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The Case for AMR: Ice Sheet Dynamics Benefits and Challenges
100 bl ol hibit | L ] . Next-generation exascale computing promises a revolution in our ability to fully
| Many problems in climate exhibit large variations Resolution and Sea Level Rise: Mass loss from resolve the processes which define our climate, if we use AMR methods:
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N T e e B features, dynamic processes, and assumptions. | | o * Higher-order methods combined with AMR can ensure that computational
EEC O A el ) . o s The West Ant.arctl.c Ice Sheet (V.VAIS.) 'S d marine ice resources are used as efficiently as possible to fully-resolve the relevant physics,
s Space-time adaptivity will benefit climate codes sheet - organized into fast-flowing ice streams € while dynamically adapting to changes in the system
= 00 running on exascale machines by: flowing to the ocean, eventually crossing the Mag(veD m/a Wiy SR : . Efficient. hich-order adantive finite_volume
wil * More-efficient use of resources by deploying grounding line (GL) (where the ice begins to float), LN method; Cagn e accufatel eorecent
g computational effort where needed and feeding into enormous floating ice shelves, I,’,_’;Zf e i orography (with cut cells) anzzll bopundaries
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900 , lines, atmospheric rivers, grounding lines) . Antarctic response to climate forcine is dominated o i * Greater space-time resolution of dynamic
“eo a0 a0 1m0 o e aoe  ° Grid refinement studies for new physics models 16 TESP . " 5 BISICLES Antarctic ice velocities. features and extreme events becomes possible.
S (parameterizations) and geographic features by marine ice sheet instability -- warm-water AMR for Ice Sheets: BISICLES
S . . . om® incursion into subshelf cavities melts and ' Primary challenges for AMR techniques include:
Elevation. m e Evaluation of time discretization errors , , . , ,
eventually destroys ice shelves, weakening *BISICLES is a Chombo-based » Software infrastructure to support complexity
ABOVE: Thwaites Glacier buttressing, which causes increased flow speeds scalable AMR ice sheet model
ica) — hiah- : ’ ’ i * High-resolution observational data sets for
(An-tarctlca) high-resolution (250 ice sheet thinning, and grounding-line retreat. able to.apply very fine mesh | .g. =50 " o
m) inner bed grafted onto lower- resolution only where needed to initialization, boundary conditions, and validation. brsod simula y
resolution 1km-resolution Bedmap2 * Much of WAIS sits on bedrock below sea level resolve ice sheet dynamics. . . L . . ABOVE: AMR-based simulations o
’ . e Efficient refinement criteria for multi-physics : ons i
bed. making it extremely vulnerable. 3-5m of SLR is *Recent work (Cornford, Martin, et | | Py | ‘\f;::f;”Zegzgzos';;’gg;::”oW
| oossible from WAIS collapse alone. al, 201.6.) demonstrétes Importance  Weak scaling for some operations, load balancing q '
RIGHT: Tropical cyclones Lee and of sufficient resolution and AMR. \_ -/
Katia (on 9/6/11). The box is the * Very fine spatial resolution (better than 1 km) is
typical grid cell of a global climate needed to resolve dynamic features like grounding ~
model (~150km), too coarse to lines and ice streams — under-resolution has been E ' '
- cs. Th xascale Research Directions
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important climate statistics. contribution to SLR. (Cornford, Martin, et al, 2016,
\ Pattyn, et al, 2013) Future opportunities for this technology in climate applications include
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\ Laﬁ:sf;g:; W:s:iilif:?‘efslcnjutriis;‘)oilsgssneI:tiaI l;;;'m S vl To ensure that AMR remains computationally efficient at scale on
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sweeping all of WAIS) — dynamic adaptivity (AMR) many scenarios, refined meshes sweep mitigated by asynchronous communication.
Many climate applications have localized requirements for high also essential. over much of the WAIS as they follow _ .
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refines computational meshes where needed to improve iiifii A * Better algorithms for blocking/collectives
accuracy and resolve local dynamics, leading to more efficient _ - | (regridding, time step synchronization, etc.)
e Efficient implementations of mixtures of Above: Frame from
* Block-structured AMR can be made very efficient by using  ABOVE: Sample AMR meshes regular and irregular calculations as they POPSICLES coupled
logically-rectangular mesh patches, so that regular-mesh — black mesh is base level (0), AMR is being evaluated for BELOW: AMR-based simulations arise in multiblock, AMR, and cut-cell Antarctic ice-ocean
operations make up the majority of the computation. blue mesh (level 1) is a factor tmosoheric dvnamics can greatly improve resolution of a discretizations simulation.
. . . . of 2 finer, while red (level 2) . P ) Y tropical cyclone. With only 3 levels . . . _ Left: Cut-away of a
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&P Y P & Y \ ‘o——>’ * Non-hydrostatic Euler Level 0: C64, ~150km resolution
 Complex geometry can be represented using an Embedded- . \ on cubed sphere mesh _ h
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