 � 18020 20 � 1833775"�2�2 # = 2664 0:000350:00130:0018 3775The least squares �t for this data gives us �2 = �0:000025 and �2 = 0:0000012.Clearly, n � � >> �, so we can neglect the � term (on the �ne grid) and calculate �2 withleast squares �t: �2 = 0:00000103. Figure 8.7 shows a comparison of this model with thedata.
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Figure 8.7: Comparison of model with experimental data for send phase of matrix vectorproduct on �ne gridThus we have an approximate measure of �2 = 0 and �2 = 1:03�sec on a 440MHz. Cray T3E, with 3 dof per vertex, and hexahedra mesh of a thick body problem. Thenext step would be to articulate �2 to include a term for the average number of vertices perprocessor to allow for the modeling of the coarse grids - though we conclude the developmentof this model here.



147This exercise is an example of the analyses that would have to be carried out for�1, �3, and �3, for a machine and a problem class, to construct an initial complexity modelof multigrid. We do not pursue this model further in this dissertation, but the next sectionconcludes with a sketch of the path for pursuing this model.8.6 Conclusion and future work in multigrid complexitymodelingThis chapter has provided an introduction to the complexity issues of large scaleunstructured multigrid solvers on the common parallel architecture and machines of todays.We have developed some of the infrastructure for our complexity model and have articulatedsome of the components of this model. We however, have not completed this model.To complete this model one would �rst need to complete the expressions for �2and �2, developed in the last section, for coarse grid matrices (i.e., extend the model, of �2and �2, as a function of the number of equations per processor and of machine latency); onecould then construct models for �1, �3 and �3. These expressions could then be substitutedinto the component models presented in this chapter; these component models could thenbe substituted into an inventory (shown in Figure 8.8) of the applications of each componentin the solver. The resulting cost estimate could then be compared to experimental data andre�ned as necessary to develop an accurate model.After re�ning this model for thick body hexahedra meshes, one could extend themodel to accommodate other types of problem classes (e.g., using thin body problems likeshells), by changing some of the appropriate parameters, such as grid reduction rates (inx8.5.2). One would then continue to iteratively re�ne the model and perturb the problemsto develop a more comprehensive accurate model of multigrid solvers on unstructured �niteelement meshes. Some of the payo�s in the modeling that we have introduced in thischapter would be (as stated in x8.2) to aid algorithmic design, design better computers,inform purchasing decisions, and verify optimal or correct code installations.



1481 : Setup Multigrid preconditioner:� 1: TriProdi, 8i = 1; 2; 3; � � � ; L� 1� 1: FL�1 - - factor coarsest grid� 8i = 0; 1; 2; 3; � � � ; L� 2 8j = 1; 2; 3; � � � ; bi: F ji - - factor block diagonal matrix forblock Jacobi:k: Conjugate Gradient iterations, with a Multigrid preconditioner:� 1: Mvec0� 2: V ecDot0� 3: Axpy0� 1: Norm0� 1: Application of MultiGrid Fcycle(A0; b):{ L: SL�1 - - solves on coarsest grid{ 1: Restricti 8i = 0; 1; 2; 3; � � � ; L� 1{ 1: Mveci 8i = 0; 1; 2; 3; � � � ; L� 1{ 1: Axpyi 8i = 0; 1; 2; 3; � � � ; L� 1{ 1: Applications of MultiGrid V cycle(Ai; b) 8i = 0; 1; 2; 3; � � � ; L� 2:� 2 � (i+ 1): Mveci� 2 � (i+ 1): Restricti=Interpolatei� 3 � (i+ 1): Axpyi� s � (i+ 1): Applications of Smooth(Ai; b):� 1: Mveci� 2: V ecDot0� 3: Axpyi� 8j = 1; 2; 3; � � � ; bi: Sji - - Jacobi PCFigure 8.8: Cost Inventory of CG with Full Multigrid Preconditioner



149Chapter 9Linear scalability studiesThis chapter presents scalability studies of our solver on an IBM PowerPC clusterwith 128 4-way SMPs and a Cray T3E with 512 processors, with problems up to 7.5 milliondegrees of freedom. We show comparative results on two di�erent platforms, and look intosome general and detailed solver performance issues.9.1 IntroductionThis chapter proceeds as follows, notation and solver con�guration are introducedin x9.2. We introduce our linear test problem in x9.3, and present scalability studies ofour solver on a Cray T3E x9.4 and an IBM PowerPC cluster x9.5. x9.6 shows numericalexperiments for our grid agglomeration strategies and analysis of the time spent in eachgrid of a sample problem. We present \end to end" performance data in x9.7, to provide aview of the performance of our entire parallel �nite element package.Our overall results show that our algorithm is indeed scalable on problems up to7.5 million degrees of freedom on 512 processors of a Cray T3E with about 50% solverparallel e�ciency, and on 128 4-way SMPs nodes of an IBM PowerPC cluster with about20% solver parallel e�ciency.9.2 Solver con�guration and problem de�nitionsWe denote a problem x by Pxk , k being the number of thousands of dof that weput on each processor. A problem is a geometry, or domain, with boundary conditions, and



150a �nite element discretization (or element formulation), material properties, etc., for eachsubdomain - but does not include a mesh of the domain. For instance our �rst problemthe \included sphere" (x5.2.5, x5.3.7, x6.4, x6.5, and x9.3), with a mesh and number ofprocessors that results in about 25,000 dof per processor is referred to as P125.Our solver uses a block Jacobi preconditioner for a CG smoother for our (full)multigrid preconditioner of a CG solver. Two pre and post smoothing steps are usedthroughout our numerical experiments, and we use a convergence tolerance of 10�6 (i.e.,declare convergence of solution x̂ when kAx̂�bkkbk < 10�6) - unless otherwise stated.9.3 Problem P1Figure 9.1 shows one mesh (13,882 vertices), of a �nite element model of a hardsphere (Poisson ratio of 0:3) included in a soft somewhat incompressible material (Poissonratio of 0:49). P1 is made of eight vertex hexahedral trilinear \brick" elements and isalmost logically regular. All materials are linear, with mixed displacement and pressureelements (Q1P0) [86]. A uniform pressure load is applied on the top surface. One octantis modeled with symmetric (\roller") boundary conditions on the \cut" surfaces, all othersurfaces have homogeneous Neumann boundary conditions. The other meshes that we testare of the same physical model but with di�erent scales of discretization.
Figure 9.1: 13,882 Vertex 3D FE mesh and deformed shape



1519.4 Scalability studies on a Cray T3E - P115Figure 9.2 shows the times for the primary components (in Figure 8.2) of one linear�nite element solution, after the (per con�guration) set up phase, for a variety of problemsfrom 15,000 dof to 7.5 million dof with 1 to 512 processors, run on a Cray T3E. The CrayT3E has 512 450 MHz single processor nodes, with 900 M
op/sec theoretical peak, and256 Mb memory per processor. For each instantiation of the problem we have chosen thenumber of processors so as to keep about 15,000 dof per processor, and to be a multiple offour (to be consistent with the IBM data in the next section).
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uctuations in iteration counts: the non-globalcoarse grids meshes (x5.4) lead to restriction operators that are not computed with one validglobal �nite element mesh, and the \random" selection of facets in our face identi�cationalgorithm (x5.3.3) is probably not optimal. These issues require a parallel Delaunay meshgenerator [12], and that we use a more rational selection of initial facets with some globalview of the problems - the design of such an algorithm that is both e�ective and hasacceptable parallel characteristics is a subject of future research.Figure 9.3 shows the e�ciency of the data in Figure 9.2; we have also plotted thefactor N(p)N(1)�p by which we multiply the data, to account for the fact that these problemscome in �xed sizes which are not in general an integer multiple of the smallest (1 processor)version of the problem. Figures 9.2 and 9.3 show that the formation of the �ne grid sti�nessmatrix (\Fine grid [sti�ness matrix] creation") is scaling well - this is to be expected asno communication is required and the only sources of ine�ciency are load imbalance, andthe redundant work done on elements that straddle our vertex partitioning. Thus, our



153e�ciency (de�ned in x8.4.1) for the �ne grid construction is: communication e�ciencyc = 1:0, scale e�ciency z � 1:0, and work e�ciency w � 0:8 and is the ratio of the numberof elements in the problem divided by the number of processors, to the maximum numberof element evaluations on any one processor. Load balance l, for the element evaluations isnot explicitly enforced with our partitioner, though they are inherently well balanced as allelements do the same amount of work (in this linear example), and the element load balanceis reasonably good as the number of elements on a processor is closely related to the numberof non-zeros on the processor (which is explicitly optimized by the partitioner). Also, onlarge problems ParMetis has a tendency to put multiple disconnected small subdomains ona few processors, resulting in good load balance in the matrix vector products, but large\surface areas" on these few processors - these processors evaluate more than the averagenumber of elements per processor leading to larger load imbalance in the �ne grid matrixcreation. We can also see that the coarse grid creation (the matrix triple product, RAP )is scaling reasonably well, and is a small part of the overall solve time. The matrix tripleproduct times in Figure 9.2 are hindered by what seems to be non-optimal matrix assemblyimplementation in PETSc. We have implemented our own assembly \wrappers" for thePETSc assemble routines that use hash tables to cache the accumulation of matrix entriesuntil the 
oating point work is done in the matrix triple product. We then add our cachedvalues to the PETSc matrix, with the PETSc assemble routines, once for each matrix entryper processor. This optimization is necessary for the o�-processor matrix entries as PETScdoes not implement this well, but even for the on-processor entries, using our assemblywrapper has more than doubled the performance of the matrix triple product on the IBM(the increase on the Cray T3E is not as dramatic).To understand the parallel e�ciency of the actual solve we remove the scale oe�ciency noise (number of iterations) from this data to ascertain trends in the solver per-formance (M
op rate). Figure 9.4 shows two di�erent decompositions of the solve (timeto solve for \x") parallel e�ciency, using 
op rate and 
op count, utilizing our e�ciencymodels, from x8.4.1, to visualize the contributing components. Note, the lower curve ofeach of these plots represents the e�ciency of the solve with a �xed number of iterations.Also the small di�erence between the \average 
op/iteration" and the horizontal line ate�ciency = 1:0 (the horizontal axis), in the left plot of Figure 9.4, is the small amount ofsub-linear (below the axis) 
op e�ciency in this set of experiments. See x10.4 for a more
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ave flop/secFigure 9.4: 15,000 dof per processor, included sphere, e�ciency on a Cray T3Edetailed discussion of the e�ciency plots such as those in Figure 9.4. From this data wecan see that the parallel e�ciency of the T3E is almost 50% for the solve.The serial e�ciency of this code can be calculated by dividing the M
op rate forthe entire solve and matrix setup (submatrix factorizations and matrix triple products), bythe serial peak 
op rate. The Serial M
op rate for the 15,000 dof problem is 61 M
op/sec,and the peak 
op rate (appendix B) is 662 M
op/sec to giving a serial e�ciency s = 0:10.9.5 Scalability studies on an IBM PowerPC cluster - P130Performance is a machine dependent quantity, thus we look at this same study, asthe last section, on a di�erent machine. Note, to be consistent with P115 on the Cray, weput 60 k dof per 4-way SMP node on the IMB; we, however, use only two processors pernode as this gives us better performance on the largest problems (the ones of interest) -resulting in P130. Figures 9.5,9.6,9.7 show the same experiments, as in the previous section,run on an IBM PowerPC cluster at LLNL. Each node has four 332 MHz PowerPC 604eprocessors, with 512 Mb of memory per node, and a peak M
op rate of 258 M
op/sec(appendix B). We only use two processors per node and run in a 
at MPI programmingmodel (thus we are not explicitly taking advantage of the shared address space on eachnode). This data shows that the e�ciency of the solve is not scaling well as we are only
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op rate and 
op count, utilizing our e�ciencymodels to visualize the contributing components from x8.4.1. See x10.4 for a more detaileddiscussion of the e�ciency plots such as those in Figure 9.7.The serial e�ciency of this code can be calculated by dividing the M
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1579.6 Agglomeration and level performanceThis section looks into two related areas, time spent on each multigrid level andthe e�ect of processor agglomeration described in x7.4.9.6.1 AgglomerationWe use the IBM PowerPC cluster of this experiment as the utility of agglomer-ation techniques are most pronounced on this machine. We use P115 on 60 nodes (usingall 4 processors per node), with and without processor agglomeration. Table 9.6.1 showsapproximate 
op rates for dot products, and the total 
op rate for the actual solve (i.e. theiterations). Total M
op per sec. (MFs) for solve3,594 k dof With agglomeration Without agglomerationIncluded Sphere 1509 249grid � equations np dot MFs np dot MFs1 3,594 k 240 � 35 240 � 422 314k 120 � 11 240 � 33 45k 30 � 8 240 � 04 6k 10 � 2 240 � 05 600 1 NA 1 NATable 9.1: Flat and \graded" processor groups, IBM PowerPC clusterThis data shows that, for this machine, dramatic savings can be achieved withprocessor group agglomeration.9.6.2 Performance on di�erent multigrid levelsWe provide an approximate measurement of the time spent on each level, for aparticular problem on the Cray T3E. We use the 9,594,879 dof version of problem P2, thatis similar to P1, introduced in chapter 10. Table 9.6.2 shows the time spent on each grid,in the accelerator, and the total time for the actual solve - after the preconditioners havebe factored and the coarse grids created. Note, we are only able to measure the total solvetime accurately - given the PETSc output. We thus approximate the time on each gridby adding the maximum time spent in the matrix-vector product and subdomain solves (ofthe block Jacobi preconditioner), and the minimum time spent in the dot products (as the



158dot products accumulate the load imbalance accounted for in the previous terms). We thenthrow out the time on the grid that we have the least con�dence in (grid 4) and assign itthe time required to add up to our (reliable) total solve time.level vertices active processors � time (sec)Krylov accelerator 3,227,206 512 1.11 3,227,206 512 7.682 262,909 512 3.623 35,286 512 2.864 5,309 64 4.045 543 8 1.596 46 1 0.21Total solve time 21.1 21.1Table 9.2: Time for each grid on Cray T3E, 9.6 million dof problemNote, this data may indicate that fourth grid is not using an optimal number ofprocessors, though we are not able to improve the overall solve time (the quantity that wecan measure accurately) by varying the number of processors, so the source of the apparentine�ciency in this grid is not clear.9.7 End to end performanceThis section shows the total \end to end" performance of our parallel �nite elementimplementation with our solver to do just one solve - from beginning to end. We measure thehigh level components of the total parallel �nite element system, as diagramed in Figure 8.2.Note, we do not measure time for FEAP to setup the local data structures for the �ne grid,after the partitioning but before the construction of the restriction operators (Prometheus),as this is not optimal now (we do not use memory resident �les) but it is small (about 20seconds on the T3E).



1599.7.1 Cray T3EFigures 9.8 and 9.9 show the times for major components in the solution of onesolve on the Cray T3E at NERSC.
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op rate in the solve, which is about 50%.9.7.2 IBM PowerPC clusterThis section shows the same data as the last section for the IBM PowerPC clusterat LLNL. It is interesting to note that the �nite element setup (Athena) is faster on the IBM- though this is somewhat misleading. Each node on the IBM has a local disk, the Crayprocessors do not have a local disk, so that writing the local FEAP input �le, and readingit in (inside of FEAP on each processor) is much more expensive on the Cray. Also theCray does not support I/O in C very well, requiring that Cray speci�c routines be called forreading and writing �les; this data may not have had the optimal system I/O parameters



161set, so the Cray Athena data may not be optimal.
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1629.7.3 ConclusionForm this data we can see that the initial parallel �nite element setup phase is thebiggest bottleneck for one solve; but as its cost can be amortized for typical problems, andas it is not the subject of this work, this is not of primary concern. The performance of therestriction construction (Prometheus) may be somewhat diminished by non-optimal assem-bly of the restriction operators in PETSc - this is partially due the fact that we repartitionthe coarse grids, requiring more communication than if we did not repartition. Also, thoughParMetis minimizes the data movement in repartitioning, it is not clear how e�ective it is(we are using the second or third alpha release of version 2.0). The restriction constructionphase is also hindered by ine�cient sparse matrix operations (submatrix extraction andsymbolic factorization) in the additive Schwarz preconditioners x9.7. These problems areagain only \per con�guration" costs and have not been investigated throughly. Addition-ally we can see the very di�erent performance characteristics of the IBM and the Cray, onunstructured multigrid codes. We attribute this to the poor support of \
at" MPI codeson the IBM.



163Chapter 10Large scale nonlinear results, andinde�nite systemsThis chapter discusses the application of our solver to non-linear problems thatarise in computational plasticity and �nite deformation materials, with a study that presentsour largest solve to data - a 16.6 million degree of freedom solve with up to 512 processorsand about 60% parallel communication e�ciency. We also discuss the use of our linearsolver (for symmetric positive de�nite matrices) to constrained problems with Lagrangemultipliers - namely contact problems in linear elasticity.10.1 IntroductionThis chapter proceeds as follows, x10.2 describes the large scale test problem P2,and the non-linear solution procedure is discuss in x10.3. A scalability study for one linearsolve is presented in 10.4, with problems of up to 16.6 million degrees of freedom, withabout 60% parallel e�ciency on 405 processors of a Cray T3E. The non-linear numericalresults are discussed in x10.5 with problems up to 16.6 million degrees of freedom on 512processors of a Cray T3E and about 60% parallel e�ciency on 405 processors of a CrayT3E. We discuss contact problems with serial numerical results in x10.6, and conclude inx10.7.



16410.2 Non-linear problem - P2Problem P2 is similar to P1, from chapter 9, with one important di�erence - theincluded sphere has been subdivided into seventeen layers of alternating materials. Thischange to P1 has two important e�ects on the character of the problem. First it introduces\thin body" features which our heuristics (x5.3) are designed to accommodate, and secondthese heuristics alters the degree to which vertices are coarsened in the sphere but not inthe rest of the domain - leading to severe load imbalance if one does not repartition.We again scale this problem, Figure 10.2 shows the smallest (base) version of P2with 80 k dof. P2 has been discretized by using a similar scale of discretization as P1's
Figure 10.1: 80,000 dof concentric spheres problem83 k problem, for the base case. Each successive problem has one more layer of elementsthrough each of the seventeen shell layers, with an appropriate (i.e., similar) re�nement inthe other two directions, and in the outer soft domain - resulting in problems of size: 80k, 621 k, 2,086 k, 4,924 k, 9,595 k, 16,554 k, and 26,257 k degrees of freedom (the largestproblem has not yet been run).We use similar materials as those in P1, but with non-linear constitutive models,and the interior concentric spheres alternate \hard" and \soft" layers with the hard materialin the inner and outer shells. The loading and boundary conditions have been changed fromP1 to an imposed uniform displacement (down), on the top surface.Table 10.2 shows a summary of the constitution of our two material types.The hard material is a simple J2 plasticity material with kinematic hardening [75].



165Material Elastic mod. Poisson ratio deformation type yield stress hardening mod.soft 10�4 0:49 large 1 NAhard 1 0:3 small 0:002 0:002Table 10.1: Non-linear materialsThe soft material is a large deformation (Neo-Hookean) hypoelastic material [86].10.3 Non-linear solverWe use a full Newton non-linear solution method. Convergence is declared whenthe energy norm of the correction, in an iteration, is 10�16 that of the �rst correction.This means in Newton iteration m, we declare convergence when ���xTm � (b� Axm)��� < 10�16 ����xT0 � (b� Ax0)���. Our linear solver, within each Newton iteration, is conjugate gradient pre-conditioned by our multigrid solver, with a block Jacobi preconditioned conjugate gradientsmoother. We use 6 blocks for every 1,000 unknowns in the block Jacobi preconditioner.FEAP calls our linear solver at each Newton iteration, with the current residualrm = b � Axm, thus the linear solve is for the (negative) increment �x � A�1rm. We usea dynamic convergence tolerance (rtol) for the linear solve, in each Newton iteration, ofrtol1 = rtol2 = 10�4 in the �rst and second iteration, and rtolm = min(10�3; krmkkrm�1k � 10�1)on all subsequent iterations (m > 2). This heuristic is intended to minimize the number oftotal iteration required in the Newton solve in each time step by only solving each linearsolve to the degree that it \deserves" to be solved. That is, if the true (non-linear) residualis not converging quickly then solving the linear system to an accuracy far in excess of thereduction in the residual, that is expected in the outer Newton iteration, is not like to beeconomical.The reason for hardwiring the tolerance, for the second Newton iteration, isthat the residual for the �rst iteration of this problem tends to drop by about three or-ders of magnitude. The second step of this problem tends to have the residual reducedby about one order of magnitude or less and then continues with super linear, but notquadratic convergence rate (as we use a non-exact solver). Our dynamic tolerance heuristic(min(10�3; krmkkrm�1k � 10�1)) speci�es too small of a tolerance, on the second iteration of thisproblem, so we hardwired the tolerance for the sake of e�ciency.



16610.4 Cray T3E - large scale linear solvesWe run one linear solve with about 41,000 degrees of freedom per processor (i.e.P241) and a convergence tolerance of 10�4 (the �rst linear solve tolerance in the non-linearsolver), so as to investigate the e�ciency of our largest solves to date (16:6 � 106 dof). Wewant to show our solver in its best light by running with as many equations per processoras possible, as parallel e�ciency will in general increase as the number of degrees of freedomper processor goes up. Thus, this material is intended to illustrate the issues of scale inisolation of the issue of non-linear performance discussed in the x10.5. Figure 10.2 showsthe times for the major subcomponents of the solver, and Figure 10.3 shows the e�ciencydiagram of the same data.
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ops - per �ne grid vertex - on the coarse grids for the larger problemsas can be seen in Figure 10.4. The work e�ciency w from x8.4.1, shown in the \average
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168this poor performance in this data, though older data shown in Figure 9.2 on problems ofsimilar scale show much smaller times that are in line with our expectations. Additionally,there is no need for communication in the subdomain factorization phase, hence the 25%parallel e�ciency in Figure 10.3 is clearly not endemic to our algorithm or implementation.
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16910.5 Cray T3E - non-linear solutionFor the non-linear problem P232 we run �ve time steps that result in a displacementdown of 3.6 inches, the cube is 12.5 inches on a side, and the top \soft" section is 5 inchesat the central (z) axis. Thus, as the hard interior core does not displace signi�cantly at3.6 in top displacement we have about 72% compression of the soft material at the interiorcorner. This percentage decreases away from the interior corner as the depth of the softmaterial increases as we move away from the top of the sphere. We keep about 32,000degrees of freedom per processor, and run problems of size 80 k (on 3 processors) up to16,554 k (on 512 processors). Figure 10.6 show the number of multigrid iterations, stackedon one another to show the total number of multigrid iterations to solve each problem.
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Figure 10.6: Multigrid iterations per Newton iterationFrom this data we can see that the total number of iterations is staying aboutconstant as the scale of the problem increases. Figure 10.3 shows that the number ofiterations, to reduce the residual by a �xed amount in the �rst solve of the �rst time step,decreases as the problem size increases. Thus the data in Figure 10.6 suggests that thenonlinear problem is getting harder to solve as the discretization is re�ned; this is not asurprising result as there is likely more nonlinear behavior in the �ner discretizations, butmore work remains to investigate this issue further.



170Figure 10.7 show a histogram of the number of inner iterations for each Newtonouter iteration of each time step.
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Figure 10.7: Histogram of the number iteration per Newton step in all (5) time steps



171Figure 10.8 show the total \wall-clock" times for these problems run on an IBMPowerPC cluster (note, this data was not in the dissertation and solves problems of up to26.3 million dof, the largest solve also slipped into the �gures above).
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Figure 10.8: End to end times of non-linear solve with 32,000 dof per processorThis data shows that the overall solution times are staying about constant andthat the initial partitioning cost are about equal to the cost of the �ve non-linear solves onthe Cray T3E up to 512 processors. Additionally, the base case (3 processor case), solvetime (in the actual iterations) ran at 71 M
ops, and the 512 processor case ran at 20,823M
ops (about 58% e�ciency). This (71 M
ops) is the fastest M
op rate per processor thatwe have recorded, thus our communication e�ciency is 58% (c = 0:58) on 512 processors.



17210.6 Lagrange multiplier problemsFor problems with multiple bodies, or bodies that fold onto themselves, the sys-tem of di�erential equations in continuum mechanics must be augmented with algebraicconstraints to prevent penetration between bodies - contact forces must be introduced tomaintain a physically meaningful solution i.e., satisfy conservation laws. Contact constraintscan be implemented in one of two ways. First, \sti�" springs can be added to the systemjudiciously to approximate contact i.e., some \penetration" is permitted and the sti�er thesprings the smaller this error - this is known as a penalty approach. Second, the system ofdi�erential equations may be augmented with an explicit set of algebraic equations, thatspecify the lengths of prescribed \gaps" - i.e., the normal to a plane of a body through apoint on another body, with a speci�ed gap (e.g., 0 for true contact) de�nes one equation.This speci�ed relative displacement requires that a force be applied, in the direction of the\gap", to maintain balance of linear momentum. Force terms are thus added to the existingdisplacement equations as an applied load, and the magnitude of this load is the value ofthe Lagrange multiplier.For example consider a 1D problem with a spring (k1) attached to a rigid wall anda mass, and an applied constant load, gives rise to a simple equation for the steady stateresponse, k1x1 = f1. If another mass-spring were added to the system we would get thetrivial system of equations  k1 00 k2! x1x2! =  f1f2!If we specify that the two masses must stay in contact with each other (i.e., x1 = x2 orx1�x2 = 0), we need to augment each equation with the contact force between the masses:k1x1 = f1 + � and k2x2 = f2 � � to get0BB@ k1 0 �10 k2 1�1 1 0 1CCA0BB@ x1x2� 1CCA = 0BB@ f1f20 1CCAor  A CTC 0 ! x�! =  f0 ! (10.1)A is a standard sti�ness matrix. Note that we could also assume that k1 = 0 and A wouldonly be positive semi-de�nite but, in general, the problem is still well posed if vTAvvT v 6= 0;8v 2 Ker(C); v 6= 0 [16].



173We use Lagrange multiplier formulations to impose contact constraints, thus re-sulting in an inde�nite system of equations. To solve the set of equations we use a simpleUzawa method [5]. The Uzawa algorithm, or augmented Lagrange method, decouples thesolution for the displacements x, and the Lagrange multipliers �. Outer iterations, on theLagrange multipliers, call our multigrid solver which will conduct inner iterations, with amodi�ed right hand side, see Figure 10.9.Our sti�ness matrix A can be positive semide�nite. We know A is positive de�niteover the kernel of C, thus we can regularize A to get a symmetric positive de�nite matrix�A = A+ �CTDC. Here � is a scalar scaling parameter and D is a scaling matrix. We usea diagonal matrix for D, Note,� the solution x� satis�es Cx� = 0, so Ax� = �Ax�, and we have the correct solutioneven though we are not using the true sti�ness matrix to calculate the residual.� our Lagrange multipliers are formed with a simple (slave) point on (master) surfaceformulation [57].� in many texts authors implicitly assume that D is the identity [17].� penalty methods solves with �A and pick � to be vary large (e.g., 106 times larger thanthe largest diagonal entry).The vector from the slave point, to the surface (normal to the surface) is called the \gap"vector g; its length is called the gap. We de�ne D, with the gap vector g and the diagonalentries d of the sti�ness matrix associated with the \slave" node j in each constraint i, asDii = gT � d (an alternative de�nition of D is Dii = gtAjjg). The di�culty with penaltymethods i.e., large �, is that the system becomes very \sti�" and di�cult to solve withiterative methods. The advantage of augmented Lagrange formulations is that they aremore accurate, and the regularized systems ( �A) are much better conditioned as a relativelysmall � can be used.Picking � leads to a typical ad hoc minimization process as there are no reliablemethods that we are aware of for picking � a priori, for the problems that are of interestto this dissertation. If � is too small then the outer iterations will converge slowly, and if �is too large then the inner iteration (our solver) will converge slowly. We chose � = 5:0, asthis seems to be about optimal for our test problem. Note, the solution times do not seemto be very sensitive to this parameter. We use a basic Uzawa, with a user provide relative



174tolerance rtol and absolute tolerance atol, algorithm to solve for x and � in equation (10.1)as shown in Figure 10.9�0 = � from previous time stepx = 0i = 1while ���Ax+ CT�i�1 � f ��� > rtol � jf j or jCxij > atolsolve for xi: �Axi = f � CT�i�1�i  �i�1 + �Cxii i+ 1 Figure 10.9: Uzawa algorithm10.6.1 Numerical resultsWe test our solver with a test problem in linear elasticity. Figure 10.10 shows aproblem with three concentric spheres, this is somewhat similar to P2 with out the cubecover material, and we call it P7. The loading is a thermal load on the middle sphere - i.e.,the middle sphere is hotter than the inner and outer sphere, and hence expands. The twointerface conditions (between the inner and the middle sphere and the middle and the outersphere), are enforced with a contact constraint. The problem has 22,092 dof and about 300equations in C for each of the two contact surfaces; our standard solver con�guration is usedwith 200 blocks of block Jacobi preconditioner for the smoother, four multigrid levels, and arelative tolerance of 10�12 or 10�6 on the residual. These solves have two separate in
uences
               Time = 3.37E+30Figure 10.10: 22,092 dof concentric spheres with contact, undeformed and deformed shape



175on their performance, the number of outer iterations and the cost of each iteration. Weprovide a \control" case - that is a similar problems with no contact. Figure 10.11 showsthe concentric sphere problem without contact, both the undeformed and deformed shape.
               Time = 3.37E+30Figure 10.11: 15,810 dof concentric spheres without contact, undeformed and deformedshape Table 10.2 shows the results of this experiment. The average convergence rate foreach Uzawa iteration is about the same as that of the no contact problem. As we use anadaptive convergence tolerance in the inner iterations (rtolmiinner = jCxmi j), the regularizedproblem is in fact a bit more di�cult to solve than our control problem.problem inner iterations (total) outer iterationsrtol 10�12 10�6 10�12 10�6no contact 27 12 1 1contact 313 85 14 7Table 10.2: Multigrid preconditioned CG iteration counts for contact problemFrom this data we can see that the cost is growing at about the logarithm of theconvergence tolerance, with about twice as many outer iterations and about twice as manyinner iterations, per outer iteration. This is probably not optimal and may be the subjectof future research. A potential avenue to improve this algorithm is to use preconditionedUzawa methods [33].



17610.7 ConclusionWe conclude that our linear solver can be e�ectively used in solving non-linearproblems, and that it remains robust for problems with thin body features and up to 16.6million equations on up to 512 processors of a Cray T3E, with about 60% parallel e�ciency.Our non-linear problems also present some the the most challenging operators, namelywith geometric sti�ness, which lowers the lowest eigenvalues (hence increases the conditionnumber of the matrix), and \softening" materials from yielding plasticity materials resultingin areas of strain localization with highly incompressible constitution. Thus, we are able toshow that our solver remains robust on large scale problems, in the presents very challengingmaterials. Also we show that our solver has the potential to be useful is solving contactproblems with Lagrange multipliers.



177Chapter 11ConclusionThis dissertation has developed a promising method for solving the linear set ofequations arising from implicit �nite element applications in solid mechanics. Our approach,a 3D and parallel extension to an existing serial 2D algorithm, is to our knowledge unique inthat it is a fully automatic (i.e. the user need only provide the �ne grid, which is easily avail-able in most �nite element codes) standard geometric multigrid method for unstructured�nite element problems.We have developed heuristics for the automatic parallel construction of the coarsegrids for 3D problems in solid mechanics; this work represents some of the most originalcontributions of this dissertation. Our method is the most scalable and robust (i.e., withrespect to convergence rate and breadth of problems on which it is e�ective) multigridalgorithm on unstructured �nite element problems that we are aware of. Additionally wehave developed and analyzed a new parallel maximal independent set algorithm that hassuperior PRAM complexity on �nite element meshes, than the commonly used randomalgorithms, and is very practical.We have developed a fully parallel and portable prototype solver that showspromising results, both in terms of convergence rates and parallel e�ciency, for some mod-estly complex geometries with challenging materials in large deformation elasticity andplasticity. Our prototype has solved problems of up to 16.6 million degrees of freedom onproblems with large deformation elasticity and plasticity on a Cray T3E with up to 512processors, and on an IBM PowerPC cluster with up to 128 4-way SMP nodes processors;we have also run on a network of workstations [68] and a network of PC SMPs [67]. We havedeveloped a complexity theory, and have begun to develop a complexity model, of multigrid



178equation solvers for 3D �nite element problems on parallel computers. Additionally we havedeveloped agglomeration strategies for the optimal selection of active processor sets on thecoarse grids of multigrid, as this is essential for optimal scalability.We have also developed a highly parallel �nite element implementation, built onan existing state-of-the-art serial research \legacy" �nite element implementation that usesour parallel solver. By necessity we have developed a novel, domain decomposition basedparallel �nite element programming model, that builds a complete �nite element problemon each processor as its primary abstraction.The implementation of our prototype system (ParFeap) required about 30,000lines of our own C++ code, plus several large packages: PETSc (160,000 lines of C),FEAP (105,000 lines of FORTRAN), METIS/ParMetis (30,000 lines of C), and geometricpredicates (4,000 lines of C) [73]. This complexity was required because� e�cient parallel multigrid solvers for unstructured meshes are inherently complex,� algorithm development and veri�cation of success in this area is highly experimentallybased, and thus requires a 
exible full featured computational substrate to enable thistype of research, and� we require portable implementations, so we use explicit message passing (MPI), as ourparallel programming paradigm, while accommodating both \
at" and hierarchicalmemory architectures (clusters of SMPs, CLUMPs).Additionally this work is rather broad, in the sense that the emphasis has been on gettinga prototype of the best �nite element linear equation solver possible - this has limited theamount of time that could be devoted to investigating more optimized approaches to eachaspect of our algorithm. In fact the vary exploratory nature of this work demands a non-optimal implementation, in that there is no sense in optimizing any system (e.g., a parallellinear solver for unstructured �nite element problems) before the overall practical qualityof the algorithm and a particular application area have been determined. Thus, there ismuch more work to be done.11.1 Future Work1. To be useful to a more general �nite element community we need to extend thealgorithm and its features:



179� Investigate more sophisticated face identi�cation algorithms, to increase robust-ness of solver on arbitrary complex domains.� Incorporate a parallel Delaunay tessellation algorithm [12] so as to develop morerobust and globally consistent implementations.� Incorporate a parallel direct solver for the coarsest grid [58].� Extend the implementation for more element types: shells, beams, trusses, etc.� Accommodate higher order elements such as, supporting higher dof per vertexfor p-adaptive methods and multi-physics problems.2. Develop solution strategies and implementations to extend application domains.� Investigate highly nonlinear problems to evaluate solver characteristics on prob-lems in plasticity, large deformation elasticity as well as other areas as one ap-proaches the limit load, so as to develop strategies to e�ectively solve these highlynon-linear �nite element problems.� Investigate non-CG Krylov subspace methods for inde�nite systems from largedeformation elasticity and plasticity.� Develop parallel and preconditioned Uzawa solvers for inde�nite systems fromconstrained problems with Lagrange multipliers.� Investigate multigrid algorithms for di�erential and algebraic systems from con-strained problems with Lagrange multipliers.3. Develop PETSc to more fully support large scale \algebraic" multigrid applicationse�ciently.� Incorporate a general RAP (sparse matrix triple product) in PETSc (we have im-plemented a specialized RAP, requiring a copy of the R matrix within Epimetheus).� Implement faster o�-processor, and on-processor, matrix assembly routines.� Improve the e�ciency of the additive Schwarz preconditioner setup phase.� Add \left" and \right" communicators to restriction matrices to fully supportcoarse grid agglomeration.� Optimize numerical kernels for shared memory architectures.



1804. Rebuild and cleanup the prototype's infrastructure for distributed multilevel unstruc-tured grid classes.� Redesign the parallel distributed multi-level classes.� Redesign the data structures, and clean the code up.� Separate the distributed multilevel unstructured grid classes from Prometheusso as to provide a class library to the public.5. Add and test other promising \algebraic" multigrid algorithms e.g.� Agglomeration with rigid body modes: Bulgakov and Kuhn (1995) x4.2 [19].� Smoothed agglomeration: Vanek and Mandel (1995) x4.2 [83].6. Build, maintain, document, and support a Library interface.� Encapsulate Prometheus into a PETSc \PC" object (low level).� Develop a higher level interface (e.g., FEI [37]).
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187Appendix ATest problemsThis section lists all of our test problems here with some statistics about them.This is meant to provide a reference with more detail about the problems and to provide asingle location for reference to the test problems.MaterialsAll materials are mixed pressure-displacement, eight node trilinear �nite elementselements.Material name elastic modulus Poisson ratio yield stress hardening modulus deformation typehard-linear 1 0:3 1 NA smallsoft-linear 10�4 0:49 1 NA smallhard-nonlinear 1 0:3 0:002 0:002 largesoft-nonlinear 10�4 0:49 1 NA largeTable A.1: Materials for test problems



188Problem 1: Included sphere
Figure A.1: 13,882 Vertex 3D FE mesh and deformed shapeMaterials: hard-linear sphere, soft-linear cover.Boundary conditions: Symmetry on sides, uniform load on top.



189dof � condition number non-zeros (x9)3410 1:75 � 10614880 3:5 � 106 12838625308 7:2 � 106 21983539732 34681658800 515161113460 999271194472 1718821246480 2181466307020 2720467376740 3341656456288 4050865546312 4853926647460 5756671760380 6764932885720 78845411024128 91213301176252 104811311342740 119697761524240 135930971721400 153569261934868 172670952167221 193294362413320 215497812679600 239339622964780 264878113269508 292171603594432 321278413940200 352256864307460 385165274696860 420061965109048 457005255544672 496053467534488 67446190Table A.2: Problem P1 statistics



190Problem 2: Included layered sphere
Figure A.2: 80,000 dof concentric spheres problemMaterials: Nine hard-nonlinear layers and eight soft-nonlinear layers in spheres,soft-nonlinear cover.Boundary conditions: Symmetry on sides, uniform imposed displacement ontop. dof � condition number non-zeros (x9)79679 705693622815 55594562085599 186670114924223 441340869594879 860664091655375926257055Table A.3: Problem P2 statistics



191Problem 3: Cantilever beam
Time = 0.00E+00Time = 0.00E+00Figure A.3: Cantilever with uniform mesh and end load, 4� 4� 128 element mesh, N = 4Materials: hard-linear.Boundary conditions: One end �xed, uniform, o�-axis load on the other end.dof � condition number non-zeros (x9)1,728 2:9 � 1079,600 1:2 � 10862,208 4:3 � 108Table A.4: Problem P3 statistics



192Problem 4: Cone
 1.08E+00

 5.51E+00

 9.93E+00

 1.44E+01

 1.88E+01

 2.32E+01

-3.35E+00

 2.76E+01

 PRIN. STRESS  1 

Current View
Min = -2.54E+00
X = 0.00E+00
Y = 7.87E+00
Z =-6.48E+01
Max =  2.65E+01
X = 2.71E+02
Y =-8.16E-01
Z =-4.06E+01

               Time = 3.37E+30Figure A.4: Truncated hollow coneMaterials: hard-linear.Boundary conditions: One end �xed, o�-axis load, with a torque, on the otherend. dof � condition number non-zeros (x9)21,700 3:6 � 107Table A.5: Problem P4 statistics



193Problem 5: Tube
Figure A.5: Cantilevered tubeMaterials: hard-linear.Boundary conditions: One end �xed, uniform, o�-axis load on the other end.dof � condition number non-zeros (x9)57,600 1:8 � 105 428,880Table A.6: Problem P5 statistics



194Problem 6: Beam-column
Figure A.6: Beam-columnMaterials: hard-linear.Boundary conditions: Top and bottom of column �xed and uniform load downon end of beam. dof � condition number non-zeros (x9)34,460 1:0 � 108 268,813Table A.7: Problem P6 statistics



195Problem 7: Concentric spheres without contact
               Time = 3.37E+30Figure A.7: Concentric spheres without contactMaterials: ALE3D matrix, steel on inner and outer shell, aluminum middle sec-tion. Boundary conditions: Sphere symmetry boundary conditions, with thermalload on middle section. dof � condition number non-zeros (x9)15,810Table A.8: Problem P7 statistics



196Problem 8: Concentric spheres with contact
               Time = 3.37E+30Figure A.8: Concentric spheres with contactMaterials: ALE3D matrix, steel on inner and outer shell, aluminum middle sec-tion. Boundary conditions: Sphere symmetry boundary conditions, with thermalload on middle section. Contact between shells enforces with Lagrange multipliers.dof � condition number non-zeros (x9)22,092Table A.9: Problem P8 statistics



197Appendix BMachines640 processor Cray T3E, at NERSCThe Cray T3E at NERSC has 696 single processor nodes total (up to 692 processorshave been used for a single job), 450 MHz., 900 M
op/sec theoretical peak, 256 MB memoryper processor, and a peak M
op rate of 662 M
op/sec (1/2 of 2 processor Linpack Rmax).150 Node/ 600 processor PowerPC cluster, at LLNLThe IBM at LLNL, has about 150 4-way-SMPs available to users, 332 MHz Pow-erPC 604e processors, 664 M
op/sec theoretical peak, 512 MB of memory per node, and apeak M
op rate of 258 M
op/sec (1/2 of 2 processor Linpack \toward perfect parallelism"as reported at http://www.rs6000.ibm.com/hardware/largescale/index.html).


